NSF Vision and Goals

• **Vision:** A *nation that is the global leader in research and innovation*

• **Mission:** To promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense ...

• **Strategic Goals:**
 • Expand knowledge in science, engineering, and learning.
 • Advance the capability of the Nation to meet current and future challenges.
 • Enhance NSF’s performance of its mission.
NSF Organization Chart

NSF total $7,504M

Mathematical & Physical Sciences (MPS) $1,362M

Office of the Inspector General (OIG) ($15.1M)

National Science Board (NSB) NSB Office ($4.3M)

Office of the General Counsel (OGC)

Office of International Science & Engineering (OISE) $49M

Office of Integrative Activities (OIA)

Office of Legislative & Public Affairs (OLPA)

Biological Sciences (BIO) $742M

Computer & Information Science & Engineering (CISE) $936M

Engineering (ENG) $931M

Geosciences (GEO) $826M

Office of Diversity & Inclusion (ODI)

Office of Integrative Activities (OIA)

Office of Legislative & Public Affairs (OLPA)

Social, Behavioral & Economic Sciences (SBE) $271M

Education & Human Resources (EHR) $873M

Budget, Finance & Award Management (BFA) (MREFC $223M)

Information & Resource Management (OIRM) (AOAM $382M)

Directorate for Mathematical and Physical Sciences

Numbers are FY2017 Actuals
The mission of MPS is to harness the collective efforts of the mathematical and physical sciences communities to address the most compelling scientific questions, educate the future advanced workforce, and promote discoveries to meet the needs of the Nation.

The MPS Divisions support both disciplinary and interdisciplinary activities and partner with each other and with other NSF Directorates in order to effectively encourage basic research across the scientific disciplines.
NSF Support of Basic Research

NSF Support of Academic Basic Research in Selected Fields
(as a percentage of total federal support)

- All Science and Engineering Fields: 27%
- Physical Sciences: 45%
- Engineering: 46%
- Environmental Sciences: 63%
- Mathematics: 64%
- Social and Psychological Sciences: 68%
- Biology: 69%
- Computer Science: 83%

Notes: Biology includes Biological Sciences and Environmental Biology. Biology and Psychological Sciences exclude National Institutes of Health funding from the total amount of federal support.

MPS Funding History

- Funding in then-year dollars
- No adjustment for inflation

<table>
<thead>
<tr>
<th>Dollars in millions</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPS</td>
<td>1308.7</td>
<td>1249.5</td>
<td>1267.9</td>
<td>1376.3</td>
<td>1349.2</td>
<td>1356.0</td>
</tr>
<tr>
<td>AST</td>
<td>234.7</td>
<td>232.5</td>
<td>238.4</td>
<td>245.2</td>
<td>246.7</td>
<td>246.0</td>
</tr>
<tr>
<td>CHE</td>
<td>234.0</td>
<td>229.0</td>
<td>235.2</td>
<td>246.3</td>
<td>246.3</td>
<td>246.0</td>
</tr>
<tr>
<td>DMR</td>
<td>294.4</td>
<td>290.7</td>
<td>267.1</td>
<td>337.6</td>
<td>310.0</td>
<td>314.0</td>
</tr>
<tr>
<td>DMS</td>
<td>237.7</td>
<td>219.2</td>
<td>225.0</td>
<td>235.4</td>
<td>234.1</td>
<td>234.0</td>
</tr>
<tr>
<td>PHY</td>
<td>277.4</td>
<td>250.7</td>
<td>267.1</td>
<td>276.1</td>
<td>277.0</td>
<td>282.0</td>
</tr>
<tr>
<td>OMA</td>
<td>30.4</td>
<td>27.4</td>
<td>35.2</td>
<td>35.7</td>
<td>35.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Funding Rates

NSF rate overall: 23%

Competitive Proposal Actions	Competitive Awards
AST 20% | 0
CHE 29% | 500
DMR 22% | 1,000
DMS 28% | 1,500
PHY 35% | 2,000

Numbers are from FY2017
Award Size & Duration Data

Award duration 1-5 years (longer allowed, but rare)

Numbers are from FY2017
The actual science of MPS comes through its five Divisions. Together, these span an astonishing breadth of fundamental lines of inquiry that collectively make MPS a major component of the entire NSF portfolio.
NSF-Wide & Other Directorate Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational- and Data-Enabled Science and Engineering (CDS&E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nano-scale Science & Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Infrastructure for Sustained Innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFEWS: Innovations at the Nexus of Food, Energy, and Water Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty Early Career Development CAREER– apply to Divisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Advanced by Interdisciplinary Science and Engineering (RAISE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Research Fellowship (GRF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF Research Traineeship (NRT, successor to IGERT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optics & Photonics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADVANCE - to develop systemic approaches to increase the representation & advancement of women in academic STEM careers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REU, RET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIGDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REU, RET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIGDATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOALI & I-Corps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Details:

- **RUI** – self-identify as RUI, impact statement, extra considerations
- **ROA** – part of RUI – research university submits proposal
NSF’s 10 Big Ideas

RESEARCH IDEAS
- Harnessing Data for 21st Century Science and Engineering
- Work at the Human-Technology Frontier: Shaping the Future
- Navigating the New Arctic
- Windows on the Universe: The Era of Multi-messenger Astrophysics
- The Quantum Leap: Leading the Next Quantum Revolution
- Understanding the Rules of Life: Predicting Phenotype

PROCESS IDEAS
- Mid-scale Research Infrastructure
- NSF 2026
- Growing Convergence Research at NSF
- NSF INCLUDES: Enhancing STEM through Diversity and Inclusion
MPS Scientific Opportunities

For example...

- CDS&E (Computational and Data-enabled Science and Engineering)
- Quantum Information Science
- Multi-messenger Astrophysics
- Intersection of physical and life sciences
- Midscale Infrastructure
- Complex systems (multi-scale, emergent phenomena)
- Sustainability (energy, environment, climate)
- Fundamental mathematical and statistical science
TRIPODS aims to bring together the statistics, mathematics, and theoretical computer science communities to develop the theoretical foundations of data science through integrated research and training activities.

- Phase I supported the development of small collaborative Institutes
 - 12 awards for $500K per year for three years
 - First PI Meeting held in Oct. 2017
- Phase II (FY2020) will support a smaller number of larger Institutes, selected from the Phase I Institutes via a second competitive proposal process.
- TRIPODS+X: Partnerships between SCI/ENG Fields and TRIPODS Institutes (NSF 18-542)
Computational and Data-enabled Science and Engineering (CDS&E)

- MPS disciplines are both leading consumers and hard drivers of cyber-capability
- MPS research requires and creates breakthroughs in algorithms, in simulation and modeling methods, and in materials for emerging cyber-technology.
- CDS&E is a cross-directorate program (MPS, ENG, and CISE/ACI)
- Designed “to identify and capitalize on opportunities for major scientific and engineering breakthroughs through new computational and data analysis approaches”.
- CDS&E is a “meta-program” - submit through pre-existing funding opportunities.
- See announcement PD12-8084.
Designing Materials to Revolutionize and Engineer our Future (DMREF)

- Partnership with ENG & CISE directorates
- Build fundamental knowledge base needed to progress towards designing and making a material with a specific and desired function or property from first principles.
- Accelerate materials discovery and development.
- Collaborate and iterate “close the loop” between theory and experiment.
- Aspire to enable “data-driven” materials research.
- Solicitation NSF 19-516

Alliance for Graduate Education and the Professoriate – Graduate Research Supplement (MPS AGEP GRS)

- Designed to promote increased representation in MPS research.
- Available to PIs to support qualifying graduate students at AGEP or AGEP Legacy Institutions only! https://www.nsf.gov/mps/broadening_participation/index.jsp
- Allows support of one (additional) Ph.D. student per award
- Graduate Student Eligibility
 - Emphasis placed on under-represented groups
 - Not currently supported by federal government (NSF, DOE, NIH,...)
 - US Citizen, US National, or US Permanent Resident
- Stipend, tuition, benefits, and IDC (~$60k)

See DCL 16-125 for more information
MPS Broadening Participation: Two Highlights

• NSF INCLUDES: Inclusive Graduate Education Network (IGEN) Alliance: the American Physical Society, the American Chemical Society, the American Geophysical Union, the American Astronomical Society, and the Materials Research Society—have joined forces to increase participation of underrepresented students in graduate physical science programs.

• A Future Faculty Workshop (DMR/XC) – July 18-20, 2018 in Delaware.

CAREER Program
Faculty Early Career Development Program, NSF 17-537

- NSF grants for junior-faculty “teacher scholars”
- Proposals are selected based on their plan of outstanding research, excellent education, and the integration of research and education within the context of the mission of their organizations.

Important points to bear in mind...

- Not a research excellence prize!
- Not intended as a default funding mechanism for new Assistant Professors.
- Has a specialized purpose which may not be suitable for all PI’s. Integration of research and education is key!
RUI: Facilitating Research at Primarily Undergraduate Institutions

- RUI proposals from eligible institutions must be submitted in response to existing NSF funding opportunities and must abide by guidelines and deadlines in those documents.
- Current RUI solicitation is NSF 14-579. You submit here and designate which Program should receive your proposal. **RUI solicitation has extra requirements** beyond the regular Program Solicitations and PAPPG.

There is no single Foundation-wide deadline for RUI proposals – see Division programs.
• Gives statistics, mission statements, initiatives, funding rates, lots of information
• Additional information about the directorate is available from the NSF website
• Latest version (FY2017) shown right and at link below

Division of Astronomy (AST)
AST Programs

Individual Investigators
(Lead: James Neff)
- AAG: Astronomy and Astrophysics Research Grants
- SPG: Solar and Planetary Research Grants
- CAREER: Early Career Faculty
- AAPF: Postdocs

Mid-scale
(Lead: Rich Barvainis)
- MSIP

Facilities
(Lead: Ralph Gaume)
- ALMA
- NRAO
- Gemini
- NOAO
- NSO
- Arecibo
- LSST

Research
Technology/Instrumentation
Education and Special Programs

Directorate for Mathematical and Physical Sciences
Individual Investigator Programs

- Astronomy and Astrophysics Research Grants
 - Solar and Planetary (now with no deadline)
 - Stellar Astronomy
 - Galactic Astronomy
 - Extragalactic Astronomy and Cosmology

- Annual AAG window: Oct. 1 - Nov. 15
- Research grants for observational, theoretical, laboratory, and archival data studies in all areas of astrophysics
- Also support programs that *enable* new research capabilities
- Proposals may span multiple disciplines and/or areas of study and may utilize multiple techniques.
Individual Investigator Programs

• An award is made to an institution: university, observatory, center (like CfA), NOT directly to another federal agency (like NASA).

• Typical awards are 3 years, ~$400K (including institutional indirect)

• Usual budget is for salary (grad student, postdoc, faculty summer, ”soft money” academic year), travel, publication costs.

• Proposals that are solely or predominantly for the acquisition, analysis, or interpretation of space-based data from NASA-supported missions will be returned without review.
AAG Funding History, 1990-2017

From 2000 to 2008, AAG funding doubled, but the funding rate went down by 1/3. It’s essentially level ever since.
Some of our AST Facilities

Anyone may propose for observing time on NSF AST-funded facilities

Directorate for Mathematical and Physical Sciences
Division of Chemistry (CHE)
Division of Chemistry (CHE)

- Eight major program areas – four core and four with interdisciplinary flavor
- Major support for CAREER awards

- Chemical Synthesis
- Chemical Structure, Dynamics, and Mechanisms A&B
- Theory, Models, and Computational Methods
- Chemical Measurement and Imaging
- Environmental Chemical Sciences
- Chemistry of Life Processes
- Chemical Catalysis
- Macromolecular, Supramolecular, and Nanochemistry

Individual Investigator Awards and Core Chemistry Research

- Centers
- Instrumentation
- Education and broadening participation

Individual Investigators and Small Groups

Integrative Chemistry Activities
Chemical Synthesis

Inorganic, Organometallic, and Organic Synthesis. Experimental and computational research on new and efficient synthetic methodologies and on the synthesis of complex and/or challenging chemical structures.

Chemical Structure, Dynamics, and Mechanisms A&B

Studies of chemical structure, dynamics, and chemical mechanisms. Physical Chemistry (CSDM-A) and physical inorganic and organic chemistry (CSDM-B).

Individual Investigator Award Program

Theory, Models, and Computational Methods

Supports the discovery and development of theoretical and computational methods or models to address chemical challenges.

Proposal Window: Sept. 1, 2019 – Sept. 30, 2019

Chemically-relevant measurement science and imaging, targeting both improved understanding of new and existing methods and instrument development.

Experimental and computational research directed towards catalytic processes. Inorganic, organic, organometallic catalysts.

Proposal Window: Sept. 1, 2019 – Sept. 30, 2019

Experimental and computational research on chemical processes in the environment. No field studies.

Experimental and computational studies of molecules and/or systems at the interface of chemistry and biology. Such studies would promote the fundamental understanding of the molecular underpinnings of life processes. Studies of function, not dysfunction.

Synthesis and structure-function reactivity of macromolecular, supramolecular, and nanoscopic structures.

Roald Hoffmann, Cornell University, CHE-1305872
Stabilizing Carbon Clathrates
Integrative Chemistry Activities

Centers for Chemical Innovation

- Supports research centers focused on major, long-term fundamental chemical research challenges.
 - Phase 1: $800 K/y (3y)
 - Phase 2: $4 M/y (up to 10y)
- See solicitation: NSF 19-576

Research Experiences for Undergraduates

- Offers two ways to support undergraduate research
 - **Sites** engage a number of students in research at one site
 - **Supplements** for support of individual students on ongoing NSF-funded research projects
- Proposals due in August

Major Research Instrumentation

- NSF wide program, funds acquisition or development of a shared research instrument, generally $200K - $4 M.
- Solicitation: NSF 18-513

Centers

- Instrumentation
- Education and broadening participation

Individual Investigators and Small Groups

Directorate for Mathematical and Physical Sciences
Chemical Centers for Innovation Phase II Centers

Center for Chemical Evolution

The Center for Sustainable Nanotechnology

Center for Selective Functionalization

Center for Chemistry at the Space-Time Limit

ENABLING NEW TECHNOLOGIES THROUGH CATALYSIS

CCI Solar Fuels

Center for Sustainable Polymers

University of Minnesota

Driven to Discover™

Center for Aerosol Impacts on Climate and the Environment

Directorate for Mathematical and Physical Sciences
• REU Sites are based on independent proposals to initiate and conduct projects that engage a number of students in research.

• REU Sites may be based in a single discipline or on interdisciplinary research opportunities with a coherent intellectual theme. Proposals with an international dimension are welcome.

• REU Projects involve students in meaningful ways in ongoing research programs or in research projects specifically designed for the REU program.

• **Proposals due in August**

• **Talk to the Program Directors.**
Major Research Instrumentation Program (MRI)

- Support acquisition of major state-of-the-art instrumentation
- Foster development of the next generation of major instrumentation
- Integrate research with education
- Use, advance, expand the nation's cyber-infrastructure and/or high performance computing capability
- Promote academic & private sector instrument development partnerships
- Solicitation: NSF 18-513
Developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the world in instrument and technique development as well as novel applications of FT-ICR mass spectrometry.

For more information or to apply see: https://nationalmaglab.org/user-facilities/icr

ChemMatCARS operates three experimental stations in the areas of advanced small-molecule crystallography, liquid surface and interface scattering, and small to wide-angle scattering at the Advanced Photon Source (APS).

For more information or to apply see: https://chemmatcars.uchicago.edu/
CAREER workshop to introduce early career faculty to NSF CAREER program
- Workshop held March 26-27, 2018
- Workshop application deadline in December (next is TBD)

Find the Chemistry Division at:
- CHE Website
- Quarterly newsletter
- NSF Chemistry Tumblr
 http://nationalsciencefoundation.tumblr.com/tagged/chemistry

Chemistry in the Field
Division of Materials Research (DMR)
Division of Materials Research
DMR Activities

Topical Materials Research Programs (TMRPs)

- Biomaterials
- Ceramics
- Electronic & Photonic Materials
- Metals and Metallic Nanostructures
- Polymers
- Condensed Matter & Materials Theory
- Condensed Matter Physics
- Solid State and Materials Chemistry

Centers & Teams

- Materials Research Science & Engineering Centers (MRSEC)
- Partnerships in Research & Education in Materials (PREM)
- Designing Materials to Revolutionize & Engineer our Future (DMREF)

National Facilities & Instrumentation Program

- Cornell High Energy Synchrotron Source (CHESS)
- National High Magnetic Field Laboratory (NHMFL)
- Center for High Resolution Neutron Scattering (CHRNS)
- National Nanotechnology Coordination Network (NNCI)
- Materials Innovation Platforms (MIP)

Cross-Cutting Activities

- Diversity
- International
- Education
DMR Budget Distribution

FY16 $310M
FY17 $314M
FY18R $283M
FY19R $295M
Major Instrumentation Program (MRI)

- **Next Deadline:** January 2020
- **Restrictions on organization submission eligibility**
- **Submission limit** - Three (3) per organization
- **Awards** - up to $4M for development or acquisition proposals
- **Cost-sharing** at the level of 30% of the *total project cost* is required for Ph.D.-granting institutions and non-degree-granting organizations
- **Merit Review** - At the time of submission, PI’s are asked to identify an NSF division(s) to review proposal. NSF reserves the right to place proposals in the appropriate division(s) for review.
- **New Solicitation:** NSF 18-513
Major program in DMR

The program by which NSF participates in the Materials Genome Initiative (MGI) for Global Competitiveness

Build the fundamental knowledge base needed to progress towards designing and making a material with a specific and desired function or property from first principles.
A plan to build on the First Quantum Revolution in early 20th century and prepare for the Second one exploiting quantum phenomena like superposition, entanglement, and squeezing to enable the next wave of precision sensors and more efficient computation and simulation and communication.

EU, Netherlands, UK, China, Japan, Canada... investing in development of quantum technologies.

NSF would support research that addresses the manipulation of quantum states and the control of material light interactions involving physicists, mathematicians, and engineers. There will be strong connections to industry, other federal agencies, and international partnerships.
Summer School

| Sources of Funding | NSF: Convergence DCL + individual Divisions: $700k
DOE/BES: $300k |
|--------------------|--|
| Organizing Team | Joe Checkelsky (MIT)
Natalia Drichko (Johns Hopkins)
Liang Fu (MIT)
Kyle Shen (Cornell)
Jun Zhu (Penn State) |
| Locations and Dates| Tentative Location and Dates
Johns Hopkins University: June 5-16, 2017
Cornell University: June 18-30, 2018
Penn State University: June 9-21, 2019
University of Colorado: 2020 |
| Rationale | Train transdisciplinary workforce for the second quantum revolution driven by convergence of multiple disciplines |
| Participants | 50 Graduate Students and early-career Postdocs |
Division of Mathematical Sciences (DMS)
DMS supports research covering the entire mathematical sciences spectrum

- Individual-investigator grants
 - Disciplinary programs (unsolicited)
 - Special Research programs (solicited)
- Mathematical Sciences Institutes:
 - National infrastructure and Community Resource:
- Workforce: Training the next generation of researchers
 - Postdoctoral fellowships
 - Research training groups
 - Research experiences for undergraduates

Numbers are FY2017 actuals
DMS Major Investment Areas

Workforce, Training, MSPRF, CAREER

Infrastructure

Institutes & Centers

New Initiatives & Special Programs

8 Program Areas
Disciplinary

- Algebra and Number Theory
- Analysis
- Applied Mathematics
- Computational Mathematics
- Probability Combinatorics & Foundations
- Statistics
- Topology & Geometric analysis
- Mathematical Biology
Interdisciplinary

- NSF/NIH Joint Initiative in Math Biology: supporting research at the interface of the mathematical and biological sciences (DMS/NIGMS)
- Algorithms for Threat Detection (ATD) partnership with the National Geospatial Intelligence Agency (NGA).
- Secure & Trustworthy Cyberspace (SaTC)
- Computational and Data-Enabled Science and Engineering in Mathematical and Statistical Sciences
- NSF wide BIGDATA program
- Transdisciplinary research in Foundations of Data Science (TRIPODS)
NSF-Simons Research Centers for Mathematics of Complex Biological Systems

- Five year, $30M program funded equally by NSF and Simons Foundation
- 3 NSF Divisions: Mathematical Sciences, Integrative Organismal Systems, Molecular and Cellular Biosciences
- Support mathematical approaches aimed at understanding:
 - the complex causal relationships leading to emergent properties of molecular, cellular and organismal systems, or
 - to the emergent properties resulting from the complex integration across these levels of organization at different time scales
- Close, sustained collaborations between biologists and mathematical scientists that leverage their complementary expertise
Physics Division – A Broad, Rich and Diverse Research Portfolio

Hot – Active Galactic Nuclei Produce High Energy Cosmic Rays in Pierre Auger Observatory

Cold – Ultracold Molecules at JILA

Large – Nucleosynthesis in Accreting White Dwarfs at JINA

Small – Inspirals Produce Space-Time Distortion Less than Diameter of Proton in LIGO

Non-Living – Proton-Proton Collisions at CERN

Living – Brain Wave Images with Diffusion MRI

New – Quantum Network at CalTech

Old – Big-Bang Soup Recreated in Quark-Gluon Plasma at RHIC

Directorate for Mathematical and Physical Sciences
Note: Condensed-Matter Physics is within DMR, not PHY!
PHY Major Facilities

- NSCL
- LHC
- LIGO
- IceCube (South Pole)
Investigator-Initiated Research Projects

Solicitation 18-564

Be aware:
• Does not override existing solicitations such as RUI, CAREER, REU sites, etc.
• Deadlines instead of target dates and separate deadlines for different Physics programs

Full Proposal Deadlines (due by 5 p.m. submitter's local time):

First Tuesday in December: Nuclear Physics - Experiment and Theory; Elementary Particle Physics - Experiment; Particle Astrophysics – Experiment; Computational Physics

Fourth Wednesday in November: AMO - Theory and Experiment; Gravitational Physics - Theory and Experiment; LIGO Research Support; Integrative Activities in Physics

Second Tuesday in December: Elementary Particle Physics - Theory; Particle Astrophysics and Cosmology – Theory; Physics of Living Systems; Quantum Information Science

Physics Frontiers Centers: Preliminary Proposal Due Date(s) (required) August 01, 2019
Full Proposal Deadline(s) January 30, 2020 by invitation only
All NSF personnel are listed online. If uncertain about whom to contact, Deputy Division Directors (below) may be able to recommend appropriate individuals in their Divisions.

AST: Ralph Gaume, rgaume@nsf.gov, (703) 292-2335
CHE: Lin He, lhe@nsf.gov, (703) 292-4956
DMR: Clark Cooper, ccooper@nsf.gov, (703) 292-7899
DMS: Tie Luo, tluo@nsf.gov, (703) 292-8448
PHY: Jean Cottam Allen, jcallen@nsf.gov, (703) 292-8783

Still have questions? Ask early, ask often!