CSC 323 Algorithm Design and Analysis, Fall 2014
Instructor: Dr. Natarajan Meghanathan
Module 3 — Greedy Strategy, Question Bank

128 64 32 16 8 4 2 1
1 0 1 0 1 1 0 1
25 10 5 1
1 2 0 2

47 cents = 1 quarter (25 cents) + 2 dimes (2*10 = 20 cents) + 2 pennies (2*1 cent = 2 cents)

* In a prefix-free code, no codeword is a prefix of a code of another symbol. With a prefix-free
code based encoding, we can simply scan a bit string until we get the first group of bits that is a
codeword for some symbol, replace these bits by this symbol, and repeat this operation until the
bit string’s end is reached.

* With the Huffman algorithm-based encoding, the binary codes are assigned based on a simple
path traversed from the root to a leaf node representing the symbol. Since there cannot be a
simple path from the root to a leaf node that leads to another leaf node (then we have to trace
back some intermediate node — meaning a cycle). Hence, Huffman codes are prefix-free codes.

symbol | A B C D _
frequency | 04 01 02 015 015

- OREO®

lteration # 1 5

(c)

ABACAB
v < xx\lg\\u
0100011101000 101

Iteration #3

A 04 0

B 0.1 100

C 0z 111

B 015 101
015 110

Avg # bits per symbol
S04 +0 13+ 0273+ 0153 + 01573
=2 .2 hits

Fixed length encoding would reguire |_10g2 5—|: 3 bits

Hence, the generic compression ratio = 1 — (2 .2/3)
=267%

The total number of bits in the binary code for the given 8-symbol text is 16 bits. A fixed-length encoding
would have result in 8*3 = 24 bits. Hence, the compression ratio that is specific for this text is: 1 —
(16/24) = 33.3%.

(d

100010111001010
100010111001010 100 B
100010111001010 0 A
100010111001010 101 D

100010111001010 110

100010111001010 0 A

100010111001010 101 D
1000101 11001010 0 _

The decoded text is BAD_AD _

Solution: Compute the Value/Weight for each item
Item 1 2 3 4
Value/Weight 6 10 6.67 1.5

Re-ordering the items according to the decreasing order of Value/Weight (break the tie by picking the
item with the lowest Index)

Item 2 4 3 1
Value/Weight 10 7.5 6.67 6
Value, $ 10 15 20 12
Weight, Ib 1 2 3 2
Weight collected 1 2 2

Items collected: Item 2 (1 1b, $10); Item 4 (2 Ib, $15); Item 3 (2 1b, (2/3)*20 = $13.3);
Total Value = $38.3

Solution: Compute the Value/Weight for each item
Item 1 2 3 4 5

Value/Weight 2.5 2.7 2.5 6 2

Re-ordering the items according to the decreasing order of Value/Weight (break the tie by picking the
item with the lowest Index)

Item 4 2 1 3 5
Value/Weight 6 2.7 2.5 2.5 2
Value, $ 6 8 5 10 4
Weight, Ib 1 3 2 4 2
Weight collected 1 3 2

Items collected: Item 4 (1 1b, $6); Item 2 (3 1b, $8); Item 1 (2 b, $5)
Total Value = $19

6) Given the following list of activities, find the list of activities for maximal conflict-free scheduling.
Activity|1 2 3 4 5 6 7 8 9 10

Start (1 1 2 4 5 8 9 11 12 13
Finish |3 8 &5 7 9 10 11 14 17 16

Solution:

Sorted List (increasing order of finish time)

[T]

Activity |1 4 2 § 6 7 8 10 9
Stat 1 2 4 1 5 8 9 11 13 12
Finish |3 5 7 8 9 10 11 14 16 17
Sorted List (Selected/ Discarded Activities)

Activity|1 |3/ 4 |2/ 6/ 6 7/ 8 10/ 9

Start |1 4 8 11 19 1
Finish |3 7 10 14
> 2 2 s Optimal Solution = {a1, a4, a6, EE}‘

7) Prove the following theorems with respect to the Minimal Finish Time strategy for Activities
Selection problem.

Theorem 1: At least one maximal conflict-free schedule includes the activity that finishes first.

Proof (by contradiction): There may be several maximal conflict-free schedules.

* But, assume the activity finishing first (say u) is in none of them.

* Let X be one such maximal conflict-free schedule that does not include u. Let v be the activity
finishing first in X.

* Since u finishes before v, u should not conflict with activities X — {v}.
* Hence, v could be removed from X and u could be inserted to X, leading to X’ = X U {u} — {v}.
* The set X’ featuring # would also be a maximal conflict-free schedule.

Theorem 2: The greedy schedule formed based on the earliest finishing activities is optimal.

Proof:

* Let u be the earliest finishing activity. According to Theorem 1, u will be part of some maximal
conflict-free schedule X.

* Since u is the earliest finishing activity, it should be the first activity in X.

* Among all the activities that overlap with « in X, only one of them could be selected for X (in this
case, u is indeed selected for X).

* Let Y =X- {u} - {set of all activities overlapping with u}. The optimality of the conflict-free
schedule for Y will hold true due to induction.

8) Based on each of the following criteria, determine the order in which the following files should be
organized in a tape to minimize the average access time. Determine the average access time in each
case.

File Index 1 2 3 4 5 6 7 8
File Size 10 15 5 20 45 12 25 18
Acc. Frequency 5 10 8 7 9 6 12 13

(1) Increasing order of file index
(i1) Increasing order of file size
(iii) Increasing order of file size / access frequency

Solutions:
(i) Increasing order of file index

Sorting based on the increasing order of File Index only

File Index 1 2 3 4 5 6 7 8
File Size 10 15 5 20 45 12 25 18
Acc. Frequency 5 10 8 7 9 6 12 13

Costto Access 10 25 30 50 95 107 132 150
CostFreq 50 250 240 350 8565 642 1584 1950

Average cost to access any file = (50 + 250 +240 + 350 + 855 + 642 + 1564 + 1950)

(5+10+8+7+9+6+12+13)
=84 .58

(ii) Increasing order of file size

Sorting based on the increasing order of File Size only

File Index 3 1 6 2 8 4 7 5
File Size 5 10 12 15 18 20 25 45
Acc. Freq. 8 5 6 10 13 7 12 9
Costto Access 5 15 27 42 60 80 105 150
Cost*Freq 40 75 162 420 780 560 1260 1350

Average cost to access any file = (40 + 75 + 162 + 420 + 780 + 560 + 1260 + 1350)

B+5+6+10+13+7+12+9)
=66.38

(iii) Increasing order of file size / access frequency

Sorting based on the increasing order of File Size [Access Freguency

File Index 3 8 2 1 6 7 4 5
File Size 5 18 15 10 12 25 20 45
Acc. Freq. 8 13 10 5 6 12 7 9
Size/lFrequency 0.625 1.385 1.5 2 2 2083 2857 5
Costto Access 5 23 38 48 60 85 105 150
Cost'Freq 40 299 380 240 360 1020 735 1350

Average cost to access any file = (40 + 299 + 380 + 240 + 360 + 1020 + 735 + 1350)

B+13+10+5+6+12+7+9)
=63.2

9) Prove that the strategy of ordering the files in the increasing order of File Size / Access
Frequency gives the optimal solution for the Tape Read Scheduling problem.

We want to prove that we get an optimal solution, when:

L{x(1)] Lim(i + 1)] ;

Fir()] < FirG+1)] !

« Where, 11(i) is the position of File iin the sorted order of
Size/Frequency, L[11(i})] is the length of File i.

« Suppose L[m(i)] / F[m(i)] > L[m(i+1)]/ F[mm(i+1)] for some i.

« To simplify notation, leta = (i) and b = m(i+1). L[al/FIa] = LI[b]/FIb]

« |f we swap files a and b, then the cost of accessing a increases by

L.Ib] and the cost of accessing b decreases by L[a]. Overall, the

swap changes the total cost by L[b]F[a] — L.[a]F[b] < 0. This is an
improvement! We do this for all consecutive pairs a and b.

