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Problems Addressed

• Levees are subjected to overtopping, causing 

significant damage. Prevention methods 

against overtopping must be developed. 

• This project addresses innovative methods to 

strengthen the crest and landside slope from 

erosive forces of overtopping flows. 

Levee
Combined Wave and Storm Surge Overtopping

Landside 

slope

Crest
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Research Objectives

• To determine the effectiveness of three

innovative levee strengthening systems 

during full-scale overtopping conditions 

simulating waves or combined wave and 

storm surge. 

– High performance turf reinforcement mat

– Articulated concrete block system

– Roller compacted concrete



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

Capabilities

• JSU is the leader in the area of Levee 

Overtopping with more than 40 

publications, many in top engineering 

journals.

• Received 1.45 M from DHS for research

• Full Scale Testing

• Numerical Modeling 

• Slope Stability Analysis
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High Performance Turf 

Reinforcement Mats (HPTRM)

• The HPTRMs have extremely 

high tensile strengths, and 

use a unique matrix of 

polypropylene yarns and fiber 

technology specially created 

to lock soil in place. 

HPTRM
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Articulated Concrete Block 

System (ACB)

• An ACB system is a matrix 
of machine compressed 
individual concrete blocks 
assembled to form a large 
mat.  

• Blocks are 10 to 23 cm 
thick and 929 to 1858 cm2

in plan with openings 
penetrating the entire 
block.  
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Roller Compacted Concrete

• RCC is formed by 
mixture of controlled-
gradation aggregate, 
Portland cement, 
mixed with water and 
then compacted by a 
roller. 
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Full Scale Testing at OSU

• Full-scale overtopping test bed in 104-m wave flume 

• Unsteady flow consisting of wave and/or combined wave 
and surge.
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1. Bermuda Seed Apply

2. After 3 wks

3. After 10 wks – 7”

4. Heat & Light Enhanced

Vegetated HPTRM Setup and Maintenance
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Levee Embankment in Large Wave Flume 
at OSU

• Physical model was set up at full scale (1:1) 

• LWF is 104 m (L) x 3.66 m (W) x 4.57 m (H) with a unidirectional piston 

wave maker for up to 1.6 m wave height.  
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Setup of Hydraulic Instrumentation

Surface-piercing wire wave gage

4.57

m

Wave
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Acoustic range finder
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Sampling at 50 Hz
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Hydraulic Tests at RCC Test Section

 Nine Surge-Only Overtopping Tests

 Six Wave-Only Overtopping Tests

 Seven Combined Wave and Surge Overtopping Tests

Combined overtopping

(Hm0 = 0.7 m, Tp = 7 s, Rc = -0.24 m



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

Hydraulic Tests at ACB Test Section

 One Surge-Only Overtopping Test

 Three Wave-Only Overtopping Tests

 Four Combined Wave and Surge Overtopping Tests

Combined overtopping

(Hm0 = 0.6 m, Tp = 5 s, Rc = -0.27 m

Laser beam
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HPTRM Metal Tray Installation

1. Flat-bed Truck Delivered

3. Installed in LWF

4. Light & Heat Controlled

2. Crane Lift
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Hydraulic Tests at HPTRM Test Section

 One Surge-Only Overtopping Test

 Three Wave-Only Overtopping Tests

 Five Combined Wave and Surge Overtopping Tests

Combined overtopping

(Hm0 = 0.85 m, Tp = 5 s, Rc = -0.26 m



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

440 445 450 455 460 465 470 475 480
0

0.5

1

1.5

t, s

q
w

s
, 

m
3
/s

/m

440 445 450 455 460 465 470 475 480
0

0.1

0.2

0.3

0.4

0.5

t, s

fl
o
w

 t
h
ic

k
n
e
s
s
, 

m

440 445 450 455 460 465 470 475 480
-0.2

-0.1

0

0.1

0.2

t, s

w
a
te

r 
s
u
rf

a
c
e
, 

m

Combined wave and 

surge overtopping Trial1

of RCC tests

(measured flow thickness at crest)

(measured water surface)

(calculated avg. overtopping discharge)

(Rc =  -0.29 m, Hm0 = 0.41 m, Tp = 3.4 s)

Hydraulic Data 

Analysis



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

q
w

s
/(

g
H

 m
0
3
)1

/2

Rc/Hm0

RCC

ACB

HPTRM

Europe manual (2007)

Reeve et al. (2008)

Dimensionless Average Wave/Surge 

Overtopping Discharge vs. Relative Freeboard

Results

  0 R      53.0034.0

58.1

0
3

0










 
 c

m

c

m

ws for
H

R

gH

q

Peak wave period (Tp) had negligible influence on the determination of qws

(Hughes and Nadal 2009)



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

-1 -0.8 -0.6 -0.4 -0.2 0
10

-1

10
0

10
1

10
2

R
c
/H

m0

q
w

s
/q

s

 

 

RCC

ACB

HPTRM

Best fit q
ws

/q
s
=36.12exp(19.59R

c
/H

m0
)+1

When Rc < -0.3 Hm0, qws  qs (surge-dominated cases)

When Rc > -0.3 Hm0, qws > qs (wave-dominated cases)

Relative Average Wave/Surge Overtopping 

Discharge to Surge-Only Discharge vs. 

Relative Freeboard

qws = qs

At higher freeboard, discharge equivalence

At lower freeboard, wave overtopping is more influential
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Average Flow Thickness Equivalency between Surge-only 

Overflow and Combined Wave and Surge Overtopping

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

ds

d
m

RCC

ACB

HPTRM

Best fit

 1.174m sd d



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

Rc/Hm0

v w
s/

v s

RCC

ACB

HPTRM

Best fit

Average Flow Velocity Equivalency between Surge-only Overflow 

and Combined Wave and Surge Overtopping

 

0

/ 3.35exp(13.59 ) 1c
ws s

m

R
v v

H
 



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Measured H
1/100

, m

R
a

y
le

ig
h

 H
1

/1
0

0
, 
m

 

 

RCC

ACB

HPTRM

Distribution of 

Waves on the 

Landside Slope

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Measured H
1/10

, m

R
a

y
le

ig
h

 H
1

/1
0
, 
m

 

 

RCC

ACB

HPTRM

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Measured H
1/3

, m

R
a

y
le

ig
h

 H
1

/3
, 
m

 

 

RCC

ACB

HPTRM

Rayleigh Distribution of 

characteristic wave heights



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

0

1

2

3

4

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Rc/Hm0

H
rm

s/
(-

R
c
)

RCC

ACB

HPTRM

Best fit

Estimation of Hrms on Landward-side Slope

0.662

0

0.359( )rms c

c m

H R

R H
 





Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(gqws)
1/3, m/s

W
a
v
e
 f
ro

n
t 
v
e
lo

c
ity

, 
m

/s

RCC

ACB

HPTRM

Best fit

Wave Front Velocity on Landward-side Slope

1/3

wv =4.33( )wsgq



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

4ft
4ft

8ft
area1

area2
area3

area4

8.42ft

8ft

area5

Deep

erosion

13%

Shallow

erosion

16%

No

erosion

71%

Deep

erosion

1%

Shallow

erosion

17%

No

erosion

82%

Erosion 

Results 

of RCC 

Test 

Section

No

erosion

77%

Shallow

erosion

3%Deep

erosion

20%

Area3



Managed by UT-Battelle for the U.S. Department of Energy – Supporting the Department of Homeland Security

Settlement or Uplift Data for ACB Tests

after 90 min combined wave 

overtopping and surge overflow 

with Rc = -0.18 m, Hm0 = 0.69 

m and Tp = 4.94 s

after 90 min combined wave overtopping 

and surge overflow with Rc = -0.21 m, Hm0 = 

0.64 m and Tp = 4.85 s 

after 6 hr combined wave overtopping 

and surge overflow with Rc = -0.27 m, 

Hm0 = 0.59 m and Tp = 4.86 s 
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Erosion Data of HPTRM Tests
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Soil erosion rate versus overtopping velocity
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Improvement of Soil Erodibility

• Soil erodibility: relationship between the erosion rate and 

the shear stress at the soil-water interface. 

• Measured with Erosion Function Apparatus (EFA) by    

Dr. Briaud Group at Texas A & M University.
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Measurement of Soil Erodibility
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Soil Erodibility Improvement

From Very high/high 

erodibility decrease to 

Medium/low erodibility

(HPTRM system)

(clay + dormant grass)
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Soil Erodibility Improvement

From Very high/high 

erodibility decrease to 

Medium erodibility

(clay + dormant grass)

(HPTRM system)
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Design Parameters for Three Levee 

Strengthening Systems 

• Under combined wave and surge overtopping, 
strengthening levees in crest and landward-side 
slopes with:
– HPTRM can withstand wave overtopping of 0.2 m3/s-

m, where Dutch guideline is 0.01 m3/s-m for good 
quality grass cover (TAW 1989).

– RCC can withstand wave overtopping of 0.34 m3/s-m, 
where Goda (1985) suggested 0.05 m3/s-m for 
concrete protected side slopes.

– ACB can withstand wave overtopping of 0.17 m3/s-m
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Empirical Equations for Three Levee 

Strengthening Systems Design under Surge-

only Overflow Conditions

Design parameters Empirical equations developed by this study 

steady overflow d ischarge q s 3/ 2

1s fq C gh  where Cf  is 0.5445 for RCC, 0.4438 for ACB, and 

0.415for HPTRM strengthened  levees. 

average flow thickness d s on 

landward -side slope 

3

s

d

s

gd
k

q
 , where kd is 0.1732 for RCC, 0.2365 for ACB, and 0.3076 

for HPTRM strengthened  levees. 

steady flow velocity v s on 

landward -side slope 
1s vv k gh  , where kv is 2.628 for RCC, 1.995 for ACB and  1.637 for 

HPTRM strengthened  levees. 
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Empirical Equations for Three Levee 

Strengthening Systems Design under Combined 

Wave and Surge Overtopping Conditions
Design parameters Empirical equations developed by this study 
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ACB and  8.3 for HPTRM strengthened  levees, and  Γ  is the gamma 

function. 

average flow thickness 

d m on landward -side 

slope 

1.174m sd d  

average flow velocity vws 

on landward -side slope 
0

/ 3.35exp(13.59 ) 1c
ws s

m

R
v v

H
   

Distribution of wave 

heights on landward -

side slope 

1/3 1.416 rmsH H  , 1/10 1.80 rmsH H  , 1/100 2.36 rmsH H   
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Empirical Equations for Three Levee 

Strengthening Systems Design under Combined 

Wave and Surge Overtopping Conditions
Design parameters Empirical equations developed by this study 

Wave front velocity vw 

on landward -side slope 

1/3

wv =4.33( )wsgq  

Root-mean-square of 

shear stress t,rms on 

landward -side slope 

, 0.0547t rms w mh   for HPTRM strengthened  levee 

Distribution of shear 

stress on landward -side 

slope 

t,1/3 t,rms0.976   , 
t,1/10 t,rms2.36   , 

t,1/100 t,rms7.04    for HPTRM 

strengthened  levee 

Maximum soil loss 

depth Emax, in mm 
max 11.23 16.24wsE v   for HPTRM strengthened  levee, where vws is 

the average overtopping flow velocity in m/ s  

Erosion rate E in mm/ hr 5.3 9.3wsE v   for HPTRM strengthened  levee 

Erosion rate E in mm/ hr 
4.44

0

0.394+0.735( )c
ws

m

R
E v

H
   
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Summary & Conclusions
• Effectiveness of HPTRM, RCC, and ACB were 

investigated with full-scale overtopping tests.

• HPTRM, RCC, and ACB can significantly decrease the 
flow velocity on landward-side slope. 

• Average overtopping discharges are HPTRM < ACB < 

RCC for the same hydraulic conditions.

– For Rc/Hm0 < -0.3, qws/qs is close to 1. 

– For -0.3 < Rc/Hm0 < 0, qws/qs increases sharply with -Rc/Hm0

• Average flow thicknesses on landward-side slope are 

RCC < ACB < HPTRM for the same overtopping 

discharge

– dm/ds = 1.174
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Summary & Conclusions
• Average flow velocities are HPTRM < ACB < RCC for the same 

overtopping discharge 

– For Rc/Hm0 < -0.3, vws/vs is close to 1. 

– For -0.3 < Rc/Hm0 < 0, vws/vs increases sharply with -Rc/Hm0

• Wave front velocities are HPTRM < ACB < RCC for the same 

relative freeboard.

• HPTRM system has the best effect in reducing overtopping 

discharge and wave front velocity on landward-side slope, while 

RCC has the least effect. 

• Flow equivalency shows that the impact of wave on overtopping 

parameters weakens with an increase in the negative relative 

freeboard. 

• The maximum erosion depth in HPTRM test section is mainly 

impacted by overtopping flow velocity.
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Summary & Conclusions
• After the maximum soil loss is reached, the relationship between 

erosion rate and average overtopping flow velocity is approximately 

linear. 

• Both the grass roots and HPTRM can increase the critical velocity 

by 1 m/s. The erodibility of the soil is lowered from high erodibility to 

median erodibility by both the grass roots and HPTRM.

• HPTRM can strengthen the clay levee by increasing the threshold 

value of both flow velocity and shear stress. 

• Aside from the surface erosion, the RCC remained intact throughout 

all of the experimental tests, and there was no catastrophic failure in 

the RCC test section. 

• According to this full-scale overtopping test, the crest and landward-

side slope strengthened by HPTRM, RCC and ACB can withstand 

wave overtopping of 0.2, 0.34, and 0.17 m3/s/m, respectively in the 

combined wave and surge overtopping conditions.
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THE END


