
CSC 323 Algorithm Design and Analysis 

Instructor: Dr. Natarajan Meghanathan 
 

Sample Questions for Module 2 - Classical Algorithm Design Techniques 
 

2.1  Brute-Force 
 

1) Determine the number of character comparisons made by the brute-force algorithm in searching for the 

pattern GOAT in the text below of length 47 characters. 

 
 
The Search String is of length 47 characters; the Search Pattern is of length 4 characters. There will be 47-

4+1 = 44 iterations of the algorithm. For 43 iterations, the first character comparison itself will fail, as the 

first character in the Search Pattern (character ‘G’) appears only once in the Search String. However, for 
the iteration starting with character ‘G’, the second character comparison will fail. Hence, there will be a 

total of 43*1 + 1*2 = 45 character comparisons. 

 
2) How many comparisons (both successful and unsuccessful) are made by the brute-force string-

matching algorithm in searching for each of the following patterns in the binary text of 1000 zeros? 

 

a) 00001 
The Search String (0000….000) is of length 1000; the Search Pattern (00001) is of length 5. Hence, there 

will be 1000-5+1 = 996 iterations. In each of these iterations, the first 4 comparisons would be successful 

and the last comparison will be unsuccessful. Hence, there will be 996*4 = 3,984 successful comparisons 
and 996*1 = 996 unsuccessful comparisons. Total comparisons = 3984 + 96 = 4980 comparisons. 

 

b) 10000 
There will be a total of 1000-5+1 = 996 iterations. In each of these iterations, the first comparison would 

itself be unsuccessful. Hence, there will be 996*1 = 996 unsuccessful comparisons and there will not be 

any successful comparisons. Total comparisons = 996. 

 
c) 01010 

There will be a total of 1000-5+1 = 996 iterations. In each of these iterations, the first comparison would 

be successful and the second comparison would be unsuccessful. Hence, there will be 996*1 = 996 
successful comparisons and another 996*1 = 996 unsuccessful comparisons. Total comparisons = 1992. 

 

3) Consider the problem of counting, in a given text, the number of substrings that start with an A and end 

with a B. (For example, there are 9 such substrings in DAAXBABAGBD). Design a Θ(n) algorithm to 
count such substrings. 

 

Note that the number of desired substrings that end with a B at a given position i (0 < i ≤ n-1) in the text is 
equal to the number of A’s to the left of that position. This leads to the following algorithm: 

Initialize the number of A’s encountered and the number of desired substrings encountered to 0. Scan 

the text from left to right. When an A is encountered, increment the number of A’s encountered. When a 
B is encountered, increment the number of desired substrings encountered by the current value of the 

number of A’s encountered. When the text is exhausted, return the last value of the number of substrings 

encountered. Since, we do a linear pass on the text and spends constant time on each of its characters, the 

algorithm is linear. 
 



D A A X B A B A G B D 

 
# A’s         0      0 1 2 2 2 3 3 4 4 4 4      

# desired   0      0 0 0 0 2 2 5 5 5 9 9 

substrings 

 

2.2  Decrease and Conquer 

 

1) Apply Insertion Sort to sort the list A L G O R I T H M S in alphabetical order. 

 

A L G O R I T H M S 

A | L G O R I T H M S 

A L | G O R I T H M S 
A G L | O R I T H M S 

A G L O | R I T H M S 

A G L O R | I T H M S 
A G I L O R | T H M S 

A G I L O R T | H M S 

A G H I L O R T | M S 

A G H I L M O R T | S 
A G H I L M O R S T 

 

2) Analyze the best-case, worst-case and average-case time complexity of Insertion sort. 
 

Best Case (if the array is already sorted): the element v at A[i] will be just compared with A[i-1] and 

since A[i-1] ≤ A[i] = v, we retain v at A[i] itself and do not scan the rest of the sequence A[0…i-1]. There 
is only one comparison for each value of index i. 

 

 

Worst Case (if the array is reverse-sorted): the element v at A[i] has to be moved all the way to index 
0, by scanning through the entire sequence A[0…i-1]. 

 

 
 

 

Average Case: On average for a random input sequence, we would be visiting half of the sorted sequence 

A[0…i-1] to put A[i] at the proper position. 
 

 

 
 

Overall Time Complexity: O(n
2
) 

 
 

2.3  Divide and Conquer 

 

1) Solve the following recurrence relations (using Master Theorem): 
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a) T(n) = 3T(n/2) + n
2
 

a = 3; b = 2; d = 2 

b
d
 = 2

2
 = 4  

a = 3 < b
d
 = 4 

Hence, T(n) = Θ(n
2
) 

 

b) T(n) = 3T(n/3) + n  

       T(n) = 3T(n/3) + n
(1/2)

  

a = 3; b = 3; d = 1/2  
b

d
 = 3

1/2
 = 1.732 

a = 3 > b
d
 = 1.732 

T(n) = Θ(n
log

3
3
) = Θ(n) 

   

c) T(n) = 4T(n/2) + logn 

a = 4; b = 2; d < 1, because logn < n
1
 

b
d
 = 2

<1
 < 2 

a > b
d
 

T(n) = Θ(n
log

2
4
) = Θ(n

2
) 

 
d) T(n) = 6T(n/3) + n

2
logn 

a = 6; b = 3; 2 < d < 3, because logn < n and hence n
2
logn < n

3
 

             b
d
 = 3

2<d<3  
> 9 > a 

             a < b
d
 

             Hence, T(n) = Θ(n
d
) = Θ(n

2
logn)                     

  

2) Consider the merge sort algorithm. Solve for the worst-case number of comparisons in the 

algorithm. 
 

 
 



3) Apply Merge sort to the list E, X, A, M, P, L, E to sort the list in alphabetical order. 
 

 
 

4) Develop a divide and conquer algorithm to find the position (index) of the largest element in an 

array of n integers. Illustrate the working of your algorithm by executing it on the following 

array. If there is more than one occurrence of the largest element in your array, where is the 

index of the largest element returned by your algorithm located?  

 
0 1 2 3 4 5 6 7 8 9 

30 40 10 50 23 60 12 33 21 60 

 

The idea is to divide an array of size n into two sub-arrays of size n/2 each and find the index of the 

maximum element within the sub-arrays using a recursive approach. To conquer the solution, we compare 
the values of the elements that are the largest in the two sub-arrays and the larger of the two is the largest 

element within the composite array of the two sub-arrays. The pseudo code of a divide-and-conquer 

algorithm based on the above idea is given below: 
 

 



Comparison of the elements in the different indices is the basic operation. The number of comparisons 

needed to find the index with the largest element in an array of size n is the number of comparisons 
needed to find the index with the largest element in the two sub-arrays, each of size n/2 and 1 more 

comparison to divide the larger among the two elements corresponding to the largest element in the two 

sub-arrays. Hence, the recursion is: C(n) = 2 C(n/2) + 1    for n > 1 and C(1) = 0 

 
Solving the above recurrence using Master Theorem, a = 2; b = 2; d = 0 � a > b

d
. Hence, C(n) = Θ(n

log
2

2
) 

=  Θ(n). 

 

Example 

 
 

 



5) Consider the following 13-element sorted array.  

 

 
a) List all the keys of this array that will require the largest number of key comparisons when 

searched for by binary search. 

b) Find the average number of key comparisons made by binary search in a successful search in this 
array. Assume that each key is searched with the same probability. 

c) Find the average number of key comparisons made by binary search in an unsuccessful search in 

this array. Assume that searches for keys in each of the 14 intervals formed by the array’s 

elements are equally likely. 
 

 
 
a) The keys that will require the maximum number of comparisons (4) are the ones at positions (index 

values) 1, 3, 5, 8, 10 and 12. 

b) There will be: 

1 comparison for key at position 6,  
2 comparisons for keys at positions 2 and 9,  

3 comparisons for keys at positions 0, 4, 7 and 11 

4 comparisons for keys at positions 1, 3, 5, 8, 10 and 12 
Hence, the average number of key comparisons for a successful search is 1* (1/13) + 2 * 

(2/13) + 3 * (4/13) + 4 * (6/13) = 41/13 = 3.15. 

c) Three comparisons are required to do an unsuccessful search for a key that is less than the value of 

the key at position 0 and to search for a key that is in between the values of the keys at positions 6 and 
7. For the remaining 12 of the 14 intervals, there will be 4 comparisons incurred for an unsuccessful 

key search. Hence, the average number of key comparisons for an unsuccessful search is 3*(2/14) + 

4*(12/14) = 54/14 = 3.86. 
 

 



7) Draw a binary tree with 10 nodes labeled 0, 1, …, in such a way that the in-order and 

post-order traversals of the tree yield the following lists: 9, 3, 1, 0, 4, 2, 7, 6, 8, 5 (in-order) 

and 9, 1, 4, 0, 3, 6, 7, 5, 8, 2 (post-order).  
 

 

 
 



8) Prove that an in-order traversal of a binary search tree lists the keys of the nodes in the 

tree in a sorted order. 
 

 
9) Traverse the following binary tree in (i) pre-order, (ii) in-order and (iii) post-order 

 

 
 

Pre-order: a, b, d, e, c, f 

In-order: d, b, e, a, c, f 

Post-order: d, e, b, f, c, a 



2.4  Transform and Conquer 
 

1) Prove Euclid’s GCD Formula: For any two integers m, n such that m > n, GCD(m, n) = 

GCD(n, m mod n).  
 

Proof 

 

 
 

2) Find the GCD of 90 and 48 using the Euclid’s formula. Using this GCD, also find the 

LCM of 90 and 48. 
 

GCD(90, 48) = GCD(48, 42) = GCD(42, 6) = GCD(6, 0) = 6. 

LCM(90, 48) = 90*48/GCD(90, 48) = 90*48/6 = 720. 

 

3) Find the number of paths of length 2 between any two vertices in the following graph. 

 

 
Solution: 

 



 

4) Construct a heap for the array [2, 5, 3, 1, 8] using the top-down approach and sort the 

array using repeated key removal operations of the element at the top of the heap. Show 

all the steps 
 

Top-Down Heap Construction 

 
 

Sorting the Array 
 

 
 

 



 
 

5) Construct a heap for the array [1, 8, 6, 5, 3, 7, 4] using the bottm-up approach and sort 

the array using repeated key removal operations of the element at the top of the heap. 

Show all the steps 
 

 



 
 

 
 

6) Show using a simple example that the heap constructed using the bottom-up approach 

and the top-down approach need not be the same. 
 

 



 
 



2.5  Space-Time Tradeoffs 
 

1) Compare the working principle and time complexity of the top-down and bottom-up heap 

construction strategies and when would you use each of them? 

 
The top-down heap construction strategy works to construct a heap of a list of elements whose contents 

are not known a priori (i.e. not known beforehand). Whenever a new element is to be inserted to an 

existing heap, we add that new element as the rightmost element in the bottom-most level of the heap and 
re-heapify the binary tree (i.e., move the newly inserted element higher up in the tree if the element is 

greater than its parental node until the parent-child heap property is retained). The height of a binary tree 

forming the heap of n nodes is Θ(logn). Hence, at the worst-case, a newly inserted node has to be moved 

up all the way from the leaf node level (bottom-most level) to the root of the tree (i.e. incur logn 
swappings). For an n-element list, it would then take Θ(n*logn) time to construct the heap. The worst-

case scenario would be if the input array to be sorted is already-sorted 1, 2, 3, 4, … Every new element to 

be inserted would incur a Θ(logn) time to restore the parent-child node heap property. 
 

The bottom-up heap construction strategy works by constructing a binary tree of the initial array in the 

top-down, right-to-left at each level fashion. Each parental/internal node of the binary tree (i.e., half of the 
nodes in the binary tree) is then visited to ensure that its value is greater than or equal to its two children. 

If the value of a parental node of a sub tree is lower than at least one of its two immediate children, then 

the parental node is swapped with the larger of its two children and this operation is recursively operated 

until the heap property of the sub tree rooted is restored. The above procedure is conducted at every 
parental node of the binary tree. The worst-case time complexity of the bottom-up heap construction 

strategy is Θ(n) time. Since the bottom-up heap construction strategy is more time-efficient compared to 

the top-down heap construction strategy, it is preferable when the contents of the array to be sorted are 
known a priori (i.e. known beforehand). 

 

2) For the input sequence 30, 20, 56, 75, 31, 19 and hash function h(K) = K mod 11,  

a. Construct the open hash table 

b. Find the largest number of key comparisons in a successful search in this table 

c. Find the average number of key comparisons in a successful search in this table 

 



3) For the input sequence 30, 20, 56, 75, 31, 19 and hash function h(K) = K mod 11,  

d. Construct the closed hash table 

e. Find the largest number of key comparisons in a successful search in this table 

f. Find the average number of key comparisons in a successful search in this table 

 

 
 

4) Find the probability of all n keys being hashed to the same cell of a hash table of size m if the 

hash function distributes keys evenly among all the cells of the table. 

 

 
 

5) Consider the following table that defines the numerical equivalence of each character in the set 

of alphabets A – Z. Determine an open hashing table and a closed hashing table for the sequence of 

words given after the table 
 

 
 

A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED 

Open Hashing Table 



 

 
 

Closed Hashing Table 

 

 
 

 

6) Mention one critical advantage of open hashing over closed hashing. What is the significance of a 

load factor in open hashing? 

 

With open hashing, the number of elements (n) in the input sequence can exceed the size of the hash table 

(m). With closed hashing, n <= m. The load factor in open hashing is a measure of the length of the linked 
list for a particular entry in the hash table. The average number of key comparisons for a successful 

search of an element in the hash table is the (load factor)/2. The worst-case number of comparisons for an 

unsuccessful search is (load factor). 
 

7) How would you use the hash table approach to determine whether every element in an input 

sequence is unique or not? What is the worst-case time complexity of the approach? 
Determine the hash values of the elements in the input sequence, one followed by the other. If the hash 

value of two different elements is the same, then we have to resolve the collision by going through the 

linked list and insert the new element at the end of the list (in the case of open hashing) or going through 

the adjacent cells in the table and insert the new element at the first empty cell that is encountered starting 



from the cell to which we hashed to (in the case of closed hashing). During the traversal of the linked list 

in a open hash table or the adjacent cells in a closed hash table, if we encounter an element that is equal to 
the new element that we are trying to insert, then the input sequence does not have unique elements. At 

the worst case, if all the elements in the input sequence hash to the same value, we will have to Θ(n) key 

comparisons for each element and for an n-element sequence, the worst-case time complexity would be 

Θ(n
2
) key comparisons. 

 

8) What is lazy deletion? Why is it needed for closed hashing? 

 
With deletions in a Closed Hashing Table, if we simply delete a key, then we may not be able to 

successfully search for a key that has the same hash value as that of the key being deleted. With Lazy 

Deletion, the previously occupied locations of the deleted keys (these locations are available for new 
insertions) can be marked by a special symbol to distinguish them from 


