
CSC 323 Algorithm Design and Analysis 

Module 5: Graph Algorithms 

5.1: DFS and BFS Traversal Algorithms 

 

Instructor: Dr. Natarajan Meghanathan 

Sample Questions and Solutions 

 
1) Consider the following graph: 
 

a) Compute the DFS tree and draw the tree edges and back edges 

b) Write the order in which the vertices were reached for the first (i.e. 

pushed into the stack) 
c) Write the order in which the vertices became dead ends (i.e. 

popped from the stack) 

d) Determine the articulation points of the graph 
 

Solution: 

a) 

 
 

b) Order being pushed into the stack: a, b, d, f, c, g, e 

c) Order being popped off the stack: f, d, b, e, g, c, a 
d)  

 
 

2) How will you check for a graph’s acyclicity with DFS and BFS? 

With DFS, if we encounter a back edge, the graph has cycles; With BFS, if we encounter a cross edge, the 

graph has cycles. 
 

3) Find the minimum edge paths from vertex ‘a’ to every other vertex in the graph below: 

 

  



 
 

4) Find the articulation points of the following graph and justify your answer. 

       
Solution 

   DFS Tree                                          Articulation Points 
 

• Vertex a is an articulation point as it has more than one 

child node (nodes b and h) connected with a tree edge  

• Vertex c is an articulation point because the only child node 

that has a rooted sub tree is e and there is no back edge in 

this sub tree that goes past or above c in the DFS tree. 
 

Not Articulation points 

• Vertices d, g and j are leaf nodes 

• Vertices f and k are not articulation points as they have only 

one child node, each, and the sub tree rooted at these child 
nodes are connected to higher-level vertices.  

• Vertices b, e, h and i are not articulation points as the sub 

tree rooted at their respective only child nodes c, f, i and k 

have back edges to vertices that are higher above these 
vertices. 

 

 

5) Prove that BFS yields the minimum edge paths from the source vertex to every other vertex in a 
connected graph. 

Note that with BFS, we do not explore the neighbors of a vertex that is at a longer distance from the 

source vertex, before exploring the neighbors of a vertex that is at a shorter distance from the source 
vertex. Hence, in BFS starting with a source vertex s, when a vertex v is visited for the first time, through 

a tree edge u – v, the distance (# edges) from s to v is one edge more than the distance from s to u. If there 

was a shorter path from s to v, then v should have been visited before u was visited (i.e. v is closer to s 

than u) or at the same time when u was visited (i.e. v is at the same distance to s as u). However, since v is 



visited (for the first time) from u, the number of edges of s to v has to be one more than the number of 

edges from s to u.  
 

6) Prove (through an example) that DFS is not always guaranteed to find the shortest path (minimum edge 

tree). 

 
A DFS on the graph would yield a tree (that is basically a chain): a – b – c – d, 

whereas by running BFS from vertex a, we could find the shortest path tree with 

edges a – b, b – c, and a – d. 
11) How would you find whether a graph is 2-colorable (also called bi-partite) or not.  

 

Note: A graph is said to be bi-partite or 2-colorable if the vertices of the graph can be 
colored in two colors such that every edge has its vertices in different colors. In other words, we can 

partition the set of vertices of a graph into two disjoint sets such that there is no edge from a vertex in one 

set to a vertex in the other set.  

We can check for the 2-colorable property of a graph by running a DFS or BFS 

• With BFS, if there are no cross-edges between vertices at the same level, then the graph is 2-

colorable. 

• With DFS, if there are no back edges between vertices that are both at odd levels or both at even 

levels, then the graph is 2-colorable. 

 
7) Find whether the following graphs are 2-colorable or not. 

 

a)                                            b)                            c)                                          d) 

                               
 
a)  Yes, the graph is 2-colorable 

 
 
b) No, the graph is not 2-colorable 

 
 



c) No, the graph is not 2-colorable 

 
 

d) Yes, the graph is 2-colorable 

 
 

8) When do you say a graph is bi-partite? How would you determine it? 

A graph is said to be bi-partite, if we can partition its vertex set into two disjoint sets such that there is no 
edge between vertices in the same set; all the edges in the graph are across the two sets. A graph is said to 

be bi-partite, if it is 2-colorable. We test for the 2-colorability of a graph by running Breadth First Search 

(BFS): We should not encounter a cross edge between vertices at the same level (distance from the root). 



CSC 323 Algorithm Design and Analysis 

Module 5: Graph Algorithms 

5.2: Directed Acyclic Graphs and Topological Sorting 

 

Instructor: Dr. Natarajan Meghanathan 

Sample Questions and Solutions 

 
1) Apply the DFS-algorithm to solve the topological sorting problem for the following directed graphs: 
 

 

 

 
 

2) Prove that being a DAG is the necessary and sufficient condition to be able to do a topological sorting 

of a digraph. 

 



 

 
 

3) Can we use the order in which the vertices are pushed onto the DFS stack (instead of the order they are 
popped off it) to solve the topological sorting problem? 

 

The answer is no. We show this with a counterexample. 

 

 
 

 
 

4) Run the DFS algorithm on the following directed graphs and identify the tree edges, back edges, 

forward edges and cross edges. State whether the directed graph is a DAG or not. Justify. 
(a) 

 
The directed graph is not a DAG since it has a back edge (from b to a). 



(b) 

 
 

The above directed graph is a DAG since there is no back edge in its DFS traversal. 



CSC 323 Algorithm Design and Analysis 

Module 5: Graph Algorithms 

5.3: Single-Source Shortest Path Dijkstra Algorithm 

Instructor: Dr. Natarajan Meghanathan 

Sample Questions and Solutions 

 
1) Prove that the sub-path of a shortest path is also a shortest path. 

• Proof: Let us say there is a shortest path from s to d through the vertices s – a – b – c – d.  
• Then, the shortest path from a to c is also a – b – c.  

• If there is a path of lower weight than the weight of the path from a – b – c, then we could have 

gone from s to d through this alternate path from a to c of lower weight than a – b – c.  

• However, if we do that, then the weight of the path s – a – b – c – d is not the lowest and there 
exists an alternate path of lower weight.  

• This contradicts our assumption that s – a – b – c – d is the shortest (lowest weight) path. 

 
2) Prove the following statement: When a vertex v is picked for relaxation/optimization, every 

intermediate vertex on the s…v shortest path is already optimized. 

• Proof: Let there be a path from s to v that includes a vertex x (i.e., s...x...v) for which we have not 
yet found the shortest path. From Theorem 1, weight(s...x) < weight(s...v). Also, the x...v path has 

to have edges of positive weight. Then, the Dijkstra's algorithm would have picked up x ahead of 

v. So, the fact that we picked v as the vertex with the lowest weight among the remaining vertices 

(yet to be optimized) implies that every intermediate vertex on the s...v is already optimized. 

 
3) Determine the shortest paths (minimum weight paths) from the source vertex A to every other 

vertex on the following graphs: 

(a) 

 



(b) 

 

 
 

4) Prove the correctness of the Dijkstra’s algorithm. 

 

• Let P be the so-called shortest path from s to v that the Dijkstra algorithm finds. We need to prove 
that P is indeed the shortest s…v path. Assume the contradiction that there exists a path P' from s 

to v such that the weight(P') < weight(P).  

• With regards to the hypothetical path P' (such that P ≠ P' and weight(P') < weight(P)), there are 
two scenarios: 

• Scenario 1: If all vertices in P' are already optimized, the weight of the shortest path to these 

vertices should be even less than that of weight (P') < weight (P). Dijkstra algorithm would have 
then used the relaxation steps for optimizing these vertices to also optimize the weight of the 

shortest path to vertex v, and weight (P) = weight (P').  

• Scenario 2: There has to be an intermediate vertex y on the path P' that has not yet been relaxed 

by Dijkstra's algorithm. However, the fact that Dijkstra algorithm picked vertex v ahead of vertex 
y implies that the s...y path is of weight larger than or equal to the s...v path. Hence, if y had to be 

an intermediate vertex on the path P' from s to v, the weight(P') = weight(s...y path) + weight 

(y...v path). Since the edges on the y...v path are required to have weight greater than 0, weight(P') 
> weight(s...y path) ≥ weight(P). This is a contradiction to our assumption that weight(P') < 

weight(P). 

 



5) Given the pseudo code of the Dijkstra algorithm (below), analyze the run-time complexity of the 

Dijkstra’s shortest path algorithm. 
 

 
 

• The run-time complexity of Dijkstra algorithm is O(|E|*log|V|), because, we visit all the |E| edges 
of the graph and see if the weight of a path to a vertex (from the source) can be further optimized 

as part of the relaxation step. Each time, we do a relaxation, the Priority-Queue of the vertices 

needs to be rearranged to sort the vertices in the increasing order of weights for the path from the 
source. If the Priority-Queue of the |V| vertices is maintained as a heap, we would spend log|V| 

time to rearrange the Priority-Queue for each relaxation. There can be at most |E| such relaxation 

across all the vertices. Hence, the run-time complexity of the Dijkstra algorithm is O(|E|*log|V|). 

 



CSC 323 Algorithm Design and Analysis 

Module 5: Graph Algorithms 

5.5: Minimum Spanning Tree Algorithms 

Instructor: Dr. Natarajan Meghanathan 

Sample Questions and Solutions 

 
1) Determine a minimum spanning tree of the following graph using Prim’s algorithm. 

(a) 

 

 
 

 



 
 
(b) 

 

 
 

 

2) Provide a proof of correctness for the Prim’s algorithm. 
 

• If we can prove that the spanning tree of the vertices in the Optimal Set at the end of each 

iteration is a minimum spanning tree, then the spanning tree of all the vertices in the Optimal Set 
at the end of the final iteration is a minimum spanning tree of the entire graph.  

• We will prove using induction.  

• To start with, at the end of iteration 1, we have an one-vertex minimum spanning tree comprising 

of the starting vertex with no edges. 
• At the end of iteration i-1, assume we have a minimum spanning tree of the vertices in the 

Optimal Set.  

• We will have to prove that at the end of iteration i, the spanning tree Ti that we obtain for the 
vertices in the Optimal Set, expanded by one vertex and an edge (v, u) that was the minimum 

weight edge among the edges that connected the vertices v in the Optimal Set and the vertices u in 

the Fringe Set, is a minimum spanning tree.  



• Assume that there exists another (a hypothetical one) spanning tree Ti’ of the vertices in the 

Optimal Set that is of weight lower than the weight of the spanning tree Ti formed by Prim’s 
algorithm; i.e., Wt(Ti’) < Wt(Ti).  

• Note that Ti = Ti-1 U {u-v} according to Prim’s algorithm and for our hypothetical MST Ti’ = 

Ti-1 U {u’-v’}. That is, Wt(Ti) = Wt(Ti-1) + Wt(u-v). Similarly, Wt(Ti’) = Wt(Ti-1) + Wt(u’-v’).  

• For edge {u-v} selected by Prim’s algorithm, the end vertex u should be in the Optimal Set and 
the end vertex v should be in the Fringe Set (i.e., both the end vertices cannot be in the Optimal 

Set or in the Fringe Set). In other words, for {u-v} to be included to Ti-1 to expand the MST by 

one more edge leading to Ti, the edge {u-v} should cross the Optimal Set and Fringe Set.  
• Similarly, for edge {u’-v’} to be part of Ti’, its end vertex u’ should have been already part of the 

MST Ti-1 and its other end vertex v’ should not be part of Ti-1 (i.e., v’ should be among the list 

of vertices that are yet to be part of the MST). This implies that edge {u’-v’} should also be an 
edge crossing from the Optimal Set to the Fringe Set in the context of Prim’s algorithm.  

• The way Prim’s algorithm operates, the weight of an edge selected during an iteration is the 

minimum among all edges crossing the Optimal Set and Fringe Set that exists during that 

iteration. Hence, for iteration i, the weight of edge {u, v} is the minimal among edges crossing 
the Optimal Set to Fringe Set. So, wt{u-v} ≤ wt{u’-v’}. Hence, Wt(Ti) has to be only ≤ Wt(Ti’) 

(i.e., Wt(Ti’) ≥ Wt(Ti) ) which contradicts our assumption that the weight of the hypothetical 

MST Ti’, Wt(Ti’) < Wt(Ti).  
 

 

3) Determine a minimum spanning tree of the following graph using Kruskal’s algorithm. 

 

 
 



 
 

 
 

4) Provide a proof of correctness of the Kruskal’s algorithm. 

 
• Let T be the spanning tree generated by Kruskal’s algorithm for a graph G. Let T’ be a minimum 

spanning tree for G. We need to show that both T and T’ have the same weight. 

• Assume that wt( T’ ) < wt(T). 
• Hence, there should be an edge e in T that is not in T’. Because, if every edge of T is in T’, then T 

= T’ and wt(T) = wt( T’ ). 

• Pick up the edge e ε T and e ε T’. Include e in T’. This would create a cycle among the edges in 
T’. At least one edge in this cycle would not be part of T; because if all the edges in this cycle are 

in T, then T would have a cycle. 

• Pick up the edge e’ that is in this cycle and not in T.  

• Note that wt( e’ ) < wt(e); because, if this was the case then the Kruskal’s algorithm would have 
picked e’ ahead of e. So, wt( e’ ) ≥ wt(e). This implies that we could remove e’ from the cycle 

and include edge e as part of T’ without increasing the weight of the spanning tree.  

• We could repeat the above procedure for all edges that are in T and not in T’ ; and eventually 
transform T’ to T, without increasing the cost of the spanning tree.  

• Hence, T is a minimum spanning tree. 

 

 

5) A maximum spanning tree is the spanning tree with the largest sum of the edge weights. Use one 

of the two minimum spanning tree algorithms that we saw in this course to compute a maximum 

spanning tree of the graph given below.  

Explain the necessary transformations involved.  

Is there any difference in the time complexity of the algorithms to compute the maximum and the 

minimum spanning trees? Justify. 
 



The initial transformation is that we change the sign of all the edge weights (i.e., +ve to –ve and vice-

versa). This can be done in O(|E|) time. We run a minimum spanning tree algorithm on the modified 
graph. We revert the signs of all the edges in the minimum spanning tree to obtain the maximum spanning 

tree – the sum of the edge weights is the maximum. The reversion of the signs can be done in O(|V|) time. 

The overall complexity is O(|E|) + O(|V|) + O(|E|*log|V|), if we use the Prim’s algorithm. Since |E| = 

Ω(|E|*log|V|) and |V| = Ω(|E|*log|V|), we can say that the overall-time complexity of determining the 
maximum spanning tree using the Prim’s algorithm is still O(|E|*log|V|). 

 

       
             Given Graph 
 

 

 
 



6) Prove that if a weighted graph with unique edge weights has a cycle, then the heaviest weight 

edge (edge of maximum weight) in the cycle will not be part of a minimum spanning tree of the 

graph. 

 

Let there be a weighted graph that has a cycle vi ... vx - vy .... vj - vk ... vi such that the edge vj - vk is the 

heaviest weight edge.  
 

Assume vj - vk is in the minimum spanning tree (MST) T. Now remove the edge vj - vk from T to split the 

vertices of T to two disjoint subsets J and K (note the union of the two disjoint subsets of these vertices 
will be the set of all vertices in the graph) such that vj is in J and vk is in K. Since vj - vk is part of a cycle in 

the original graph, there should be an alternate path from vj to vk and (since all edges in the graph have 

unique edge weights) the weight of any edge in this alternate path should be less than the weight of the 
edge vj - vk. Hence, there should be an edge vx - vy that crosses the two disjoint subsets of vertices J and K 

whose weight is less than the weight of the edge vj - vk. We could use the edge vx - vy to connect the 

disjoint subsets J and K and obtain a spanning tree T ' that spans all the vertices of the graph. In other 

words T ' = T - {vj - vk} U {vx - vy}. Since weight(vx - vy) < weight(vj - vk), the weight(T ') < weight(T) 
which contradicts the assumption that T is a MST.  

 

Hence, if all edges in a weighted graph have unique weights, the heaviest weight edge in a cycle of the 
graph is guaranteed not to be in the Minimum Spanning Tree of the graph. 

 

7) Show that if the edges in a graph are of unique (distinct) weight (i.e., no two edges in the graph 

have different weights), then there is only one minimum spanning tree of the graph.  

 

We will prove this by contradiction.  

• Consider a graph G whose edges are of distinct weight. Assume there are two different spanning 
trees T and T’, both are of minimum weight; but have at least one edge difference. That is, there 

should be at least one edge e in T and e is not in T’. Add the edge e in T’ to create a cycle. This 

cycle should involve at least one edge e’ that is not in T; because if all the edges in the cycle are 
in T, then T is not a tree.  

• Thus, the end vertices of each of the two edges, e and e’, should belong to two disjoint sets of 

vertices that if put together will be the set of vertices in the graph. 

• Since all the edges in the graph are of unique weight, the weight(e’) < weight(e) for T ’ to be a 
min. spanning tree. However, if that is the case, the weight of T can be reduced by removing e 

and including e’, lowering the weight of T further. This contradicts our assumption that T is a 

min. spanning tree. 

• Hence, weight(e) > weight(e’). That is, the weight of edge e cannot be greater than the weight of 

edge e’ for T to be a min. spanning tree. Hence, weight(e) ≤ weight(e’) for T to be a min. 

spanning tree. Since, all edge weights are distinct, weight(e) < weight(e’) for T to be a min. 

spanning tree. 

• However, from the previous argument, we have that weight(e’) < weight(e) for  T ’ to be a min. 
spanning tree.  

• Thus, even though the graph has unique edge weights, it is not possible to say which of the two 

edges (e and e’) are of greater weight, if the graph has two minimum spanning trees. 
• Thus, a graph with unique edge weights has to have only one minimum spanning tree. 

 

 
 

 

 



8) Given the pseudo code of the Kruskal’s algorithm below, analyze its run-time complexity: 

 

 
 

9) Prove the following theorem for minimum spanning trees:  

Let us define a IJ-cut of the set of vertices V of a weighted graph to be two disjoint sets I and J such 

that I ∪ J = V and I ∩  J = ϕ. Let IJ-cut-set be the set of edges that connect the vertices in the two 

disjoint sets I and J in the weighted graph. If an edge (i, j) is a minimal weight edge in an IJ-cut-set, 

then the edge (i, j) has to be part of a minimum spanning tree of the graph.  

 

Proof: We will prove this by contradiction. Let (i, j) be the minimum weight edge in an IJ-cut-set and it 
cannot be part of a minimum spanning tree. Then, some other edge (i', j') in the IJ-cut-set should be part 

of the minimum spanning tree; otherwise, if no edge in the IJ-cut-set is part of a minimum spanning tree, 

then there exists no spanning tree of the entire graph. However, the weight(i', j') ≥ weight(i, j) since (i, j) 
is the edge of minimum weight in the IJ-cut-set. If this is the case, then we can remove (i', j') from the 

minimum spanning tree and connect the IJ-cut of vertices using (i, j) to restore the connectivity of the 

spanning tree, and the weight of this new spanning tree involving edge (i, j) can be only less than the 

weight of the original spanning tree involving (i', j') since weight(i, j) ≤ weight(i', j'). This contradicts the 
assumption that (i, j) cannot be part of a minimum spanning tree. 

 

10) Prove that if an edge (i, j) is part of a minimum spanning tree T of a weighted graph of V 

vertices, its two end vertices are part of an IJ-cut and (i, j) is the minimum weight edge in the IJ-

cut-set.  

 
Proof: We will prove this by contradiction. Assume an edge (i, j) exists in a minimum spanning tree T. 

Let there be an edge (i', j') of an IJ-cut such that vertices i and i' are in I and vertices j and j' are in J, and 

that weight(i', j') < weight(i, j). If that is the case, we can remove (i, j) from the minimum spanning tree T 



and restore its connectivity and spanning nature by adding (i', j') instead. By doing this, we will only 

lower the weight of T contradicting the assumption that T is a minimum spanning tree to start with. 
Hence, every edge (i, j) of a minimum spanning tree has to be the minimum weight edge in an IJ-cut such 

that i ∈I and j∈J, and I ∪ J = V and I ∩  J = ϕ. 

 
11) Show (using a simple graph example) that the shortest path tree and the minimum spanning 

tree obtained for a graph need not be the same. Discuss any potential tradeoffs you would typically 

observe between the two types of trees. 

 

 
 

As noted in the above example, the weight of a path from one vertex to another vertex on a minimum 

spanning tree need not be always the minimum. In the figure above, the weight of the path A – B – C – D 

on the minimum spanning tree is 7 whereas, we notice from the shortest path tree rooted at A, that there is 
a path (A – D) of weight 4 from A to D. On the other hand, the shortest path tree rooted at any vertex 

need not be the minimum spanning tree for the entire graph and the weight of the shortest path tree may 

typically exceed that of the minimum spanning tree, as observed in the above example. The shortest path 
tree rooted at A weights 7 whereas, the minimum spanning tree weighs 6. 



CSC 323 Algorithm Design and Analysis 

Module 5: Graph Algorithms 

5.5: All Pairs Shortest Paths Algorithm 

Instructor: Dr. Natarajan Meghanathan 

Sample Questions and Solutions 

 
1) Run the Floyd’s algorithm on the following digraph and deduce the paths from v2 to v4 and 

vice-versa. 

 
 

 

 
 

 
 

 



 
 

 

2) Run the Floyd’s algorithm on the following digraph (given its adjacency matrix) and deduce the 

paths from v1 to v3 and vice-versa. 

    
 

 

 
 

 

 



 

 
 

 
 

 

 
 

 

3) Compare the time complexities of the Dijkstra algorithm and the Floyd’s algorithm to determine 

the shortest paths (minimum weight paths) between all pairs of vertices for sparse graphs and 

dense graphs, and justify which algorithm you would use for each of these two types of graphs. 

 

The Floyd’s algorithm (of time complexity Ө(V
3
) on a V-vertex graph) is designed to determine shortest 

paths between all pairs of vertices in a connected graph. Hence, when this algorithm is run once on a 

connected graph of V-vertices and E-edges, it can determine the shortest paths between all pairs of 

vertices, at a run-time complexity of Ө(V
3
). 

 

The Dijkstra’s algorithm (of time complexity Ө(E*logV) on a V-vertex and E-edge graph) is designed to 

determine the shortest path from one vertex (the source or the starting vertex) to all the other vertices in a 

connected graph. Hence, when this algorithm is to be used to determine the shortest paths between all 
pairs of vertices, the algorithm has to be run V-times, each time on a particular vertex. Hence, the overall 

time complexity of using the Dijkstra’s algorithm for all-pairs-shortest-paths is Ө(V*E*logV). 

 
For sparse connected graphs, the minimum number of edges is |E| = |V| - 1. Hence, E = Ө(V). For such 

graphs, O(V*E*logV) = Ө(V
2
*logV). Since, logV < V, as V � ∞, V

2
*logV < V

3
. Hence, it would be 

prudent to use the Dijkstra’s algorithm with a resulting time complexity of Ө(V
2
*logV) for sparse graphs. 

 

For dense connected graphs, the maximum number of edges is |E| = |V|*(|V|-1)/2. Hence, E = Ө(V
2
). For 

such graphs, Ө(V*E*logV) = Ө(V
3
*logV) > Ө(V

3
). Hence, it would be prudent to use the Floyd’s 

algorithm with a resulting time complexity of Ө(V
3
) for dense graphs, especially for meshes – completely 

connected graphs. 



CSC 323 Algorithm Design and Analysis 

Instructor: Dr. Natarajan Meghanathan 

Module 5.6 – Iterative Improvement 

 

2) Find the maximum flow from the source s to the destination d in the following graph where the 

weights of the directed edges indicate the capacity of the edges. In addition, find the minimum 

set of edges (minimum cut) that when removed from this graph will disconnect s and d. Show all 

work. 

 

 
 

 
 

 

 
 



 

In the final Residual graph, we see that Source s is reachable to nodes 1 and 2. Nodes 3, 4 and destination 
d are not reachable from s. S = {s, 1, 2} and T = {3, 4, d} 

 

 
 

Find edges between S and T – These are the edges that form the bottleneck edges and if we remove these 
edges s and d are disconnected. Edges (1, d), (2, d), (2, 4) and (s, 3) are said to be the bottleneck edges in 

the input graph. If these edges are removed, the source s and destination d are disconnected. 

 

3) Find the maximum flow from the source s to the destination t in the following graph where the 

weights of the directed edges indicate the capacity of the edges. In addition, find the minimum 

set of edges (minimum cut) that when removed from this graph will disconnect s and t. Show all 

work. 
 

 



 
 
3) (15 points) Apply the Ford-Fulkerson algorithm to determine the maximum flow and the minimum cut 

for the following network where the edge weights indicate the capacity. 

 



 
 

   Max. flow = 12 + 4 +  4 + 4 = 24; Min. cut = {(d, t), (b, t)} = 2 edges 

 

4) Apply the Ford-Fulkerson Algorithm to Compute a Maximum Matching for the following bipartite 
graph: 

 

                           
Given Bipartite Graph                  Initialization of the Flow Graph for Ford-Fulkerson Algorithm 



 

 

Initial Residual Graph 

Iteration 1 



 

 

Iteration 2 

Iteration 3 



 
 
 

 

 
 

Iteration 4 

Iteration 5 



 
 
 

 

 

 

Final Residual Graph 

(after Iteration 5) 

Final Flow Graph with 

the Edges Forming the 

Minimum Cut 



 
 

5) Apply the Ford-Fulkerson Algorithm to Compute a Maximum Matching for the following bipartite 

graph: 

 

                           
       Given Bipartite Graph                  Initialization of the Flow Graph for Ford-Fulkerson Algorithm 



 

 
 

 
 

 

Initial Residual Graph 

Iteration 1 



 

 
 

 
 

 

Iteration 2 

Iteration 3 



 

 
 

 

 
 

Iteration 4 

Residual Graph (after 

Iteration 4) 



 

 
 

 

 
 

Final Flow Graph 

with the Edges 

Forming the 

Minimum Cut 

 



 

 

 


