
Module 2:
Classical Algorithm Design

Techniques

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Module Topics

• 2.1 Brute Force

• 2.2 Decrease and Conquer

• 2.3 Divide and Conquer

• 2.4 Transform and Conquer

• 2.5 Space-Time Tradeoff: Sorting and

Hashing

2.1 Brute Force

Brute Force String Matching
• pattern: a string of m characters to search for

• text: a (longer) string of n characters to search in

• problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of
pattern to the corresponding character in text until

• all characters are found to match (successful search); or

• a mismatch is detected

Step 3 While pattern is not found and the text is not yet exhausted,
realign pattern one position to the right and repeat Step 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2

N O T

n = 18

m = 3

(at the worst-case if

‘NOT’ did not appear before this)

Brute Force String Matching

Best-case = m comparisons

At the worst case, the algorithm may have to make all m comparisons before

shifting the pattern, and this can happen for each of the n – m + 1 tries.

Thus, in the worst case, the algorithm makes m (n – m + 1) character

comparisons. m << m(n-m+1). The overall time complexity is O(nm)

Brute Force String Matching
Examples

How many comparisons are made by the brute-force string matching algorithm in

searching for the following patterns in a binary text of 1000 zeros?

0000000000000000000000000000000 … 000 (1000 zeros)

a) 00001

There will be a total of (1000 – 5 + 1) iterations. In each iteration, we will have to

do 5 comparisons, as the first 4 bits will match and only the last bit will not

match. Hence, the total number of comparisons = 996 * 5 = 4,980

b) 10000

There will be a total of (1000 – 5 + 1) iterations. In each iteration, the first

comparison itself will be a failure. Hence, there will be a total of 996 * 1 = 996

comparisons.

c) 01010

There will be a total of (1000 – 5 + 1) iterations. In each iteration, we will do 2

comparisons (the first comparison will be successful and the second one is

not). Hence, there will be a total of 996*2 = 1,992 comparisons.

Brute Force String Matching
Examples

Consider the problem of counting the number of sub strings that start

with an A and end with a B in a given string of alphabets:

DAAXBABAGBD.

Scan the given string from left to right. Initialize the number of sub strings

to zero. Keep track of the number of As encountered. Each time a B

is encountered, set the number of sub strings to be number of sub

strings + the number of As encountered until then. Since we do a

linear pass on the given string and do one comparison per character,

the time complexity is Θ(n), where n is the length of the string.

2.2 Decrease and Conquer

Decrease by One: Insertion Sort
• Given an array A[0…n-1], at any time, we have the array

divided into two parts: A[0,…,i-1] and A[i…n-1].
– The A[0…i-1] is the sorted part and A[i…n-1] is the unsorted part.

– In any iteration, we pick an element v = A[i] and scan through the
sorted sequence A[0…i-1] to insert v at the appropriate position.

• The scanning is proceeded from right to left (i.e., for index j
running from i-1 to 0) until we find the right position for v.

• During this scanning process, v = A[i] is compared with A[j].

• If A[j] > v, then we v has to be placed somewhere before A[j] in the
final sorted sequence. So, A[j] cannot be at its current position (in
the final sorted sequence) and has to move at least one position to
the right. So, we copy A[j] to A[j+1] and decrement the index j, so
that we now compare v with the next element to the left.

• If A[j] ≤ v, we have found the right position for v; we copy v to
A[j+1]. This also provides the stable property, in case v = A[j].

Insertion Sort
Pseudo Code and Analysis

The comparison A[j] > v is the basic operation.

Worst Case (if the array is reverse-sorted): the element v at A[i] has to be moved

all the way to index 0, by scanning through the entire sequence A[0…i-1].

Best Case (if the array

is already sorted): the

element v at A[i] will be just

compared with A[i-1] and

since A[i-1] ≤ A[i] = v, we

retain v at A[i] itself and

do not scan the rest of the

sequence A[0…i-1]. There

is only one comparison

for each value of index i.

∑∑ ∑ ∑ ∑∑
−

= −=

−

=

−

=

−

=

−

=

−
=−=+−−==

1

1

0

1

1

1

1

1

1

1

1

0 2

)1(
)1(10)1(11

n

i ij

n

i

n

i

n

i

i

j

nn
ii

)1(11)1(1
1

1

−=+−−=∑
−

=

nn
n

i

Insertion Sort: Analysis and Example
Average Case: On average for a random input sequence, we would be visiting half

of the sorted sequence A[0…i-1] to put A[i] at the proper position.

∑ ∑∑ ∑
−

=

−

=

−

=

−

−=

Θ=
+

=+
−

==
1

1

2
1

1

1

1

2/)1(

1

)(
2

)1(
1

2

)1(
1)(

n

i

n

i

n

i

i

ij

n
ii

nC

Example: Given sequence (also initial): 45 23 8 12 90 21

Iteration 1 (v = 23):

45 45 8 12 90 21

23 45 8 12 90 21

Iteration 2 (v = 8):

23 45 45 12 90 21

23 23 45 12 90 21

8 23 45 12 90 21

Iteration 3 (v = 12):

8 23 45 45 90 21

8 23 23 45 90 21

8 12 23 45 90 21

Iteration 4 (v = 90):

8 12 23 45 90 21

9 12 23 45 90 21

Iteration 5 (v = 21):

9 12 23 45 90 90

9 12 23 45 45 90

9 12 23 23 45 90

9 12 21 23 45 90

The colored elements are in the sorted sequence

and the circled element is at index j of the algorithm.

Index

-1
Overall time complexity

O(n2)

2.3 Divide and Conquer

Divide-and-Conquer
The most-well known

algorithm design strategy:

1. We divide a problem of

instance size ‘n’ into

several sub problems

(each of size n/b);

2. Solve ‘a’ of these sub
problems (a ≥ 1; b > 1)

recursively and

3. Combine the solutions

to these sub problems to
obtain a solution for the

larger problem.

Typical Case of Divide and Conquer Problems

Master Theorem to Solve
Recurrence Relations

• Assuming that size n is a

power of b to simplify analysis,

we have the following

recurrence for the running

time, T(n) = a T(n/b) + f(n)

– where f(n) is a function that

accounts for the time spent on

dividing an instance of size n

into instances of size n/b and

combining their solutions.

• Master Theorem:

The same results hold good for O and Ω too.

Examples:

1) 1) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n

a = 4; b = 2; d = 1 � a > bd

())()(
24log2 nnnT Θ=Θ=

2) 2) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n22

a = 4; b = 2; d = 2 � a = bd

()nnnT log)(
2

Θ=

3) 3) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n33

a = 4; b = 2; d = 3 � a < bd

()3
)(nnT Θ=

4) 4) T(nT(n) = 2T(n/2) + 1) = 2T(n/2) + 1

a = 2; b = 2; d = 0 � a > bd

())()(
2log2 nnnT Θ=Θ=

Master Theorem: More Problems

Merge Sort
• Split array A[0..n-1] in two about equal halves and make

copies of each half in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of
the arrays:

• compare the first elements in the remaining
unprocessed portions of the arrays

• copy the smaller of the two into A, while
incrementing the index indicating the unprocessed
portion of that array

– Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the
other array into A.

Merge Sort

Merge Algorithm

Example for Merge Sort

Analysis of Merge Sort

Example: Find Largest Integer
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 3 4 6

3 4

3

Binary Search
• Binary search is a Θ(log n), highly efficient search

algorithm, in a sorted array.

• It works by comparing a search key K with the array’s

middle element A[m]. If they match, the algorithm stops;

otherwise, the same operation is repeated recursively for

the first half of the array if K < A[m], and for the second

half if K > A[m].

• Though binary search in based on a recursive idea, it can

be easily implemented as a non-recursive algorithm.

Binary Search

Worst-case # Key Comparisons

Search Key

K = 70

Example

l=0 r=12 m=6

l=7 r=12 m=9

l=7 r=8 m=7

55

27 81

3

14

27

39

31 42

70

74

93

91 98

The keys that will require the largest number of comparisons: 14, 31, 42, 74, 91, 98

Average # Comparisons for Successful Search

Keys # comparisons

55 1

27, 81 2

3, 39, 70, 93 3

14, 31, 42, 74, 91, 98 4

Avg # comparisons

= [Sum of the product of the # keys

with certain # comparisons] / [Total

Number of keys]

= [(1)(1) + (2)(2) + (3)(4) + (4)(6)] /13

= 3.15

Unsuccessful Search

Search K = 10

l=0 r=12 m=6

l=0 r=5 m=2

l=0 r=1 m=0

l=1 r=1 m=1

l=1 r=0 STOP!!

55

27 81

3

14

27

39

31 42

70

74

93

91 98

Average # Comparisons for Unsuccessful Search

Range of Keys for Unsuccessful search # comparisons

< 3 3

> 3 and < 14 4

> 14 and < 27 4

> 27 and < 31 4

> 31 and < 39 4

> 39 and < 42 4

> 42 and < 55 4

> 55 and < 70 3

> 70 and < 74 4

> 74 and < 81 4

> 81 and < 91 4

> 91 and < 93 4

> 93 and < 98 4

> 98 4

Avg = [4*12 + 3*2] / 14

= 3.86

Binary Tree Traversals
• A binary tree is defined as a finite set of

nodes that is either empty or consists of
a root and two disjoint binary trees,
called the left and right sub tree of the
root.

• The most important divide-and-conquer
algorithms for binary trees are the three
classic traversals: pre-order, in-order
and post-order. All the three traversals
visit the nodes of a binary tree
recursively, i.e., by visiting the tree’s
root and its left and right sub trees.
They differ only by the timing of the
root’s visit:
– Pre-order traversal: the root is visited

before the left and right sub trees are
visited (in that order).

– In-order traversal: the root is visited
after visiting its left sub tree but before
visiting the right sub tree.

– Post-order traversal: the root is visited
after visiting the left and right sub trees
(in that order).

Example to Construct a Binary Tree
• Question: Draw a binary tree with 10 nodes labeled 0, 1, …, in such a

way that the in-order and post-order traversals of the tree yield the

following lists: 9, 3, 1, 0, 4, 2, 7, 6, 8, 5 (in-order) and 9, 1, 4, 0, 3, 6, 7,

5, 8, 2 (post-order).

• Solution: Note that the post-order traversal always lists the root node

of the binary tree as the last node. Hence node ‘2’ is the root node of

the binary tree. The in-order traversal lists nodes 9, 3, 1, 0, 4 as the

nodes before node ‘2’. Hence these nodes are in the left sub tree of

node 2 and nodes 7, 6, 8, 5 are in the right sub tree of node 2.

• Applying the above logic recursively to the left and right sub trees, we

find that the post-order traversal lists the nodes (9, 3, 1, 0, 4) of the left

sub tree in the order 9, 1, 4, 0, 3. Hence node 3 is the root node

among these nodes. The in-order traversal lists nodes 1, 0, 4 after

node 3. Hence, these three nodes constitute the right sub tree of node

3. And node 9 is in the left sub tree of node 3. 2
3

9

7,6,
8, 5

1, 0, 4

Tree constructed so far:

Example to Construct a Binary Tree
• The nodes (1, 0, 4) in the right sub tree of node 3 are listed in the

post-order traversal as 1, 4, 0. Hence node 0 is the root of this sub

tree. Node 0 is in between nodes 1 and 4 in the in-order list. Hence

node 1 should be the left of node 0 and node 4 should be to the right

of node 0.
2

3

9 7,6,

8, 5

Tree constructed

so far:
0

1 4

• Continuing our analysis on the right sub tree with nodes (7, 6, 8, 5),

we notice that these nodes are listed in the post-order traversal as 6,

7, 5, 8. Hence node 8 should be the root. The position of node 8 in the

above in-order list implies that nodes 7, 6 are in the left sub tree of

node 8 and node 5 is to the right of node 8.

• Nodes (7, 6) in the left sub tree of node 8 are listed in the post-order

traversal as 6, 7. Hence, node 7 should be the root node of this sub

tree and according to the in-order list, node 6 should be to the right of

node 7.

2
3

9

Final tree

0

1 4

8

57

6

Binary Search Tree and its Traversal
• A binary search tree (BST) is a sorted binary

tree such that:
– The left sub tree of a node contains only nodes

with keys less than the node’s key.

– The right sub tree of a node contains only nodes
with keys greater than the node’s key.

– Both the left and right sub trees must also be
binary search trees.

• An in-order traversal of a binary search tree lists
the keys of the nodes in the tree in a sorted
order.
– Proof: Let there be two keys K1 and K2 at two

different nodes of a BST such that K1 < K2. So,
K1 has to be relatively to the left of K2
somewhere. Let K3 be the key located at their
nearest common ancestor.

– If K3 is different from K1 and K2, then the
definition of the BST ensures that K1 and K2 are
located in the left and right sub trees of K3 and
that K1 is visited before visiting K2.

– If K3 coincides with K1, then K2 is in the right sub
tree of K1. Likewise, if K3 coincides with K2, then
K1 is in the left sub tree of K1. Either way, an in-
order traversal visits K1 before K2.

In-Order Traversal

1 3 4 6 7 8 10 13 14

K3

K1 K2

K3=K1

K2

K3=K2

K1

8

3 14

1 6

4 7

13

10

Transform and Conquer

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Transform-and-Conquer

• This group of techniques solves a problem

by a transformation:

– To a different problem for which an algorithm is
already available (problem reduction)

• Greatest Common Divisor (GCD), Least Common

Multiple (LCM), Counting paths in a graph

– To a different representation of the same
instance (representation change)

• Heap sort

Greatest Common Divisor (GCD)
• Problem: Given two non-zero positive integers, m and n (without loss

of generality m ≥ n), we want to find the gcd(m, n), defined as the
largest integer that divides both m and n evenly, i.e., with a remainder
of zero.

• Euclid’s algorithm

• Theorem: GCD(m, n) = GCD (n, m mod n); for any integer m and n

– GCD(m, 0) = m; GCD (m, 1) = 1

• Pseudo code

• Input: m, n (m > 0 and n > 0)

• Output: GCD (m, n)

• Begin Algorithm Euclid (m, n)

while n ≠ 0 do

r �m mod n

m � n

n � r

end while

return m // as the gcd

• End Algorithm

Note: Euclid’s algorithm is an example

of an algorithm for the

variable-size-decrease and conquer

technique. The problem size decreases

in each iteration of the algorithm; but

the decrease is neither by a constant

nor by a constant factor.

Also, note that the algorithm is guaranteed

to stop because, the second integer gets

smaller with each iteration and the algorithm

stops when the second integer reaches 0.

Proof of Euclid’s GCD Formula
• To prove GCD(m, n) = GCD(n, m mod n)

• Let d be an integer that divides both m and n.

• We need to prove that d also divides n and m mod n.

• Since d divides m and n, d also divides m – n;
– Why? Let m = q1*d; n = q2*d for some integers q1 and q2. So, q1 – q2

must also be an integer.

– Then, m – n = (q1 – q2) * d � d divides (m – n).

• In fact, d divides (m – q*n) for any integer q.
– Why? If d divides n; then d also divides q*n for some integer q.

– From the above argument, if d divides m and d divides q*n, then d divides
m – q*n.

• The division of m by n can be represented as m = q*n + (m mod n)
where (m mod n) is the remainder when m is divided by n and q is the
quotient.

• From the above, since d divides (m – q*n), d also divides (m mod n).

• Hence d divides both n and (m mod n).

• Thus, any integer that divides both m and n also divides (m mod n).
Thus, the GCD(m, n) = GCD(n, m mod n).

Problem Reduction
• This variation of transform-and-conquer solves a problem by a

transforming it into different problem for which an algorithm is already

available.

• To be of practical value, the combined time of the transformation and

solving the other problem should be smaller than solving the problem

as given by another method.

Examples:

• Computing lcm(m, n) via computing gcd(m, n)

• Counting number of paths of length n in a graph by raising the graph’s

adjacency matrix to the n-th power:

Heap
Definition A heap is a binary tree with keys at its nodes (one key per

node) such that:

• It is essentially complete, i.e., all its levels are full except possibly the
last level, where only some rightmost keys may be missing

• The key at each node is ≥ keys at its children (Max. Heap)

• We will focus on Max. Heap in this chapter. Note that for a Min. Heap,
the value for the key at a node is <= the value for the keys at its
children. [In other words, Max. Heap is the one whose root has the
largest value; Min. Heap is the one whose Root has smallest value]

•• HeapHeap’’s elements are ordered top down (along any path down from its s elements are ordered top down (along any path down from its
root), but they are not ordered left to rightroot), but they are not ordered left to right

Example for a Heap

Not a

Heap

Not a

Heap

Important Properties of a Heap
• Given n, there exists a unique binary tree with n nodes

that is essentially complete, with height, h = log2 n
The root contains the largest key (Max. Heap)

• The sub tree rooted at any node of a heap is also a heap

• A heap can be represented as an array

• Use of Max. Heap to Implement a Priority Queue
– A priority queue (implemented as a Max. Heap) is not FIFO-

based. Here the elements are stored in the decreasing order of
the key values.

– Heap can be used to maintain the elements of a priority queue
such that the element whose key has the highest priority is at the
top of the heap and is removed from the heap as a result of a
dequeue operation.

– Any insertion to the heap will also be taken care of through the
“heapification” step and the element will be inserted at its
appropriate position in the heap.

Heap’s Array Representation
Store heap’s elements in an array (whose elements indexed, for

convenience, 1 to n) in top-down left-to-right order

Example:

• Left child of node j is at 2j

• Right child of node j is at 2j+1

• Parent of node j is at j/2

• Parental nodes are represented in the first n/2 locations

• For convenience, it is better to start the array index from 1. Index 0
can be filled with a dummy sentinel value, like -10000, that will not be
part of the heap.

Heap Construction (Bottom-Up)
• Step 0: Initialize the structure with keys in the order given

• Step 1: Starting with the last (rightmost) parental node, fix the heap
rooted at it, if it doesn’t satisfy the heap condition: keep exchanging
it with its largest child until the heap condition holds

• Step 2: Repeat Step 1 for the preceding parental node

Example: Given initial list: 2, 9, 7, 6, 5, 8 Heapified Array: 9 6 8 2 5 7

Deleting the root key from the Heap

The key to be deleted is swapped with the last key after which the smaller tree

is “heapified” by exchanging the new key in its root with the right most key

among its leaf nodes (at the maximum height), until the parent dominance

requirement is satisfied

Removing key corresponding to

Root node ‘9’

Heap Sort
• Stage 1:

– (Bottom-up approach) Construct a heap for a given list of n keys: Θ(n)
time

– (Top-down approach) Construct a heap by inserting one key at a time to
an already existing heap: Θ(nlogn) time

• Stage 2: Repeat operation of root removal n-1 times: Θ(nlogn)
time

– Exchange keys in the root and in the last (rightmost) leaf

– Decrease heap size by 1

– If necessary, swap new root with larger child until the heap
condition holds

Overall time complexity of Heap Sort

= Θ(nlogn), for heaps constructed using

bottom-up and top-down strategies

Insertion of a New Element into a Heap
• Used as the Top-Down approach

• Insert the new element at last position in heap.

• Compare it with its parent and, if it violates heap
condition, exchange them

• Continue comparing the new element with nodes up the
tree until the heap condition is satisfied

• Efficiency: Θ(log n)

Example: Inserting Key ’10’ into the heap

2

5 3

1 8

2

8 3

1 5

8

2 3

1 5

8

5 3

1 2

Proper (Initial) Heap

-10000 8 5 3 1 2

Iteration # 1: Remove key 8

Initial Array (satisfying the heap property)

Array sorting in progress

-10000 5 2 3 1 8

Bottom-Up Construction
2, 5, 3, 1, 8

8

5 3

1 2

2

5 3

1

5

2 3

1

Example 1

Sorting the Array

Iteration # 2: Remove key 5

Iteration # 3: Remove key 3

1

2

2

1

Iteration # 4: Remove key 2

1

Array sorting in progress

-10000 2 1 3 5 8

Array sorting in progress

-10000 1 2 3 5 8

Iteration # 5: Remove key 1
Final sorted array

-10000 1 2 3 5 8

3

2 1

Array sorting in progress

-10000 3 2 1 5 8

2

Top-Down Construction2, 5, 3, 1, 8

2

5

5

2

5

2 3

5

2 3

1

5

2 3

1 8

5

8 3

1 2

8

5 3

1 2

8

5 3

1 2

Final-Heap

(Top-down)

Example 1

7

5 9

6 3

Bottom-Up Construction7, 5, 9, 6, 3

7

6 9

5 3

9

6 7

5 3

Example 2

7

Top-Down Construction7, 5, 9, 6, 3

7

5

7

5 9

9

5 7

9

5 7

6

9

6 7

5

9

6 7

5 3

Example 2

1

8 6

5 3

Bottom-Up Construction
1, 8, 6, 5, 3, 7, 4

7 4

1

8 7

5 3 6 4

8

1 7

5 3 6 4

8

5 7

1 3 6 4

Proper (Initial) Heap

-10000 8 5 7 1 3 6 4

Initial Array (satisfying the heap property)
8

5 7

1 3 6 4

Iteration # 1: Remove key 8

4

5 7

1 3 6

7

5 4

1 3 6

7

5 6

1 3 4

-10000 7 5 6 1 3 4 8
Array sorting in progress

Example 3

Sorting the Array

Iteration # 2: Remove key 7

4

5 6

1 3

-10000 6 5 4 1 3 7 8
Array sorting in progress

6

5 4

1 3

Iteration # 3: Remove key 6

-10000 5 3 4 1 6 7 8
Array sorting in progress

3

5 4

1

5

3 4

1

Iteration # 4: Remove key 5

-10000 4 3 1 5 6 7 8
Array sorting in progress

1

3 4

4

3 1

Iteration # 5: Remove key 4

-10000 3 1 4 5 6 7 8
Array sorting in progress

1

3

3

1

Iteration # 6: Remove key 3

-10000 1 3 4 5 6 7 8
Array sorting in progress

1

Iteration # 7: Remove key 1

-10000 1 3 4 5 6 7 8
Array sorting in progress

1

Top-down Construction1, 8, 6, 5, 3, 7, 4

1

8

8

1

8

1 6

8

1 6

5

8

5 6

1

8

5 6

1 3

8

5 6

1 3 7

8

5 7

1 3 6

8

5 7

1 3 6 4

Example 3

1

2 3

Bottom-Up
Construction

1, 2, 3

3

2 1 -10000 3 2 1

Array (satisfying the heap property)

1

Top-Down
Construction

1, 2, 3

1

2

2

1

2

1 3

3

1 2

3

1 2

-10000 3 1 2

Array (satisfying the heap property)

Thus, for a given input sequence, the arrays (satisfying the heap property)

that are constructed using the bottom-up approach and the top-down
approach need not always be the same, as observed in the above example.

Example 4

2.5 Space-Time Tradeoff

In-place vs. Out-of-place Algorithms
• An algorithm is said to be “in-place” if it uses a minimal

and/or constant amount of extra storage space to
transform or process an input to obtain the desired output.
– Depending on the nature of the problem, an in-place algorithm may

sometime overwrite an input to the desired output as the algorithm
executes (as in the case of in-place sorting algorithms); the output
space may sometimes be a constant (for example in the case of
string-matching algorithms).

• Algorithms that use significant amount of extra storage
space (sometimes, additional space as large as the input
– example: merge sort) are said to be out-of-place in
nature.

• Time-Space Complexity Tradeoffs of Sorting Algorithms:
– In-place sorting algorithms like Selection Sort, Bubble Sort, Insertion Sort

and Quick Sort have a worst-case time complexity of Θ(n2).

– On the other hand, Merge sort has a space-complexity of Θ(n), but has a
worst-case time complexity of Θ(nlogn).

Time and Space Complexity Analysis
of Recursive Sorting Algorithms

• Merge Sort:

• Is the algorithm in-place?

• Answer: No, The algorithm requires an equal amount of additional

space as that of the original input array for each recursive call of the

algorithm. The two sub-arrays B and C are stored in a different

memory location and are not part of the original array A.

Time-complexity: Θ(nlogn)

Space-complexity: Θ(n)

Time-Space Complexity of Heap Sort
• Heap sort is probably the best algorithm we have seen in this course

with respect to time and space complexity. It is an in-place algorithm

with all the heapify and element rearrangement operations conductible

in the input array itself and no additional space is needed.

• As we know, there are two stages of heap sort of n elements.

– Stage 1: Construct the heap – can be done with a top-down strategy in

Θ(nlogn) time or with a bottom-up strategy in Θ(n) time.

– Stage 2: Remove the root n-1 times. Each time a root is removed, the

binary tree has to be re-heapified to make it become a heap. This involves

moving down the new temporary root all the way to an appropriate position

in the heap, and moving the largest element among the remaining unsorted

elements in the binary tree as the root of the heap. This can be done in

Θ(logn) time for each root removal. Hence, Θ(nlogn) time for n-1 root

removals.

– The overall time-complexity of heap sort is thus

– {Θ(nlogn) or Θ(n)} + Θ(nlogn) = Θ(nlogn).
Top-down Bottom-up

Hashing
• A very efficient method for implementing a dictionary, i.e., a set with

the operations: find, insert and delete

• Based on representation-change and space-for-time tradeoff ideas

• We consider the problem of implementing a dictionary of n records with
keys K1, K2, …, Kn.

• Hashing is based on the idea of distributing keys among a one-
dimensional array H[0…m-1] called a hash table.

– The distribution is done by computing, for each of the keys, the value of
some pre-defined function h called the hash function.

– The hash function assigns an integer between 0 and m-1, called the hash
address to a key.

– The size of a hash table m is typically a prime integer.

• Typical hash functions

– For non-negative integers as key, a hash function could be h(K)=K mod m;

– If the keys are letters of some alphabet, the position of the letter in the
alphabet (for example, A is at position 1 in alphabet A – Z) could be used as
the key for the hash function defined above.

– If the key is a character string c0 c1 … cs-1 of characters from an alphabet,
then, the hash function could be:

Collisions and Collision Resolution
If h(K1) = h(K2), there is a collision

• Good hash functions result in fewer collisions but some
collisions should be expected

• Two principal hashing schemes handle collisions
differently:

– Open hashing
– each cell is a header of linked list of all keys hashed to it

– Closed hashing

• one key per cell

• in case of collision, finds another cell by
– linear probing: use next free bucket

– double hashing: use second hash function to compute increment

Open Hashing

Open Hashing (Separate Chaining)
Keys are stored in linked lists outside a hash table whose

elements serve as the lists’ headers.

Example: A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED

h(K) = sum of K ‘s letters’ positions in the alphabet MOD 13

A – 1 D – 4 G – 7 J – 10 M – 13 P – 16 S – 19 V – 22 Y – 25

B – 2 E – 5 H – 8 K – 11 N – 14 Q – 17 T – 20 W – 23 Z – 26

C – 3 F – 6 I – 9 L – 12 O – 15 R – 18 U – 21 X – 24

Hash address for “KID” = 24 mod 13 = 9 �NOT FOUND

Open Hashing
• Inserting and Deleting from the hash table is of the same

complexity as searching.

• If hash function distributes keys uniformly, average length of
linked list will be α = n/m. This ratio is called load factor.

• Average-case number of key comparisons for a successful search
is α/2; Average-case number of key comparisons for an
unsuccessful search is α.

• Worst-case number of key comparisons is Θ(n) – occurs if we get
a linked list containing all the n elements hashing to the same
index. To avoid this, we need to be careful in selecting a proper
hashing function.

– Mod-based hashing functions with a prime integer as the divisor are more
likely to result in hash values that are evenly distributed across the keys.

• Open hashing still works if the number of keys, n > the size of
the hash table, m.

Closed Hashing
• All keys are stored in the hash table itself without the use of linked lists.

– The size of the hash table (m) has to be at least as large as the number of
keys (n). That is, m >= n � n ≤ m.

• Collision resolution could be avoided through linear probing or through
the use of a secondary hash function.

• With linear probing, we check the cell following the one where the
collision occurs.

– If that cell is empty, the new key is installed there.

– If the next cell is already occupied, the availability of that cell’s immediate
successor is checked and so on, until we find an empty cell. If the end of
the hash table is reached, we wrap around.

• The search for a given key K is done by computing its hash value h(K)
and locating the cell with this hash address.

– If the cell h(K) is empty, the search is unsuccessful.

– If the cell is not empty, we must compare K with the contents of the cell: if
they are equal, we have found a matching key; if they are not, we compare
K with a key in the next cell and continue in this manner until we encounter
either a matching key (a successful search) or {an empty cell or traversed
the whole hash table without finding the key (unsuccessful search)}.

Closed Hashing

Lazy Deletion
• With deletions in a Closed Hashing

Table, if we simply delete a key, then
we may not be able to successfully
search for a key that has the same
hash value as that of the key being
deleted.

• With Lazy Deletion, the previously
occupied locations of the deleted
keys can be marked by a special
symbol (or a dummy value, say -
10000) to distinguish them from
locations that have been actually
occupied.

• The locations containing the special
symbols are considered to be
available for key insertions.

• However, during a key search, these
locations are considered to be
occupied.

Upon deleting key - 20

Upon deleting key - 56

A search for key 54 in the above hash table

requires 4 key comparisons…

A search for key 75 requires 2 comparisons

To insert key 21

To insert key 21, it would require 3 key

comparisons

Example 2 for Closed Hashing

Search and insertion operations are straightforward with closed hashing

However, deletion has to be carefully handled. For example, if we simply the delete

the key ‘ARE’ from the hash table (Above), we will be unable to find the key ‘SOON’

afterward. Because, h(SOON) =11, the algorithm would find the location empty and

report unsuccessful search. A simple solution is to use “Lazy Deletion,” i.e., to mark

previously occupied locations by a special symbol to distinguish them from locations

that have not been occupied.

h(K) = sum of K ‘s letters’ positions in the alphabet MOD 13

