Module 8: Heap

Dr. Natarajan Meghanathan
Professor of Computer Science
Jackson State University
Jackson, MS 39217
E-mail: natarajan.meghanathan@jsums.edu
Essentially Complete Binary Tree

• A binary tree of height ‘h’ is essentially complete if it is a complete binary tree up to level h-1 and the nodes at level h are as far to the left as possible.

• Note: A complete binary tree is also essentially complete.
Essentially Complete Binary Tree

- The trees shown below are not essentially complete.
Heap

- A heap is a binary tree that satisfies the following two properties:
 - Essentially complete or complete
 - Max/Min heap
 - Max heap: The data at each internal node is greater than or equal to the data of its immediate child nodes
 - Min heap: The data at each internal node is lower than or equal to the data of its immediate child nodes
Max Heap: Each internal node is greater than or equal to its child nodes.

BST: An internal node is greater than or equal to the nodes in its left sub tree and lower than or equal to the nodes in its right sub tree.
Storing the Heap as an Array

- A heap of ‘n’ elements can be stored in an array (index starting from 0) such that the internal nodes (in the top-down, left-right order) are represented as elements from index 0 to \(\left\lfloor \frac{n}{2} \right\rfloor - 1 \) and the leaf nodes (again, top-down, left-right order) are represented as elements from index \(\left\lfloor \frac{n}{2} \right\rfloor \) to \(n-1 \).
- The child nodes of an internal node at index ‘j’ are at indexes \(2j+1 \) and \(2j+2 \).
- The parent node for a node at index j is at index \(\left\lfloor \frac{j-1}{2} \right\rfloor \).

The child nodes of internal node ‘8’ at index 1 are at indexes \(2*1+1 = 3 \) and \(2*1 + 2 = 4 \). The parent node for node ‘7’ at index 3 is at index \(\left\lfloor (3-1)/2 \right\rfloor = 1 \)
Storing the Heap as an Array

For the rest of this module, we will construct and employ a ‘max’ heap unless otherwise specified. The data for an internal node must be greater than or equal to that of its child nodes.
Using BFS to check whether a Binary Tree is Essentially Complete

Queue queue
queue.enqueue(root node id 0)
noChildZoneStarts = false

Begin BFS_BinaryTree
while (!queue.isEmpty()) do
 FirstNodeID = queue.dequeue();
 if (noChildZoneStarts == false AND FirstNode.leftChildNodeID == -1)
 noChildZoneStarts = true
 else if (noChildZoneStarts == true AND FirstNode.leftChildNodeID != -1)
 return “the binary tree is not essentially complete”
 if (FirstNode.leftChildNodeID != -1) then
 queue.enqueue(FirstNode.leftChildNodeID)
 end if
Breadth First Search (BFS) Algorithm continued...

\[
\text{if (noChildZoneStarts == false AND FirstNode.rightChildNodeID == -1)} \\
\quad \text{noChildZoneStarts = true} \\
\text{else if (noChildZoneStarts == true AND FirstNode.rightChildNodeID != -1)} \\
\quad \text{return “the binary tree is not essentially complete”}
\]

\[
\text{if (FirstNode.rightChildNodeID != -1) \ then} \\
\quad \text{queue.enqueue(FirstNode.rightChildNodeID)} \\
\text{end if}
\]

end while

\text{return “the binary tree is essentially complete”}

End BFS_BinaryTree

Once we find out that node ‘3’ does not have a right child, all the nodes explored further in BFS should not have any child node. Otherwise, the binary tree is not essentially complete.
Heap Construction

- Given an array of ‘n’ elements,
- **Step 1**: Construct an essentially complete binary tree and then reheapify the internal nodes of the tree to make sure the max or min heap property is satisfied for each internal node.
- **Step 2**: Reheapify an internal node for ‘max’ heap: If the data at an internal node is lower than that of one or both of its child nodes, then swap the data for the internal node with the larger of the data of its two child nodes.
 - If any internal node further down is affected because of this swap, the reheapify operation is recursively continued all the way until a leaf node is reached.
- The reheapify operation is started from the node at index $\lfloor n/2 \rfloor - 1$ and continued all the way to the node at index 0.
Heap Construction Example 1

Step 1: Essentially Complete Binary Tree (Not a heap yet!)
Heap Construction Example 1

Before (Reheapify at Index ‘4’):

0 1 2 3 4 5 6 7 8 9
5 6 5 4 3 10 7 1 7 8

Step 2: Reheapify node at index ‘4’ and down further if needed

Compare the node at index ‘4’ with its child nodes at index $2 \times 4 + 1 = 9$ and index $2 \times 4 + 2 = 10$. Since index ‘10’ does not exist and index 9 exists, it implies we have reached a leaf node (at index 9) and there is no need to proceed further down.

Just compare node at index ‘4’ with the child node at Index ‘9’ and swap them, if needed. In this case: Yes, We need to swap.

After (Reheapify at Index ‘4’):

0 1 2 3 4 5 6 7 8 9
5 6 5 4 8 10 7 1 7 3
Heap Construction Example 1

Before (Reheapify at Index ‘3’):

Step 2: Reheapify node at index ‘3’ and down further if needed

Compare the node at index ‘3’ with its child nodes at index $2 \times 3 + 1 = 7$ and index $2 \times 3 + 2 = 8$. In this case, We swap element at index ‘3’ with element at index ‘8’. Since 8 is already a leaf node, we do not proceed down further.

After (Reheapify at Index ‘3’):
Heap Construction Example 1

Before (Reheapify at Index ‘2’):

After (Reheapify at Index ‘2’):

Step 2: Reheapify node at index ‘2’ and down further if needed

Compare the node at index ‘2’ with its child nodes at index 2*2 + 1 = 5 and index 2*2 + 2 = 6. In this case, We swap element at index ‘2’ with element at index ‘5’. Since 5 is already a leaf node, we do not proceed down further.
Heap Construction Example 1

Before (Reheapify at Index ‘1’):

After (Reheapify at Index ‘1’):

Step 2: Reheapify node at index ‘1’ and down further if needed

Compare the node at index ‘1’ with its child nodes at index $2 \times 1 + 1 = 3$ and index $2 \times 1 + 2 = 4$. In this case, We swap element at index ‘1’ with element at index ‘4’. Again do a reheapify at index ‘4’, if needed and continue in a recursive fashion until it is no longer needed.
Heap Construction Example 1

Before (Reheapify at Index ‘0’):

0 1 2 3 4 5 6 7 8 9
5 8 10 7 6 5 7 1 4 3

Step 2: Reheapify node at index ‘0’ and down further if needed

Compare the node at index ‘0’ with its child nodes at index 2*0 + 1 = 1 and index 2*0 + 2 = 2. In this case, We swap element at index ‘0’ with element at index ‘2’.

Again do a reheapify at index ‘2’ as the element now at index ‘2’ (which is 5) is lower than the maximum of its two child nodes (which is 9 at index ‘6’).

After (Reheapify at Index ‘0’):

0 1 2 3 4 5 6 7 8 9
10 8 7 7 6 5 5 1 4 3
Heap Construction Example 1

Final Array Representing Max Heap

```plaintext
[10 8 7 7 6 5 5 1 4 3]
```
```cpp
int arraySize;
cout << "Enter array size: ";
cin >> arraySize;

int array[arraySize];

int maxValue;
cout << "Enter the max. value for any element: ";
cin >> maxValue;

srand(time(NULL));

cout << "Generated array: ";
for (int i = 0; i < arraySize; i++){
    array[i] = rand() % maxValue;
    cout << array[i] << " ";
}

//max. heap construction
for (int index = (arraySize/2)-1; index >= 0; index--)
    rearrangeHeapArray(array, arraySize, index);

cout << "After Heap construction..." << endl;
for (int index = 0; index < arraySize; index++)
    cout << array[index] << " ";

cout << endl;
```
7.1: Reheapify Code (C++)

```cpp
void rearrangeHeapArray(int *array, int arraySize, int index) {
    // max heap construction

    int leftChildIndex = 2 * index + 1;
    int rightChildIndex = 2 * index + 2;

    // If the node at ‘index’ does not have a left child (implies it does not have right child too), then there is no need to reheapify at that index
    if (leftChildIndex >= arraySize)
        return;

    // If the node at ‘index’ does not have a right child (if the control reaches here, it implies the node at ‘index’ has a left child)
    if (rightChildIndex >= arraySize) {
        // Check if the data for the node at ‘index’ is less than that of its left child. If so, swap
        if (array[index] < array[leftChildIndex]) {
            int temp = array[index];
            array[index] = array[leftChildIndex];
            array[leftChildIndex] = temp;
        }
    }

    return;
}
```
// If the control reaches here, it means the node at ‘index’ has both left child
// and right child
// If the node at ‘index’ has data that is greater than or equal to
// both its left child
// and right child, then there is no need
// to reheapify for this index
if (array[index] >= array[leftChildIndex] &&
 array[index] >= array[rightChildIndex])
 return;

// If the control reaches here, it implies the node at ‘index’ has data that
// is less than at least one of its
two child nodes
int maxIndex = leftChildIndex;
if (array[leftChildIndex] < array[rightChildIndex])
 maxIndex = rightChildIndex;

int temp = array[maxIndex];
array[maxIndex] = array[index];
array[index] = temp;

rearrangeHeapArray(array, arraySize, maxIndex);

// Between the left and right
// child nodes, find the node
// that has relatively larger
// data, call the index of this
// as ‘maxIndex’ and swap
// its value with the node at
// ‘index’.

// Call the rearrangeHeap function in a recursive fashion
// to see if further rearrangements need to be done starting
// from maxIndex
Scanner input = new Scanner(System.in);

int arraySize;
System.out.print("Enter array size: ");
arraySize = input.nextInt();

int array[] = new int[arraySize];

int maxValue;
System.out.print("Enter the max. value for any element: ");
maxValue = input.nextInt();

Random randGen = new Random(System.currentTimeMillis());

System.out.print("Generated array: ");
for (int i = 0; i < arraySize; i++){
 System.out.print("Enter element at index " + i + ": ");
 array[i] = input.nextInt();
 array[i] = randGen.nextInt(maxValue);
 System.out.print(array[i] + " ");
}

System.out.println();
Max Heap Construction
(Code 8.1: Java)

Main Function

//max. heap construction
for (int index = (arraySize/2)-1; index >= 0; index--){
 rearrangeHeapArray(array, arraySize, index);
}

System.out.println("After Heap construction...");
for (int index = 0; index < arraySize; index++)
 System.out.print(array[index] + " ");

System.out.println();
7.1: Reheapify Code (Java)

```java
public static void rearrangeHeapArray(int array[], int arraySize, int index) {
  // max heap construction

  int leftChildIndex = 2 * index + 1;
  int rightChildIndex = 2 * index + 2;

  // If the node at ‘index’ does not have a left child (implies it does
  // not have right child too), then there
  // is no need to reheapify at that index
  if (leftChildIndex >= arraySize)
    return;

  // If the node at ‘index’ does not have a right child (if the control reaches
  // here, it implies the node
  // at ‘index’ has a left child)
  if (rightChildIndex >= arraySize) {
    // Check if the data for the
    // node at
    // ‘index’ is less
    // than that of its
    // left child. If so,
    // swap

    if (array[index] < array[leftChildIndex]) {
      int temp = array[index];
      array[index] = array[leftChildIndex];
      array[leftChildIndex] = temp;
    }
  }

  return;
}
```
if (array[index] >= array[leftChildIndex] && array[index] >= array[rightChildIndex])
 return;

int maxIndex = leftChildIndex;
if (array[leftChildIndex] < array[rightChildIndex])
 maxIndex = rightChildIndex;

int temp = array[maxIndex];
array[maxIndex] = array[index];
array[index] = temp;

rearrangeHeapArray(array, arraySize, maxIndex);

// Call the rearrangeHeap function in a recursive fashion
// to see if further rearrangements need to be done starting
// from maxIndex
Heap Construction Example 2

Step 1: Essentially Complete Binary Tree (Not a heap yet!)
Step 2: Reheapify at index 5

Start reheapifying from Index \(\left\lceil \frac{13}{2} \right\rceil - 1 \)

After (Reheapify at Index ‘5’):

\[
\begin{array}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
55 & 27 & 81 & 3 & 39 & 98 & 93 & 14 & 31 & 42 & 74 & 91 & 70 \\
\end{array}
\]
Before (Reheapify at Index ‘4’):

After (Reheapify at Index ‘4’):
Before (Reheapify at Index ‘3’):

```
0  1  2  3  4  5  6  7  8  9  10  11  12
55  27  81  3  74  98  93  14  31  42  39  91  70
```

Step 2: Reheapify at index 3

After (Reheapify at Index ‘3’):

```
0  1  2  3  4  5  6  7  8  9  10  11  12
55  27  81  31  74  98  93  14  3  42  39  91  70
```
Before (Reheapify at Index ‘2’):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
<td>27</td>
<td>81</td>
<td>31</td>
<td>74</td>
<td>98</td>
<td>93</td>
<td>14</td>
<td>3</td>
<td>42</td>
<td>39</td>
<td>91</td>
<td>70</td>
</tr>
</tbody>
</table>

Step 2: Reheapify at index 2

After (Reheapify at Index ‘2’):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
<td>27</td>
<td>98</td>
<td>31</td>
<td>74</td>
<td>91</td>
<td>93</td>
<td>14</td>
<td>3</td>
<td>42</td>
<td>39</td>
<td>81</td>
<td>70</td>
</tr>
</tbody>
</table>
Before (Reheapify at Index ‘1’):

```
0 1 2 3 4 5 6 7 8 9 10 11 12
55 27 98 31 74 91 93 14 3 42 39 81 70
```

Step 2: Reheapify at index 1

```

After (Reheapify at Index ‘1’):

```
0 1 2 3 4 5 6 7 8 9 10 11 12
55 74 98 31 42 91 93 14 3 27 39 81 70
```
Step 2: Reheapify at index 0

Before (Reheapify at Index ‘0’):

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>74</td>
<td>98</td>
<td>31</td>
<td>42</td>
<td>91</td>
<td>93</td>
<td>14</td>
<td>3</td>
<td>27</td>
<td>39</td>
<td>81</td>
<td>70</td>
</tr>
</tbody>
</table>

Step 2: Reheapify at index 0

After (Reheapify at Index ‘0’):

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>74</td>
<td>93</td>
<td>31</td>
<td>42</td>
<td>91</td>
<td>55</td>
<td>14</td>
<td>3</td>
<td>27</td>
<td>39</td>
<td>81</td>
<td>70</td>
</tr>
</tbody>
</table>
Heap Construction Example 2

Final Array Representing Max Heap

```
98 74 93 31 42 91 55 14 3 27 39 81 70
```
Heap Sort

• Given an array of size ‘n’, first construct a max-heap version of the array.
• Run ‘n-1’ iterations (iteration index 0 to n-1)
  – Swap element at index “0” with element at index “n-1-iteration index”
  – Element at index “0” has now moved to its final location “n-1-iteration index” in the sorted array
  – Reheapify the array as a result of this swap with the array index values ranging from “0” to “n-1-iteration index – 1”.
• Each iteration would require “logn” swappings at the worst case, across the entire height of the binary tree.
• For a total of ‘n-1’ iterations, the time complexity of heap sort is O(nlogn).
Heap Sort: Example 1

Original Array

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>10</th>
<th>9</th>
<th>1</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Max-Heap Version

|   | 10 | 8 | 9 | 7 | 6 | 5 | 5 | 1 | 4 | 3 |

Max-Heap

```
 10
 /
 1 2
 / \\ / \\n8 9 5 5
 / \ / \ / \ \
7 6 5 5 1 4 3
 / \ / \ / \ / \ \
1 4 3 7 8 9
```
Max-Heap Version

After Swap

After Reheapify

Iteration 0
Iteration 1

Max-Heap Version

After Swap

After Reheapify
Max-Heap Version

Iteration 2

After Swap

After Reheapify

Iteration 2
Max-Heap Version

After Swap

After Reheapify

Iteration 3
Max-Heap Version

After Swap

After Reheapify

Iteration 4
Max-Heap Version

After Swap

After Reheapify

Iteration 5
Max-Heap Version

After Swap

After Reheapify

Iteration 6
### Iteration 7

#### Max-Heap Version

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

#### After Swap

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

#### After Reheapify

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
Iteration 8

Max-Heap Version

After Swap

After Reheapify
Heap Sort: Example
Final Sorted Array

Heap Structure:

```
1 3 4 5 5 6 7 8 9 10
```

Diagram:

```
 1
 /
 3 4
 /
 5 5
 /
8 9
```

Final Sorted Array:
```
1 3 4 5 5 6 7 8 9 10
```
Heap Sort (Code 8.1: C++)

```
for (int iterationIndex = 0; iterationIndex < arraySize; iterationIndex++) {
 int temp = array[0];
 array[0] = array[arraySize-1-iterationIndex];
 array[arraySize-1-iterationIndex] = temp;

 rearrangeHeapArray(array, arraySize-1-iterationIndex, 0);

 cout << "Iteration " << iterationIndex << " : ":
 for (int index = 0; index < arraySize; index++)
 cout << array[index] << " ";
 cout << endl;
}
```

arraySize-1-iterationIndex is also the number of elements in the Unsorted portion of the array (in otherwords, the size of the active portion of the array)

Swap the element at the top of the heap with the element at the last index (arraySize-1-iterationIndex) in the active portion of the array.
Heap Sort (Code 8.1: Java)

```java
for (int iterationIndex = 0; iterationIndex < arraySize; iterationIndex++) {
 int temp = array[0];
 array[0] = array[arraySize-1-iterationIndex];
 array[arraySize-1-iterationIndex] = temp;

 rearrangeHeapArray(array, arraySize-1-iterationIndex, 0);

 System.out.print("Iteration ", iterationIndex + ": ");
 for (int index = 0; index < arraySize; index++)
 System.out.print(array[index] + " ");

 System.out.println();
}
```

arraySize-1-iterationIndex is also the number of elements in the Unsorted portion of the array (in otherwords, the size of the active portion of the array)

Swap the element at the top of the heap with the element at the last index (arraySize-1-iterationIndex) in the active portion of the array.
Original Array

Reheapify at index 2

Reheapify at index 0

Reheapify at index 1
Heap Sort: Example 2

Original Array

<table>
<thead>
<tr>
<th>13</th>
<th>22</th>
<th>18</th>
<th>27</th>
<th>14</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Max-Heap Version

| 27 | 22 | 23 | 13 | 14 | 18 |

Max-Heap
Max-Heap Version

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>22</td>
<td>23</td>
<td>13</td>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>

After Swap

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>22</td>
<td>23</td>
<td>13</td>
<td>14</td>
<td>27</td>
</tr>
</tbody>
</table>

After Reheapify

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>22</td>
<td>18</td>
<td>13</td>
<td>14</td>
<td>27</td>
</tr>
</tbody>
</table>

Iteration 0

```
Max-Heap Version
27 22 23 13 14 18
0 1 2 3 4 5

After Swap
18 22 23 13 14 27
0 1 2 3 4 5

After Reheapify
23 22 18 13 14 27
0 1 2 3 4 5
```
Max-Heap Version

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23</td>
<td>22</td>
<td>18</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After Swap

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>22</td>
<td>18</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After Reheapify

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22</td>
<td>14</td>
<td>18</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Iteration 1
### Iteration 2

**Max-Heap Version**

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>14</td>
<td>18</td>
<td>13</td>
<td>23</td>
<td>27</td>
</tr>
</tbody>
</table>

After Swap

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>27</td>
</tr>
</tbody>
</table>

After Reheapify

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>23</td>
<td>27</td>
</tr>
</tbody>
</table>
### Iteration 3

<table>
<thead>
<tr>
<th>Max-Heap Version</th>
<th>After Swap</th>
<th>After Reheapify</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Max-Heap Version" /></td>
<td><img src="image2" alt="After Swap" /></td>
<td><img src="image3" alt="After Reheapify" /></td>
</tr>
</tbody>
</table>

The figures above illustrate the process of an algorithm where elements are swapped and reheapified in each iteration. The diagrams show the state of the heap after each modification.
Max-Heap Version

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>27</td>
</tr>
</tbody>
</table>

After Swap

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>27</td>
</tr>
</tbody>
</table>

After Reheapify

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>27</td>
</tr>
</tbody>
</table>

Iteration 4
Max Heap to Min Heap
(direct transformation): Example 1

• Given a Max Heap, reheapify every internal node to make sure the data at the internal node is lower than or equal to the data of its immediate child nodes.
• This would take O(n) time (like the transformation of an arbitrary essentially complete binary tree to max heap or min heap).

Given Max Heap

Reheapify at index 2
Max Heap to Min Heap: Example 1

Given Max Heap

Reheapify at index 1

Reheapify at index 0

Final Min Heap
Max Heap to Min Heap: Example 2

Max Heap

Reheapify at Index 4
Max Heap to Min Heap: Example 2

Reheapify at Index 3

Reheapify at Index 2
Max Heap to Min Heap: Example 2

Reheapify at Index 1

Reheapify at Index 0
Max Heap to Min Heap: Example 2

Note that in a Min Heap directly obtained via a sequence of Reheapify operations of the Max Heap, we cannot guarantee that for any internal node: the data of the nodes in its left sub tree are lower than the data for the nodes in its right sub tree. In the above example, we observe the left sub tree of the root node has node 9 with data ‘8’ that is larger than data ‘7’ of node 2 in the right sub tree.
Max Heap to a Min Heap (via a Binary Search Tree)

- Max Heap to BST
- Step 0: Set up the node indices in the top-down, left-right fashion.
- Step 1: Do an inorder traversal of the Max Heap and obtain the sequence of node indices and their corresponding data
- Step 2: Sort the data got from the inorder traversal
- Step 3: Replace the node indices with the data in the sorted order

- BST to Min Heap
- Perform an inorder traversal of the BST and create an array of the sorted integers of the data corresponding to the nodes in the BST.
- Perform a preorder traversal of the BST. While performing the preorder traversal, replace the data at each node visited with the values of the inorder array. The resulting binary tree is a min heap.
- Since the min heap is generated from a BST, the min heap has the following property (need not be observed when directly obtained from a max heap):
  - For any internal node: the data of all the nodes in the left sub tree are less than or equal to the data of all the nodes in the right sub tree.
Max Heap to BST: Example 1

Given Max Heap

27
  /\      0
 /  \     /
22   23   /
 /\     /\  \
3 4 5   1 2
13    18    14
    23

Inorder traversal of node indices/data
3 1 4 0 5 2
13 22 18 27 14 23

Sorted order of data
13 14 18 22 23 27

Step 1: Do an inorder traversal of the Max Heap and obtain the sequence of node indices and their corresponding data
Step 2: Sort the data got from the inorder traversal
Step 3: Replace the node indices with the data in the sorted order
BST to Min Heap: Example 1

Given BST

Min Heap

Inorder-based node indices

Preorder Listing of the node indices

Min heap
Max Heap to a BST: Example 2

Step 1: Do an inorder traversal of the Max Heap and obtain the sequence of node indices and their corresponding data

Step 2: Sort the data got from the inorder traversal

Step 3: Replace the node indices with the data in the sorted order

Max Heap

Inorder traversal of node indices/data
7 3 8 1 9 4 0 5 2 6
5 5 4 8 3 6 10 1 9 7

Sorted order of data
1 3 4 5 5 6 7 8 9 10

BST
Given BST

BST to Min Heap

Ex. 2

Inorder-based node indices
0 1 2 3 4 5 6 7 8 9
1 3 4 5 5 6 7 8 9 10

Preorder Listing of the node indices
6 3 1 0 2 5 4 8 7 9

Min Heap
6 3 1 0 2 5 4 8 7 9
1 3 4 5 5 6 7 8 9 10
BST to Min Heap: Ex. 2

Min Heap
6 3 1 0 2 5 4 8 7 9
Note that in this Min Heap: For every internal node, the data for the nodes in its left sub tree are lower than or equal to the data for the nodes in its right sub tree.
BST to Min Heap: Example 3

Given BST

Step 1: Do an inorder traversal of the BST and find the indexes of the nodes and the sorted order of the data

After Step 1
BST to Min Heap: Example 3

Sorted List of Integers (Inorder Array)
0 1 2 3 4 5 6 7 8 9
7 12 15 19 21 22 25 27 30 33

Preorder Array of Node Indices
6 3 1 0 2 5 4 8 7 9

Step 2: Do a preorder of the BST based on the identified node indices and replace the data at each node visited (as part of the preorder traversal) with the data from the inorder array.

After Step 1
BST to Min Heap: Example 3

Step 2: Do a preorder of the BST based on the identified node indices and replace the data at each node visited (as part of the preorder traversal) with the data from the inorder array.

Sorted List of Integers (Inorder Array)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>25</td>
<td>27</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

Preorder Array of Node Indices

<table>
<thead>
<tr>
<th>6</th>
<th>3</th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>25</td>
<td>27</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

After Step 2: Min heap