Description of Courses

CIV 520 Advanced Engineering Analysis I. (3 Hours) A comprehensive course to familiarize engineering professionals with advanced applied mathematics as it relates to solving practical engineering problems. The course of intensive study blends the theoretical underpinnings of advanced applied mathematics with an understanding of how these powerful tools can be used to solve practical engineering problems. The material covered includes Ordinary Differential Equations; Linear Algebra; Vector Calculus; Fourier Analysis and Partial Differential Equations.

CIV 521 Advanced Engineering Analysis II. (3 Hours) A comprehensive course to familiarize engineering professionals with advanced applied mathematics as it relates to solving practical engineering problems. The course of intensive study blends the theoretical use of advanced applied mathematics with an understanding of how these powerful tools can be used to solve practical engineering problems. The material covered includes Complex Analysis; Numerical Methods; Optimization; Graphs; and Probability and Statistics.

CIV 552 GIS Applications in Civil and Environmental Engineering (3 Hours) This course introduces students to the basic concepts and skills necessary to engage applied Geographic Information Systems (GIS) within the field of Civil and Environmental Engineering. Students will gain basic theoretical knowledge required for development and successful use of GIS and practical training on use of a GIS software. This course will consist of lecture sessions, lab exercises and GIS project. While the principles taught will be general in nature, the students will be taught how to use the ArcView GIS software program, and working through several exercises that emphasize its use in Civil and Environmental Engineering. Selected topics include: GIS analysis procedures, integration of survey control for data acquisition and rectification, hardware software selection criteria, and error propagation analyses, Global Positioning Systems (GPS) and their use with GIS. Prerequisite: permission of the Department.

CIV 564 Surface Water. (3 Hours) Water quantity, water quality, regulation of, and management of rivers, lakes, and wetlands. Applications in engineering design. Prerequisite: permission of Department.

CIV 565 Wetland Management for Environmental Engineering. (3 Hours) The physical, chemical, biological, and regulatory aspects of wetland ecosystems. The impacts of wetland alteration, and the factors involved with wetland restoration and engineering design. Prerequisite: permission of Department.

CIV 567 Environmental Remediation. (3 Hours) The course covers current engineering solutions for the remediation of soils and waters contaminated by hazardous waste or spills. The technologies to be covered include bioremediation, oxidation, soil vapor extraction, soil washing, surfactant-enhanced remedy, thermal treatment, air stripping, solidification/stabilization, electrokinetic decontamination, underground barriers, permeable reactive treatment walls, and other newly-emerging technologies. The engineering principles behind the remediation technologies are emphasized. Examples of successful applications of the remediation technologies are discussed. Prerequisite: permission of Department.

CIV 568 Land Disposal of Waste. (3 Hours) Theoretical, regulatory, and practical aspects of the disposal of waste on lands. Decontamination and reclamation of lands contaminated by industrial activities and spills of industrial chemicals. The usefulness and environmental impact of the disposal of municipal and industrial wastes via land treatment and land filling. Design considerations and engineering problems associated with the land disposal of septic tank effluent, municipal garbage, sewage sludge, sewage effluent, industrial and hazardous waste, and radioactive wastes. Prerequisite: permission of Department.

CIV 570 Regional Geological Engineering. (3 Hours) Geological engineering problems unique to specific geomorphic and physiographic regions based on terrain, rock type, and geologic structure will be addressed. Examples will be presented to show how site-specific conceptual geologic models are necessary for successful engineering design in unique geologic regions of the United States. Prerequisite: permission of Department.

CIV 571 Principles of Geoenvironmental Engineering. (3 Hours) Topics in geoenvironmental engineering in an urban environment. Landfill design and incineration options. Stability of landfills, geotechnical characteristics of landfills, liner systems. Waste characterization, minimization, collection, treatment, transport and disposal. Leachate characteristics and potential groundwater contamination, design constraints. Legal and ethical considerations. Prerequisite: permission of Department. (Cross reference: CIV 471)

CIV 572 Applied Geotechnical Engineering Design. (3 Hours) Practical real life urban projects and advanced laboratory experience in geotechnical engineering, construction dewatering, construction issues, safety and economy, urban geotechnical engineering issues, preparation
CIV 573 Environmental Geology for Engineers. (3 Hours) Defines the role of Environmental Geology in the
ing engineering design of remedial activities dealing with a wide range of geotechnical engineering problems. Fundamental
concepts of environmental unity and the rising human population will be addressed. Topics will range from
earthquakes to coastal processes with particular emphasis on landslides and water problems. Prerequisite: permission of
Department.

CIV 574 Engineering Hydrogeology. (3 Hours) Defines the role of Hydrogeology in the engineering design of
activities dealing with the interaction of ground and surface water. The course will address a wide range of topics
including the role of water in earthquakes and landslides, land subsidence, swelling clay foundations, geothermal
energy, engineered wetlands, cave and karst formation, contaminant transport, and water resources with emphasis in
engineering design. Prerequisite: permission of Department.

CIV 575 Applied Geological Engineering. (3 Hours) Applications of geological concepts including geomorphology
and structural geology in solving geological engineering problems. Study of engineering principles and properties of
earth materials. Exploration during engineering design and methods of site investigations. Applications of
instrumentation and equipment used for soil, rock, and water analyses. Prerequisite: permission of Department.

CIV 576 Geological Engineering Analysis. (3 Hours) Computer applications to geological engineering, analysis,
design, and use of computers for geological engineering projects. Computer-aided engineering facilities and use of
general productivity and engineering software. Numerical methods in the solution of geological engineering and related
problems. Case study of a complex project and a large-scale engineering analysis. Prerequisite: permission of
Department.

CIV 577 Air-Photo Interpretation for Terrain Evaluation. (3 Hours) Determination of soil, bedrock, and drainage
characteristics of land areas by air-photo interpretation and analysis; physical characteristics of landforms; application
of air-photo interpretation for engineering soil surveys, land use suitability evaluation, and land use planning,
applications in engineering design. Prerequisite: permission of Department.

CIV 578 Applied Geophysics. (3 Hours) Gravity and magnetic theory and methods. Gravitational field of earth and
gravity measurements applications to geological engineering problems. Imaging subsurface features of earth using
basic principles of physics, namely elastic, electric, magnetic, and density properties of earth material. Applications in
engineering design. Prerequisite: permission of Department.

CIV 579 Engineering Seismology. (3 Hours) Theory and applications in earthquake seismology, earthquake
mechanics, wave propagation, earth structure, instrumentation, interpretation of seismograms, focal mechanisms, faults,
paleoseismology, seismotectonics, earthquake locations and magnitudes, selection of ground motion parameters.
Applications in engineering design. Prerequisite: permission of Department.

CIV 670 Rock Mechanics. (3 Hours) Classification of rock masses, stress and strain in rock, elastic and time-
dependent behavior of rock, state of stress in rock masses, failure mechanisms, construction applications, geological
and engineering applications. Prerequisite: permission of Department.

CIV 671 Advanced Topics in Geological Engineering. (Variable 1-4 Hours). Course will focus on a variety of topics
in the field of geological engineering. May be repeated for credit. Prerequisite: permission of Department.

CIV 672 Advanced Geomechanics. (3 Hours) Theoretical and quasi-theoretical approaches for advanced soil
mechanics including stress analysis, consolidation theory, immediate settlement, and saturated and partially saturated
soils; problem idealization; introduction to rock mechanics; engineering judgment. Prerequisite: CIV 380 or permission
of Department.

CIV 673 Advanced Foundation Engineering. (3 Hours) Advanced topics in foundations design, special cases of
shallow foundations; horizontal load capacity of pile foundations; battered piles, load calculation of pile groups. Drilled
caissons; design and construction of sheet piles including cantilever and anchored sheet piles; earth pressures and
stability of retaining structures; design of braced supports, cofferdams; design examples. Prerequisite: CIV 430 or
permission of Department.

CIV 674 Soil Dynamics. (3 Hours) Study of soil behavior under various dynamic loadings including earthquakes.
Laboratory & field techniques for determining dynamic soil properties and liquefaction potential. Factors affecting
liquefaction; dynamic soil-structure interaction. Engineering design examples. Prerequisite: CIV 380 or permission of Department.

CIV 675 Earth Dams and Slopes. (3 Hours) Stability of natural and man-made slopes under various loading conditions, slope protection. Selection and measurement of pertinent soil parameters. Engineering design and construction of earth dams and embankments. Practical aspects of seepage effects and ground water flow. Flow net and its use; wells; filters; total and effective stress methods of slope analysis. Prerequisite: CIV 380 or permission of Department.

CIV 676 Tunneling. (3 Hours) Overview of tunneling practice in rocks and soft ground. Underground construction techniques. Geological aspects and major technical problems in tunneling. Various tunneling methods and selections. Design and support of tunnels in soft ground and rock. Prerequisite: Permission of Department.

CIV 677 Design and Construction with Geosynthetics. (3 Hours) Properties and behavior of geosynthetics including geotextiles, geogrids and other fabrics; applications in geotechnical and geo-environmental engineering; quantify hydraulic behavior; applications in remediation, retaining structures, and foundations construction. Prerequisite: permission of Department.

CIV 678 Soil Bioengineering. (3 Hours) Engineering practices and ecological principles for the assessment, design, construction and maintenance of living vegetation systems. Slope stabilization against shallow mass movement and erosion through vegetated reinforcement. Root reinforcement, erosion control, aesthetics and environmental factors in engineering design are considered. Prerequisite: permission of Department.

CIV 679 Advanced Topics in Geotechnical Engineering. (Variable 1-4 Hours) Course will focus on a variety of topics in the field of geotechnical engineering. May be repeated for credit. Prerequisite: permission of Department.

CIV 695 Scientific Writing Seminar. (1 Hour) Exercises in scientific writing format and style, with particular emphasis on writing abstracts and manuscripts for publication in referred archival journals.

CIV 696 Seminar. (1 Hour) Presentation of papers, projects and reports by visiting lecturers, graduate students, engineers, and community leaders.

CIV 697 Internship. (Variable 1-3 Hours) Supervised graduate internship and externship in various areas. Prerequisite: permission of Department.

CIV 698 Independent Study. (Variable 1-4 Hours) Intensive study of a special project including research and literature review selected in accordance with student interests and arranged in consultation with the adviser. Topics will vary. Student will make period reports, and will prepare a scholarly paper at the end of semester. Prerequisite: permission of Department.

CIV 699 Thesis Research. (Variable 1-6 Hours) Master’s thesis representing an independent and original research. Prerequisite: permission of adviser.