

### Performance of Three Innovative Levee Strengthening Systems under Full-Scale Overtopping Testing and Design Guidelines



Farshad Amini, Ph.D., P.E., F. ASCE Professor & Chair Department of Civil & Environmental Engineering Jackson State University October 23, 2014 Congressional Delegation Visit

Managed by UT-Battelle for the U.S. Department of Energy - Supporting the Department of Homeland Security



## **Problems Addressed**

- Levees are subjected to overtopping, causing significant damage. Prevention methods against overtopping must be developed.
- This project addresses innovative methods to strengthen the crest and landside slope from erosive forces of overtopping flows.

Crest

Levee

Landside

slope

Combined Wave and Storm Surge Overtopping



## **Research Objectives**

- To determine the effectiveness of three innovative levee strengthening systems during full-scale overtopping conditions simulating waves or combined wave and storm surge.
  - High performance turf reinforcement mat
  - Articulated concrete block system
  - Roller compacted concrete



## Capabilities

- JSU is the leader in the area of Levee Overtopping with more than 40 publications, many in top engineering journals.
- Received 1.45 M from DHS for research
- Full Scale Testing
- Numerical Modeling
- Slope Stability Analysis



## High Performance Turf Reinforcement Mats (HPTRM)

 The HPTRMs have extremely high tensile strengths, and use a unique matrix of polypropylene yarns and fiber technology specially created to lock soil in place.



HPTRM



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security



## Articulated Concrete Block System (ACB)

- An ACB system is a matrix of machine compressed individual concrete blocks assembled to form a large mat.
- Blocks are 10 to 23 cm thick and 929 to 1858 cm<sup>2</sup> in plan with openings penetrating the entire block.





## **Roller Compacted Concrete**

 RCC is formed by mixture of controlledgradation aggregate, Portland cement, mixed with water and then compacted by a roller.





## **Full Scale Testing at OSU**

- Full-scale overtopping test bed in 104-m wave flume
- Unsteady flow consisting of wave and/or combined wave and surge.





### **Levee Embankment Section**



Managed by UT-Battelle for the U.S. Department of Energy - Supporting the Department of Homeland Security



### **Vegetated HPTRM Setup and Maintenance**



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

### Levee Embankment in Large Wave Flume at OSU



- Physical model was set up at full scale (1:1)
- LWF is 104 m (L) x 3.66 m (W) x 4.57 m (H) with a unidirectional piston wave maker for up to 1.6 m wave height.

### **Setup of Hydraulic Instrumentation**



Managed by UT-Battelle for the U.S. Department of Energy - Supporting the Department of Homeland Security

## **Hydraulic Tests at RCC Test Section**

- Nine Surge-Only Overtopping Tests
- Six Wave-Only Overtopping Tests
- Seven Combined Wave and Surge Overtopping Tests



Combined overtopping ( $H_{m0} = 0.7 \text{ m}, T_p = 7 \text{ s}, R_c = -0.24 \text{ m}$ 

### Hydraulic Tests at ACB Test Section

- One Surge-Only Overtopping Test
- Three Wave-Only Overtopping Tests
- Four Combined Wave and Surge Overtopping Tests

Combined overtopping ( $H_{m0} = 0.6 \text{ m}, T_p = 5 \text{ s}, R_c = -0.27 \text{ m}$ 

Laser beam



## **HPTRM Metal Tray Installation**











## Hydraulic Tests at HPTRM Test Section

- One Surge-Only Overtopping Test
- Three Wave-Only Overtopping Tests
- Five Combined Wave and Surge Overtopping Tests





Managed by UT-Battelle for the U.S. Department of Energy - Supporting the Department of Homeland Security



Managed by UT-Battelle for the U.S. Department of Energy - Supporting the Department of Homeland Security



Peak wave period (T<sub>p</sub>) had negligible influence on the determination of q<sub>ws</sub>

Results



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security



### Distribution of Individual Wave/Surge Overtopping Discharge





### Best-fit equation for Weibull shape factor b for all the tests



Managed by UT-Battelle for the U.S. Department of Energy - Supporting the Department of Homeland Security

### Distribution of Individual Wave Volume for Combined Wave and Surge Overtopping



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

### Steady Flow Thickness on Landward-side Slope for Surge-only Overflow



#### Average Flow Thickness on Landward-side Slope for Combined Wave and Surge Overtopping





#### Average Flow Thickness Equivalency between Surge-only Overflow and Combined Wave and Surge Overtopping



Average Flow Velocity Equivalency between Surge-only Overflow and Combined Wave and Surge Overtopping





### Distribution of Waves on the Landside Slope



#### Rayleigh Distribution of characteristic wave heights









Wave Front Velocity on Landward-side Slope





Managed by UT-Battelle for the U.S. Department of Energy - Supporting the Department of Homeland Security



### **Erosion Data of HPTRM Tests**

(1) Elevation measurement



#### Soil erosion rate versus overtopping velocity



ast Regior













## **Improvement of Soil Erodibility**

- Soil erodibility: relationship between the erosion rate and the shear stress at the soil-water interface.
- Measured with Erosion Function Apparatus (EFA) by Dr. Briaud Group at Texas A & M University.





## **Measurement of Soil Erodibility**



Initiative

Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

## **Soil Erodibility Improvement**



## Soil Erodibility Improvement





### Design Parameters for Three Levee Strengthening Systems

- Under combined wave and surge overtopping, strengthening levees in crest and landward-side slopes with:
  - HPTRM can withstand wave overtopping of 0.2 m<sup>3</sup>/s-m, where Dutch guideline is 0.01 m<sup>3</sup>/s-m for good quality grass cover (TAW 1989).
  - RCC can withstand wave overtopping of 0.34 m<sup>3</sup>/s-m, where Goda (1985) suggested 0.05 m<sup>3</sup>/s-m for concrete protected side slopes.
  - ACB can withstand wave overtopping of 0.17 m<sup>3</sup>/s-m



### Empirical Equations for Three Levee Strengthening Systems Design under Surgeonly Overflow Conditions

| Design parameters                                               | Empirical equations developed by this study                                                                                           |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| steady overflow discharge $q_s$                                 | $q_s = C_f \sqrt{g} h_1^{3/2}$ where C <sub>f</sub> is 0.5445 for RCC, 0.4438 for ACB, and 0.415 for HPTRM strengthened levees.       |
| average flow thickness d <sub>s</sub> on<br>landward-side slope | $\frac{\sqrt{gd_s^3}}{q_s} = k_d$ , where k <sub>d</sub> is 0.1732 for RCC, 0.2365 for ACB, and 0.3076 for HPTRM strengthened levees. |
| steady flow velocity $v_s$ on landward-side slope               | $v_s = k_v \sqrt{gh_1}$ , where k <sub>v</sub> is 2.628 for RCC, 1.995 for ACB and 1.637 for HPTRM strengthened levees.               |
|                                                                 |                                                                                                                                       |



### Empirical Equations for Three Levee Strengthening Systems Design under Combined Wave and Surge Overtopping Conditions

#### **Design parameters**

Empirical equations developed by this study

dimensionless average wave overtopping discharge  $q_{ws}/q_s$ 

$$q_{ws} / q_s = 36.12 \exp(19.59 \frac{R_c}{H_{m0}}) + 1$$

distributions of instantaneous overtopping discharge

$$P(q \le q_*) = 1 - \exp[(-\frac{q_*}{c})^b], \text{ where } c \text{ can be calculated by } c = \frac{q_{WS}}{\Gamma(1+\frac{1}{b})}, \text{ b}$$
  
an be calculated by  $b = \beta \left(\frac{q_{WS}}{gH_{m0}T_p}\right)^{0.42}$  where  $\beta$  is 6.93 for RCC, 6.9 for

ACB and 8.3 for HPTRM strengthened levees, and  $\Gamma$  is the gamma function.

average flow thickness  $d_m$  on landward-side slope

 $d_m = 1.174 d_s$ 

C

average flow velocity  $v_{ws}$  on landward-side slope

Distribution of wave heights on landwardside slope

$$v_{ws} / v_s = 3.35 \exp(13.59 \frac{R_c}{H_{m0}}) + 1$$
  
 $H_{1/3} = 1.416 \cdot H_{rms}, \ H_{1/10} = 1.80 \cdot H_{rms}, \ H_{1/100} = 2.36 \cdot H_{rms}$ 

### Empirical Equations for Three Levee Strengthening Systems Design under Combined Wave and Surge Overtopping Conditions

**Design parameters** 

Empirical equations developed by this study

Wave front velocity v<sub>w</sub> on landward-side slope

$$v_w = 4.33(gq_{ws})^{1/3}$$

Root-mean-square of shear stress  $\tau_{t,rms}$  on landward-side slope

Distribution of shear stress on landward-side slope

Maximum soil loss depth E<sub>max</sub>, in mm

Erosion rate E in mm/ hr

$$\tau_{t,rms} = 0.0547 \gamma_w h_m$$
 for HPTRM strengthened levee

 $\tau_{\rm t,1/3} = 0.976 \cdot \tau_{\rm t,rms}, \ \tau_{\rm t,1/10} = 2.36 \cdot \tau_{\rm t,rms}, \ \tau_{\rm t,1/100} = 7.04 \cdot \tau_{\rm t,rms} \ \text{for HPTRM}$  strengthened levee

 $E_{\text{max}} = 11.23v_{ws} - 16.24$  for HPTRM strengthened levee, where  $v_{ws}$  is the average overtopping flow velocity in m/s

 $E = 5.3v_{ws} - 9.3$  for HPTRM strengthened levee

Erosion rate E in mm/ hr

$$E = 0.394 + 0.735(-v_{ws}\frac{R_c}{H_{m0}})^{4.44}$$

## **Summary & Conclusions**

- Effectiveness of HPTRM, RCC, and ACB were investigated with full-scale overtopping tests.
- HPTRM, RCC, and ACB can significantly decrease the flow velocity on landward-side slope.
- Average overtopping discharges are HPTRM < ACB < RCC for the same hydraulic conditions.</li>
  - For  $R_c/H_{m0}$  < -0.3,  $q_{ws}/q_s$  is close to 1.
  - For -0.3 <  $R_c/H_{m0}$  < 0,  $q_{ws}/q_s$  increases sharply with - $R_c/H_{m0}$
- Average flow thicknesses on landward-side slope are RCC < ACB < HPTRM for the same overtopping discharge

$$- d_m/d_s = 1.174$$

## **Summary & Conclusions**

- Average flow velocities are HPTRM < ACB < RCC for the same overtopping discharge
  - For  $R_c/H_{m0}$  < -0.3,  $v_{ws}/v_s$  is close to 1.
  - For -0.3 <  $R_c/H_{m0}$  < 0,  $v_{ws}/v_s$  increases sharply with - $R_c/H_{m0}$
- Wave front velocities are HPTRM < ACB < RCC for the same relative freeboard.
- HPTRM system has the best effect in reducing overtopping discharge and wave front velocity on landward-side slope, while RCC has the least effect.
- Flow equivalency shows that the impact of wave on overtopping parameters weakens with an increase in the negative relative freeboard.
- The maximum erosion depth in HPTRM test section is mainly impacted by overtopping flow velocity.

## **Summary & Conclusions**

- After the maximum soil loss is reached, the relationship between erosion rate and average overtopping flow velocity is approximately linear.
- Both the grass roots and HPTRM can increase the critical velocity by 1 m/s. The erodibility of the soil is lowered from high erodibility to median erodibility by both the grass roots and HPTRM.
- HPTRM can strengthen the clay levee by increasing the threshold value of both flow velocity and shear stress.
- Aside from the surface erosion, the RCC remained intact throughout all of the experimental tests, and there was no catastrophic failure in the RCC test section.
- According to this full-scale overtopping test, the crest and landwardside slope strengthened by HPTRM, RCC and ACB can withstand wave overtopping of 0.2, 0.34, and 0.17 m<sup>3</sup>/s/m, respectively in the combined wave and surge overtopping conditions.



# THE END

Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security