
Module 5:
Dictionary ADT (Hash table)

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu



Dictionary ADT
• Models data as a collection of key-value pairs.

– The Keys are unique

– A value has a unique key and is accessed in the 

dictionary using that key

• Operations

– Insert: The addition of a key-value pair

– Delete: The removal of a key-value pair

– Find: Lookup the existence of a key-value pair

– isEmpty: Whether the dictionary is empty

• Implementations: Hash tables, Binary search 
trees



Hash table
• Maps the elements (values) of a collection to a unique key and 

stores them as key-value pairs.

• Hash table of size m (where m is the number of unique keys, 
ranging from 0 to m-1) uses a hash function H(v) = v mod m

• The hash value (a.k.a. hash index) for an element v is H(v) = v mod 
m and corresponds to one of the keys of the hash table.

• The size of the Hash table is typically a prime integer.

• Example: Consider a hash table of size 7. Its hash function is H(v) = 
v mod 7. 

• Let an array A = {45, 67, 89, 45, 85, 12, 88, 90, 13, 14}

Value, v 45    67 89   45 85  12   88   90   13   14

H(v) = v mod 7 3       4 5     3 1     5    4     6       6    0

0 1 2 3 4 5 6

45

45

67

88
89

12

85 90

13

14

We will implement Hash table as 

an array of singly linked lists



Space-Time Tradeoff
• Note: At the worst case, there could be only one linked 

list in the hash table (i.e., all the elements map to the 
same key). 

• On average, we expect the ‘n’ elements to be evenly 
divided across the ‘m’ keys, so that the length of a linked 
list is n/m. Nevertheless, for a hash table of certain size 
(m), ‘n’ is the only variable.

• Space complexity: Θ(n)
– For an array of ‘n’ elements, we need to allocate space for ‘n’

nodes (plus the ‘m’ head node) across the ‘m’ linked lists. 

– Since usually, n >> m, we just consider the overhead associated 
with storing the ‘n’ nodes

• Time complexity:
– Insert/Delete/Lookup: O(n), we may have to traverse the entire 

linked list

– isEmpty: O(m), we have to check whether each index in the 
Hash table has an empty linked list or not.



Example: Number of Comparisons
Array, A = {45, 23, 11, 78, 89, 44, 22, 28, 41, 30}

H(v) = v mod 7

0 1 2 3 4 5 6Hash table

4523

44

30

1178

22

8928 41

Average Number of Comparisons for a Successful Search (Hash table)

Successful

Search, # comparisons

1

2

3

= (7*1) + (2*2) + (1*3)       14

---------------------------- = ------- = 1.4

10                          10

Worst Case Number of Comparisons for a Successful Search (Hash table) = 3

Worst Case Number of Comparisons for an Unsuccessful Search (Hash table) = 3



Example: Number of Comparisons
Array, A = {45, 23, 11, 78, 89, 44, 22, 28, 41, 30}

H(v) = v mod 7

0 1 2 3 4 5 6Hash table

4523

44

30

1178

22

8928 41

Average Number of Comparisons 

for a Successful Search (Hash table)

Successful

Search, # comparisons

1

2

3

(7*1) + (2*2) + (1*3)       14

=  ---------------------------- = ------- = 1.4

10                          10

Worst Case Number of Comparisons
For a Successful Search
For an unsuccessful Search

Average Number of Comparisons 

for a Successful Search (Array)

1 + 2 + 3 + … + 10      10*11/2

=  --------------------------- = ------------- = 5.5

10                            10

Hash table Array
3 10
3 10



Load Imbalance Index
• Load Imbalance Index is a measure 

of the efficiency in using the memory 
allocated for a hash table.
– The larger the value for the index, the 

larger the imbalance and vice-versa

– The index ranges from 0 to 1. 

Example 1:

Load Imbalance Index

(3 – 1)         2
=  ------------ = ------ = 0.50

(3 + 1)         4

Example 2:

Load Imbalance Index

(4 – 0)         4

=  ------------ = ------ = 1.0

(4 + 0)         4

0 1 2 3 4 5 6

4523

44

30

1178

22

8928 41

0 1 2 3 4 5 6

-- -78

23

45

89

-22

44

11

28

7 8 9 10

- 30

41

- -



Review of Singly Linked List
Class List

C++



deleteElement(int)
C++



C++



C++



Hash table Implementation (Code: 5.1)

Class Hashtable

C++



Class Hashtable

C++

Just to delete the first occurrence
of the data in the Linked List

To delete all the entries for the data 

in the Linked List



Sample Applications of Hash table

• To test whether a test sequence is a 

permutation of a given sequence

• To print the unique elements in an array

• To find the union of two linked lists



Permutation Check (Code 5.2)
• Given a sequence of integers (as a string)

– Use string tokenizer to parse the string, extract the 
individual integers and store them in a hash table

• Given the test sequence of integers (also a 
string)
– Use string tokenizer to parse the string and extract the 

individual integers
• For each integer in the test sequence, check if it is in the hash 

table.
– If so, delete it (just delete the first occurrence of the integer in the 

appropriate linked list of the hash table)

– Otherwise, STOP and say the test sequence is not a permutation 
of the original sequence

• If the hash table is empty after the test sequence is processed,
print that the test sequence is a permutation of the original 
sequence; otherwise, it is not a permutation of the original.



Hashtable: isEmpty( )
Code 5.2: C++

// If even one linked list is not empty, return false

// (i.e., the hash table is not empty)

// If all the linked lists are empty, return true

// (i.e., the hash table is empty)



Code 5.2 (C++)

// Input the original integer sequence as a 

// comma separated list
// Example: 45, 23, 12, 23, 90

// Input the test sequence likewise

// Example: 12, 23, 45, 90, 23

// Input the size of the hash table and

// Initialize a hash table of that size

// Code for tokenizing the original

// integer sequence and extracting

// the individual integers

// Insert the extracted integers in the hash table



Code 5.2 (C++)// Print the contents of the hash table

// Code to string tokenize the

// test integer sequence and extract

// the individual integers

// Check whether a test integer is in the

// hash table; if so, delete it.

// If not in the hash table, print the test

// sequence is not a permuted seq. STOP!

// equivalent to stopping the program right away!

// If the hash table is empty when we finish processing the test sequence, it implies 

// there exists an element in the original sequence for every element in the test 
// sequence and all of these elements were deleted. Hence, they are a permutation



Printing the Unique Elements 
(Code 5.3)

• Given an array A[0…n-1] that may have elements 
appearing more than once, we could use the hash table 
to store the unique elements and print them.

• For every element A[i], with 0 ≤ i ≤ n-1, we store the 
element A[i] in the hash table the first time we come 
across it as well as print it.

• Hence, for every element A[i], with 0 ≤ i ≤ n-1, we check 
if A[i] is already in the hash table. 
– If A[i] is not already in the hash table, it implies A[i] has not been 

seen before: so, we print it out as well as insert in the hash table.

– If A[i] is already in the hash table, it implies we have already 
printed it out and should not be printed again.

• The time complexity of the algorithm is dependent on the 
time to check whether a particular element is in the hash 
table or not for all values of the array index. If this could 
be done in Θ(1) time per element, the asymptotic time 
complexity of the algorithm is Θ(n).



Code 5.3 (C++)

// Input the number of elements to store in the array

// Input the maximum value for an element

// Input the number of indexes in the hash table

// Initialize the random number generator

// Generate the random elements

// and store them in the array as well as

// print them



Code 5.3 (C++)

// Initialize the 

// Hash table

// For an element array[index]: check if it is in the

// hashTable. If it is not there, it implies the element

// has not been seen before and print it as well as add

// it to the hashTable.

// If the element is already there in the hashTable, 

// it implies it is the duplicate entry for the element and

// is not printed.



Find the Union of two Linked Lists
(Code 5.4)

• Let L1 and L2 be the two linked lists and unionList be the 
union of the two lists 

• unionList is initially empty and an element is to be 
included only once in this list (i.e., elements with 
duplicate entries in L1 or L2 are included only once in 
the unionList). 

• We populate the contents of L1 in a hash table and 
unionList:
– An element is added to both the hash table and unionList if the 

element is not in the hash table.  

• We go through list L2, element by element. If an element 
in L2 is not in the hash table (it implies the element is not 
in L1 and unionList either), then it is included in the hash 
table as well as the unionList. 



Code 5.4 (C++)

// Assume the two linked lists have the same number of elements

// The maximum value that could be for an element in the two lists

// is also the same

// Input the number of indexes for the

// Hash table

// Initialize the random number generator

// generate random integers and

// populate the firstList

// generate random integers and

// populate the secondList



Code 5.4 (C++)// The unionList will have only unique 
// elements

// Scan through the firstList and 

// insert an element in both the 

// hash table and unionList if the

// element is not already in 

// the hash table

// Scan through the secondList

// If an element in the secondList

// is not in the hash table, it implies

// the element is not in the unionList

// either and hence add the element

// to both the unionList and the 

// hash table


