
CSC 323 Algorithm Design and Analysis

Instructor: Dr. Natarajan Meghanathan

Sample Questions for Module 2 - Classical Algorithm Design Techniques

2.1 Brute-Force

1) Determine the number of character comparisons made by the brute-force algorithm in searching for the

pattern GOAT in the text below of length 47 characters.

The Search String is of length 47 characters; the Search Pattern is of length 4 characters. There will be 47-

4+1 = 44 iterations of the algorithm. For 43 iterations, the first character comparison itself will fail, as the

first character in the Search Pattern (character ‘G’) appears only once in the Search String. However, for
the iteration starting with character ‘G’, the second character comparison will fail. Hence, there will be a

total of 43*1 + 1*2 = 45 character comparisons.

2) How many comparisons (both successful and unsuccessful) are made by the brute-force string-

matching algorithm in searching for each of the following patterns in the binary text of 1000 zeros?

a) 00001
The Search String (0000….000) is of length 1000; the Search Pattern (00001) is of length 5. Hence, there

will be 1000-5+1 = 996 iterations. In each of these iterations, the first 4 comparisons would be successful

and the last comparison will be unsuccessful. Hence, there will be 996*4 = 3,984 successful comparisons
and 996*1 = 996 unsuccessful comparisons. Total comparisons = 3984 + 96 = 4980 comparisons.

b) 10000
There will be a total of 1000-5+1 = 996 iterations. In each of these iterations, the first comparison would

itself be unsuccessful. Hence, there will be 996*1 = 996 unsuccessful comparisons and there will not be

any successful comparisons. Total comparisons = 996.

c) 01010

There will be a total of 1000-5+1 = 996 iterations. In each of these iterations, the first comparison would

be successful and the second comparison would be unsuccessful. Hence, there will be 996*1 = 996
successful comparisons and another 996*1 = 996 unsuccessful comparisons. Total comparisons = 1992.

3) Consider the problem of counting, in a given text, the number of substrings that start with an A and end

with a B. (For example, there are 9 such substrings in DAAXBABAGBD). Design a Θ(n) algorithm to
count such substrings.

Note that the number of desired substrings that end with a B at a given position i (0 < i ≤ n-1) in the text is
equal to the number of A’s to the left of that position. This leads to the following algorithm:

Initialize the number of A’s encountered and the number of desired substrings encountered to 0. Scan

the text from left to right. When an A is encountered, increment the number of A’s encountered. When a
B is encountered, increment the number of desired substrings encountered by the current value of the

number of A’s encountered. When the text is exhausted, return the last value of the number of substrings

encountered. Since, we do a linear pass on the text and spends constant time on each of its characters, the

algorithm is linear.

D A A X B A B A G B D

A’s 0 0 1 2 2 2 3 3 4 4 4 4

desired 0 0 0 0 0 2 2 5 5 5 9 9

substrings

2.2 Decrease and Conquer

1) Apply Insertion Sort to sort the list A L G O R I T H M S in alphabetical order.

A L G O R I T H M S

A | L G O R I T H M S

A L | G O R I T H M S
A G L | O R I T H M S

A G L O | R I T H M S

A G L O R | I T H M S
A G I L O R | T H M S

A G I L O R T | H M S

A G H I L O R T | M S

A G H I L M O R T | S
A G H I L M O R S T

2) Analyze the best-case, worst-case and average-case time complexity of Insertion sort.

Best Case (if the array is already sorted): the element v at A[i] will be just compared with A[i-1] and

since A[i-1] ≤ A[i] = v, we retain v at A[i] itself and do not scan the rest of the sequence A[0…i-1]. There
is only one comparison for each value of index i.

Worst Case (if the array is reverse-sorted): the element v at A[i] has to be moved all the way to index
0, by scanning through the entire sequence A[0…i-1].

Average Case: On average for a random input sequence, we would be visiting half of the sorted sequence

A[0…i-1] to put A[i] at the proper position.

Overall Time Complexity: O(n
2
)

2.3 Divide and Conquer

1) Solve the following recurrence relations (using Master Theorem):

)(1
1

1

nn
n

i

Θ==∑
−

=

∑∑∑
−

=

−

= −=

Θ=
−

===

1

1

2
1

1

0

1

)(
2

)1(
1)(

n

i

n

i ij

n
nn

inC

∑ ∑∑ ∑
−

=

−

=

−

=

−

−=

Θ=
+

=+
−

==

1

1

2
1

1

1

1

2/)1(

1

)(
2

)1(
1

2

)1(
1)(

n

i

n

i

n

i

i

ij

n
ii

nC

a) T(n) = 3T(n/2) + n
2

a = 3; b = 2; d = 2

b
d
 = 2

2
 = 4

a = 3 < b
d
 = 4

Hence, T(n) = Θ(n
2
)

b) T(n) = 3T(n/3) + n

 T(n) = 3T(n/3) + n
(1/2)

a = 3; b = 3; d = 1/2
b

d
 = 3

1/2
 = 1.732

a = 3 > b
d
 = 1.732

T(n) = Θ(n
log

3
3
) = Θ(n)

c) T(n) = 4T(n/2) + logn

a = 4; b = 2; d < 1, because logn < n
1

b
d
 = 2

<1
 < 2

a > b
d

T(n) = Θ(n
log

2
4
) = Θ(n

2
)

d) T(n) = 6T(n/3) + n

2
logn

a = 6; b = 3; 2 < d < 3, because logn < n and hence n
2
logn < n

3

 b
d
 = 3

2<d<3
> 9 > a

 a < b
d

 Hence, T(n) = Θ(n
d
) = Θ(n

2
logn)

2) Consider the merge sort algorithm. Solve for the worst-case number of comparisons in the

algorithm.

3) Apply Merge sort to the list E, X, A, M, P, L, E to sort the list in alphabetical order.

4) Develop a divide and conquer algorithm to find the position (index) of the largest element in an

array of n integers. Illustrate the working of your algorithm by executing it on the following

array. If there is more than one occurrence of the largest element in your array, where is the

index of the largest element returned by your algorithm located?

0 1 2 3 4 5 6 7 8 9

30 40 10 50 23 60 12 33 21 60

The idea is to divide an array of size n into two sub-arrays of size n/2 each and find the index of the

maximum element within the sub-arrays using a recursive approach. To conquer the solution, we compare
the values of the elements that are the largest in the two sub-arrays and the larger of the two is the largest

element within the composite array of the two sub-arrays. The pseudo code of a divide-and-conquer

algorithm based on the above idea is given below:

Comparison of the elements in the different indices is the basic operation. The number of comparisons

needed to find the index with the largest element in an array of size n is the number of comparisons
needed to find the index with the largest element in the two sub-arrays, each of size n/2 and 1 more

comparison to divide the larger among the two elements corresponding to the largest element in the two

sub-arrays. Hence, the recursion is: C(n) = 2 C(n/2) + 1 for n > 1 and C(1) = 0

Solving the above recurrence using Master Theorem, a = 2; b = 2; d = 0 � a > b

d
. Hence, C(n) = Θ(n

log
2

2
)

= Θ(n).

Example

5) Consider the following 13-element sorted array.

a) List all the keys of this array that will require the largest number of key comparisons when

searched for by binary search.

b) Find the average number of key comparisons made by binary search in a successful search in this
array. Assume that each key is searched with the same probability.

c) Find the average number of key comparisons made by binary search in an unsuccessful search in

this array. Assume that searches for keys in each of the 14 intervals formed by the array’s

elements are equally likely.

a) The keys that will require the maximum number of comparisons (4) are the ones at positions (index

values) 1, 3, 5, 8, 10 and 12.

b) There will be:

1 comparison for key at position 6,
2 comparisons for keys at positions 2 and 9,

3 comparisons for keys at positions 0, 4, 7 and 11

4 comparisons for keys at positions 1, 3, 5, 8, 10 and 12
Hence, the average number of key comparisons for a successful search is 1* (1/13) + 2 *

(2/13) + 3 * (4/13) + 4 * (6/13) = 41/13 = 3.15.

c) Three comparisons are required to do an unsuccessful search for a key that is less than the value of

the key at position 0 and to search for a key that is in between the values of the keys at positions 6 and
7. For the remaining 12 of the 14 intervals, there will be 4 comparisons incurred for an unsuccessful

key search. Hence, the average number of key comparisons for an unsuccessful search is 3*(2/14) +

4*(12/14) = 54/14 = 3.86.

7) Draw a binary tree with 10 nodes labeled 0, 1, …, in such a way that the in-order and

post-order traversals of the tree yield the following lists: 9, 3, 1, 0, 4, 2, 7, 6, 8, 5 (in-order)

and 9, 1, 4, 0, 3, 6, 7, 5, 8, 2 (post-order).

8) Prove that an in-order traversal of a binary search tree lists the keys of the nodes in the

tree in a sorted order.

9) Traverse the following binary tree in (i) pre-order, (ii) in-order and (iii) post-order

Pre-order: a, b, d, e, c, f

In-order: d, b, e, a, c, f

Post-order: d, e, b, f, c, a

2.4 Transform and Conquer

1) Prove Euclid’s GCD Formula: For any two integers m, n such that m > n, GCD(m, n) =

GCD(n, m mod n).

Proof

2) Find the GCD of 90 and 48 using the Euclid’s formula. Using this GCD, also find the

LCM of 90 and 48.

GCD(90, 48) = GCD(48, 42) = GCD(42, 6) = GCD(6, 0) = 6.

LCM(90, 48) = 90*48/GCD(90, 48) = 90*48/6 = 720.

3) Find the number of paths of length 2 between any two vertices in the following graph.

Solution:

4) Construct a heap for the array [2, 5, 3, 1, 8] using the top-down approach and sort the

array using repeated key removal operations of the element at the top of the heap. Show

all the steps

Top-Down Heap Construction

Sorting the Array

5) Construct a heap for the array [1, 8, 6, 5, 3, 7, 4] using the bottm-up approach and sort

the array using repeated key removal operations of the element at the top of the heap.

Show all the steps

6) Show using a simple example that the heap constructed using the bottom-up approach

and the top-down approach need not be the same.

2.5 Space-Time Tradeoffs

1) Compare the working principle and time complexity of the top-down and bottom-up heap

construction strategies and when would you use each of them?

The top-down heap construction strategy works to construct a heap of a list of elements whose contents

are not known a priori (i.e. not known beforehand). Whenever a new element is to be inserted to an

existing heap, we add that new element as the rightmost element in the bottom-most level of the heap and
re-heapify the binary tree (i.e., move the newly inserted element higher up in the tree if the element is

greater than its parental node until the parent-child heap property is retained). The height of a binary tree

forming the heap of n nodes is Θ(logn). Hence, at the worst-case, a newly inserted node has to be moved

up all the way from the leaf node level (bottom-most level) to the root of the tree (i.e. incur logn
swappings). For an n-element list, it would then take Θ(n*logn) time to construct the heap. The worst-

case scenario would be if the input array to be sorted is already-sorted 1, 2, 3, 4, … Every new element to

be inserted would incur a Θ(logn) time to restore the parent-child node heap property.

The bottom-up heap construction strategy works by constructing a binary tree of the initial array in the

top-down, right-to-left at each level fashion. Each parental/internal node of the binary tree (i.e., half of the
nodes in the binary tree) is then visited to ensure that its value is greater than or equal to its two children.

If the value of a parental node of a sub tree is lower than at least one of its two immediate children, then

the parental node is swapped with the larger of its two children and this operation is recursively operated

until the heap property of the sub tree rooted is restored. The above procedure is conducted at every
parental node of the binary tree. The worst-case time complexity of the bottom-up heap construction

strategy is Θ(n) time. Since the bottom-up heap construction strategy is more time-efficient compared to

the top-down heap construction strategy, it is preferable when the contents of the array to be sorted are
known a priori (i.e. known beforehand).

2) For the input sequence 30, 20, 56, 75, 31, 19 and hash function h(K) = K mod 11,

a. Construct the open hash table

b. Find the largest number of key comparisons in a successful search in this table

c. Find the average number of key comparisons in a successful search in this table

3) For the input sequence 30, 20, 56, 75, 31, 19 and hash function h(K) = K mod 11,

d. Construct the closed hash table

e. Find the largest number of key comparisons in a successful search in this table

f. Find the average number of key comparisons in a successful search in this table

4) Find the probability of all n keys being hashed to the same cell of a hash table of size m if the

hash function distributes keys evenly among all the cells of the table.

5) Consider the following table that defines the numerical equivalence of each character in the set

of alphabets A – Z. Determine an open hashing table and a closed hashing table for the sequence of

words given after the table

A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED

Open Hashing Table

Closed Hashing Table

6) Mention one critical advantage of open hashing over closed hashing. What is the significance of a

load factor in open hashing?

With open hashing, the number of elements (n) in the input sequence can exceed the size of the hash table

(m). With closed hashing, n <= m. The load factor in open hashing is a measure of the length of the linked
list for a particular entry in the hash table. The average number of key comparisons for a successful

search of an element in the hash table is the (load factor)/2. The worst-case number of comparisons for an

unsuccessful search is (load factor).

7) How would you use the hash table approach to determine whether every element in an input

sequence is unique or not? What is the worst-case time complexity of the approach?
Determine the hash values of the elements in the input sequence, one followed by the other. If the hash

value of two different elements is the same, then we have to resolve the collision by going through the

linked list and insert the new element at the end of the list (in the case of open hashing) or going through

the adjacent cells in the table and insert the new element at the first empty cell that is encountered starting

from the cell to which we hashed to (in the case of closed hashing). During the traversal of the linked list

in a open hash table or the adjacent cells in a closed hash table, if we encounter an element that is equal to
the new element that we are trying to insert, then the input sequence does not have unique elements. At

the worst case, if all the elements in the input sequence hash to the same value, we will have to Θ(n) key

comparisons for each element and for an n-element sequence, the worst-case time complexity would be

Θ(n
2
) key comparisons.

8) What is lazy deletion? Why is it needed for closed hashing?

With deletions in a Closed Hashing Table, if we simply delete a key, then we may not be able to

successfully search for a key that has the same hash value as that of the key being deleted. With Lazy

Deletion, the previously occupied locations of the deleted keys (these locations are available for new
insertions) can be marked by a special symbol to distinguish them from

