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2.1  Brute Force



Brute Force String Matching
• pattern: a string of m characters to search for

• text: a (longer) string of n characters to search in

• problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1  Align pattern at beginning of text

Step 2  Moving from left to right, compare each character of
pattern to the corresponding character in text until

• all characters are found to match (successful search); or

• a mismatch is detected

Step 3  While pattern is not found and the text is not yet exhausted, 
realign pattern one position to the right and repeat Step 2

0   1    2   3    4    5   6    7   8   9   10 11 12 13 14 15 16 17

0   1  2

N   O  T

n = 18

m = 3

(at the worst-case if 

‘NOT’ did not appear before this)



Brute Force String Matching

Best-case = m comparisons

At the worst case, the algorithm may have to make all m comparisons before

shifting the pattern, and this can happen for each of the n – m + 1 tries. 

Thus, in the worst case, the algorithm makes m (n – m + 1) character

comparisons. m << m(n-m+1). The overall time complexity is O(nm)



Brute Force String Matching 
Examples

How many comparisons are made by the brute-force string matching algorithm in 

searching for the following patterns in a binary text of 1000 zeros?

0000000000000000000000000000000 … 000 (1000 zeros)

a) 00001

There will be a total of (1000 – 5  + 1) iterations. In each iteration, we will have to 

do 5 comparisons, as the first 4 bits will match and only the last bit will not 

match. Hence, the total number of comparisons = 996 * 5 = 4,980

b) 10000

There will be a total of (1000 – 5  + 1) iterations. In each iteration, the first 

comparison itself will be a failure. Hence, there will be a total of 996 * 1 = 996 

comparisons.

c) 01010

There will be a total of (1000 – 5  + 1) iterations. In each iteration, we will do 2 

comparisons (the first comparison will be successful and the second one is 

not). Hence, there will be a total of 996*2 = 1,992 comparisons.



Brute Force String Matching 
Examples

Consider the problem of counting the number of sub strings that start 

with an A and end with a B in a given string of alphabets: 

DAAXBABAGBD. 

Scan the given string from left to right. Initialize the number of sub strings 

to zero. Keep track of the number of As encountered. Each time a B 

is encountered, set the number of sub strings to be number of sub 

strings + the number of As encountered until then. Since we do a

linear pass on the given string and do one comparison per character, 

the time complexity is Θ(n), where n is the length of the string.



2.2  Decrease and Conquer



Decrease by One: Insertion Sort
• Given an array A[0…n-1], at any time, we have the array 

divided into two parts: A[0,…,i-1] and A[i…n-1]. 
– The A[0…i-1] is the sorted part and A[i…n-1] is the unsorted part.

– In any iteration, we pick an element v = A[i] and scan through the 
sorted sequence A[0…i-1] to insert v at the appropriate position. 

• The scanning is proceeded from right to left (i.e., for index j 
running from i-1 to 0) until we find the right position for v. 

• During this scanning process, v = A[i] is compared with A[j]. 

• If A[j] > v, then we v has to be placed somewhere before A[j] in the 
final sorted sequence. So, A[j] cannot be at its current position (in 
the final sorted sequence) and has to move at least one position to 
the right. So, we copy A[j] to A[j+1] and decrement the index j, so 
that we now compare v with the next element to the left.

• If A[j] ≤ v, we have found the right position for v; we copy v to 
A[j+1]. This also provides the stable property, in case v = A[j]. 



Insertion Sort
Pseudo Code and Analysis

The comparison A[j] > v is the basic operation.

Worst Case (if the array is reverse-sorted): the element v at A[i] has to be moved

all the way to index 0, by scanning through the entire sequence A[0…i-1].

Best Case (if the array

is already sorted): the

element v at A[i] will be just

compared with A[i-1] and

since A[i-1] ≤ A[i] = v, we

retain v at A[i] itself and 

do not scan the rest of the

sequence A[0…i-1]. There

is only one comparison

for each value of index i.
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Insertion Sort: Analysis and Example
Average Case: On average for a random input sequence, we would be visiting half 

of the sorted sequence A[0…i-1] to put A[i] at the proper position.
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Example: Given sequence (also initial): 45 23   8   12   90   21

Iteration 1 (v = 23):

45 45 8   12   90   21

23   45 8   12   90   21

Iteration 2 (v = 8):  

23   45   45 12   90   21

23   23 45 12   90   21

8    23   45 12   90   21

Iteration 3 (v = 12):  

8    23   45   45 90   21

8    23   23 45 90   21

8    12   23   45 90   21 

Iteration 4 (v = 90):

8 12   23   45 90   21

9 12  23   45   90 21

Iteration 5 (v = 21):

9    12   23   45   90  90

9    12   23   45  45 90

9    12   23   23 45  90

9    12   21  23   45   90

The colored elements are in the sorted sequence

and the circled element is at index j of the algorithm.

Index

-1
Overall time complexity

O(n2)



2.3  Divide and Conquer



Divide-and-Conquer
The most-well known 

algorithm design strategy:

1. We divide a problem of 

instance size ‘n’ into 

several sub problems 

(each of size n/b);

2. Solve ‘a’ of these sub 
problems (a ≥ 1; b > 1) 

recursively and 

3. Combine the solutions 

to these sub problems to 
obtain a solution for the 

larger problem.

Typical Case of Divide and Conquer Problems



Master Theorem to Solve 
Recurrence Relations

• Assuming that size n is a 

power of b to simplify analysis, 

we have the following 

recurrence for the running 

time, T(n) = a T(n/b) + f(n)

– where f(n) is a function that 

accounts for the time spent on 

dividing an instance of size n 

into instances of size n/b and 

combining their solutions.

• Master Theorem:

The same results hold good for O and Ω too.

Examples:

1) 1) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n

a = 4; b = 2; d = 1 � a > bd

( ) )()(
24log2 nnnT Θ=Θ=

2) 2) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n22

a = 4; b = 2; d = 2 � a = bd

( )nnnT log)(
2

Θ=

3) 3) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n33

a = 4; b = 2; d = 3 � a < bd

( )3
)( nnT Θ=

4) 4) T(nT(n) = 2T(n/2) + 1) = 2T(n/2) + 1

a = 2; b = 2; d = 0 � a > bd

( ) )()(
2log2 nnnT Θ=Θ=



Master Theorem: More Problems



Merge Sort
• Split array A[0..n-1] in two about equal halves and make 

copies of each half  in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of 
the arrays:

• compare the first elements in the remaining 
unprocessed portions of the arrays

• copy the smaller of the two into A, while 
incrementing the index indicating the unprocessed 
portion of that array 

– Once all elements in one of the arrays are processed, 
copy the remaining unprocessed elements from the 
other array into A.



Merge Sort



Merge Algorithm



Example for Merge Sort



Analysis of Merge Sort



Example: Find Largest Integer
0  1   2  3  4  5  6  7

0  1   2  3 4  5   6  7

0  1 2  3 4   5 6   7

0 1 2 3 4 5 6 7

0 3 4 6

3 4

3



Binary Search
• Binary search is a Θ(log n), highly efficient search 

algorithm, in a sorted array. 

• It works by comparing a search key K with the array’s 

middle element A[m]. If they match, the algorithm stops; 

otherwise, the same operation is repeated recursively for 

the first half of the array if K < A[m], and for the second 

half if K > A[m].

• Though binary search in based on a recursive idea, it can 

be easily implemented as a non-recursive algorithm.



Binary Search

Worst-case # Key Comparisons

Search Key

K = 70

Example

l=0     r=12     m=6

l=7     r=12     m=9

l=7     r=8       m=7



55

27 81

3

14

27

39

31 42

70

74

93

91 98

The keys that will require the largest number of comparisons: 14, 31, 42, 74, 91, 98

Average # Comparisons for Successful Search

Keys # comparisons

55            1

27, 81 2

3, 39, 70, 93 3

14, 31, 42, 74, 91, 98 4

Avg # comparisons

= [Sum of the product of the # keys

with certain # comparisons] / [ Total

Number of keys]

= [(1)(1) + (2)(2) + (3)(4) + (4)(6)] /13

= 3.15

Unsuccessful Search

Search K = 10

l=0   r=12   m=6

l=0   r=5     m=2

l=0   r=1     m=0

l=1   r=1     m=1

l=1   r=0    STOP!!



55

27 81

3

14

27

39

31 42

70

74

93

91 98

Average # Comparisons for Unsuccessful Search

Range of Keys for Unsuccessful search       # comparisons

< 3            3

> 3   and < 14 4

> 14 and < 27 4

> 27 and < 31 4

> 31 and < 39 4

> 39 and < 42 4

> 42 and < 55 4

> 55 and < 70 3

> 70 and < 74 4

> 74 and < 81 4

> 81 and < 91 4

> 91 and < 93 4

> 93 and < 98 4

> 98 4

Avg = [4*12 + 3*2] / 14

= 3.86



Binary Tree Traversals
• A binary tree is defined as a finite set of 

nodes that is either empty or consists of 
a root and two disjoint binary trees, 
called the left and right sub tree of the 
root.

• The most important divide-and-conquer 
algorithms for binary trees are the three 
classic traversals: pre-order, in-order 
and post-order. All the three traversals 
visit the nodes of a binary tree 
recursively, i.e., by visiting the tree’s 
root and its left and right sub trees. 
They differ only by the timing of the 
root’s visit:
– Pre-order traversal: the root is visited 

before the left and right sub trees are 
visited (in that order).

– In-order traversal: the root is visited 
after visiting its left sub tree but before 
visiting the right sub tree.

– Post-order traversal: the root is visited 
after visiting the left and right sub trees 
(in that order).



Example to Construct a Binary Tree
• Question: Draw a binary tree with 10 nodes labeled 0, 1, …,  in such a 

way that the in-order and post-order traversals of the tree yield the 

following lists: 9, 3, 1, 0, 4, 2, 7, 6, 8, 5 (in-order) and 9, 1, 4, 0, 3, 6, 7, 

5, 8, 2 (post-order).

• Solution: Note that the post-order traversal always lists the root node 

of the binary tree as the last node. Hence node ‘2’ is the root node of 

the binary tree. The in-order traversal lists nodes 9, 3, 1, 0, 4 as the 

nodes before node ‘2’. Hence these nodes are in the left sub tree of 

node 2 and nodes 7, 6, 8, 5 are in the right sub tree of node 2.

• Applying the above logic recursively to the left and right sub trees, we 

find that the post-order traversal lists the nodes (9, 3, 1, 0, 4) of the left 

sub tree in the order 9, 1, 4, 0, 3. Hence node 3 is the root node 

among these nodes. The in-order traversal lists nodes 1, 0, 4 after 

node 3. Hence, these three nodes constitute the right sub tree of node 

3. And node 9 is in the left sub tree of node 3. 2
3

9

7,6, 
8, 5

1, 0, 4

Tree constructed so far:



Example to Construct a Binary Tree
• The nodes (1, 0, 4) in the right sub tree of node 3 are listed in the 

post-order traversal as 1, 4, 0. Hence node 0 is the root of this sub

tree. Node 0 is in between nodes 1 and 4 in the in-order list. Hence 

node 1 should be the left of node 0 and node 4 should be to the right 

of node 0.
2

3

9 7,6, 

8, 5

Tree constructed 

so far:
0

1 4

• Continuing our analysis on the right sub tree with nodes (7, 6, 8, 5), 

we notice that these nodes are listed in the post-order traversal as 6, 

7, 5, 8. Hence node 8 should be the root. The position of node 8 in the 

above in-order list implies that nodes 7, 6 are in the left sub tree of 

node 8 and node 5 is to the right of node 8.

• Nodes (7, 6) in the left sub tree of node 8 are listed in the post-order 

traversal as 6, 7. Hence, node 7 should be the root node of this sub 

tree and according to the in-order list, node 6 should be to the right of 

node 7. 

2
3

9

Final tree

0

1 4

8

57

6



Binary Search Tree and its Traversal
• A binary search tree (BST) is a sorted binary 

tree such that:
– The left sub tree of a node contains only nodes 

with keys less than the node’s key.

– The right sub tree of a node contains only nodes 
with keys greater than the node’s key.

– Both the left and right sub trees must also be 
binary search trees.

• An in-order traversal of a binary search tree lists 
the keys of the nodes in the tree in a sorted 
order.
– Proof: Let there be two keys K1 and K2 at two 

different nodes of a BST such that K1 < K2. So, 
K1 has to be relatively to the left of K2 
somewhere. Let K3 be the key located at their 
nearest common ancestor. 

– If K3 is different from K1 and K2, then the 
definition of the BST ensures that K1 and K2 are 
located in the left and right sub trees of K3 and 
that K1 is visited before visiting K2.  

– If K3 coincides with K1, then K2 is in the right sub 
tree of K1. Likewise, if K3 coincides with K2, then 
K1 is in the left sub tree of K1. Either way, an in-
order traversal visits K1 before K2.

In-Order Traversal

1  3  4  6  7  8  10  13  14

K3

K1 K2

K3=K1

K2

K3=K2

K1

8

3 14

1 6

4 7

13

10
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Transform-and-Conquer

• This group of techniques solves a problem 

by a transformation:

– To a different problem for which an algorithm is 
already available (problem reduction)

• Greatest Common Divisor (GCD), Least Common 

Multiple (LCM), Counting paths in a graph

– To a different representation of the same 
instance (representation change)

• Heap sort



Greatest Common Divisor (GCD)
• Problem: Given two non-zero positive integers, m and n (without loss 

of generality m ≥ n), we want to find the gcd(m, n), defined as the 
largest integer that divides both m and n evenly, i.e., with a remainder 
of zero.

• Euclid’s algorithm

• Theorem: GCD(m, n) = GCD (n, m mod n); for any integer m and n

– GCD(m, 0) = m; GCD (m, 1) = 1

• Pseudo code

• Input: m, n (m > 0 and n > 0)

• Output: GCD (m, n)

• Begin Algorithm Euclid (m, n)

while n ≠ 0 do

r �m mod n

m � n

n � r

end while

return m // as the gcd

• End Algorithm

Note: Euclid’s algorithm is an example

of an algorithm for the

variable-size-decrease and conquer

technique. The problem size decreases

in each iteration of the algorithm; but 

the decrease is neither by a constant

nor by a constant factor. 

Also, note that the algorithm is guaranteed

to stop because, the second integer gets

smaller with each iteration and the algorithm

stops when the second integer reaches 0.



Proof of Euclid’s GCD Formula
• To prove GCD(m, n) = GCD(n, m mod n)

• Let d be an integer that divides both m and n. 

• We need to prove that d also divides n and m mod n. 

• Since d divides m and n, d also divides m – n; 
– Why? Let m = q1*d; n = q2*d for some integers q1 and q2. So, q1 – q2 

must also be an integer.

– Then, m – n = (q1 – q2) * d � d divides (m – n).

• In fact, d divides (m – q*n) for any integer q. 
– Why? If d divides n; then d also divides q*n for some integer q. 

– From the above argument, if d divides m and d divides q*n, then d divides 
m – q*n.

• The division of m by n can be represented as m = q*n + (m mod n) 
where (m mod n) is the remainder when m is divided by n and q is the 
quotient.

• From the above, since d divides (m – q*n), d also divides (m mod n).

• Hence d divides both n and (m mod n).

• Thus, any integer that divides both m and n also divides (m mod n). 
Thus, the GCD(m, n) = GCD(n, m mod n).



Problem Reduction
• This variation of transform-and-conquer solves a problem by a 

transforming it into different problem for which an algorithm is already 

available.

• To be of practical value, the combined time of the transformation and 

solving the other problem should be smaller than solving the problem 

as given by another method.

Examples:

• Computing lcm(m, n) via computing gcd(m, n)

• Counting number of paths of length n in a graph by raising the graph’s 

adjacency matrix to the n-th power: 



Heap
Definition A heap is a binary tree with keys at its nodes (one key per 

node) such that:

• It is essentially complete, i.e., all its levels are full except possibly the 
last level, where only some rightmost keys may be missing

• The key at each node is ≥ keys at its children (Max. Heap)

• We will focus on Max. Heap in this chapter. Note that for a Min. Heap, 
the value for the key at a node is <= the value for the keys at its 
children. [In other words, Max. Heap is the one whose root has the 
largest value; Min. Heap is the one whose Root has smallest value]

•• HeapHeap’’s elements are ordered top down (along any path down from its s elements are ordered top down (along any path down from its 
root), but they are not ordered left to rightroot), but they are not ordered left to right

Example for a Heap

Not a 

Heap

Not a 

Heap



Important Properties of a Heap
• Given n, there exists a unique binary tree with n nodes 

that is essentially complete, with height,   h = log2 n
The root contains the largest key (Max. Heap)

• The sub tree rooted at any node of a heap is also a heap

• A heap can be represented as an array

• Use of Max. Heap to Implement a Priority Queue
– A priority queue (implemented as a Max. Heap) is not FIFO-

based. Here the elements are stored in the decreasing order of 
the key values.

– Heap can be used to maintain the elements of a priority queue 
such that the element whose key has the highest priority is at the 
top of the heap and is removed from the heap as a result of a 
dequeue operation. 

– Any insertion to the heap will also be taken care of through the
“heapification” step and the element will be inserted at its 
appropriate position in the heap.



Heap’s Array Representation
Store heap’s elements in an array (whose elements indexed, for 

convenience, 1 to n) in top-down left-to-right order

Example:

• Left child of node j is at 2j

• Right child of node j is at 2j+1

• Parent of node j is at  j/2 

• Parental nodes are represented in the first n/2 locations

• For convenience, it is better to start the array index from 1. Index 0 
can be filled with a dummy sentinel value, like -10000, that will not be 
part of the heap.



Heap Construction (Bottom-Up)
• Step 0: Initialize the structure with keys in the order given

• Step 1: Starting with the last (rightmost) parental node, fix the heap 
rooted at it, if it doesn’t satisfy the heap condition: keep exchanging  
it with its largest child until the heap condition holds

• Step 2: Repeat Step 1 for the preceding parental node

Example: Given initial list: 2, 9, 7, 6, 5, 8 Heapified Array:  9   6   8   2   5   7



Deleting the root key from the Heap

The key to be deleted is swapped with the last key after which the smaller tree

is “heapified” by exchanging the new key in its root with the right most key 

among its leaf nodes (at the maximum height), until the parent dominance 

requirement is satisfied

Removing key corresponding to 

Root node ‘9’



Heap Sort
• Stage 1: 

– (Bottom-up approach) Construct a heap for a given list of n keys: Θ(n) 
time

– (Top-down approach) Construct a heap by inserting one key at a time to 
an already existing heap: Θ(nlogn) time

• Stage 2: Repeat operation of root removal n-1 times: Θ(nlogn) 
time

– Exchange keys in the root and in the last (rightmost) leaf

– Decrease heap size by 1

– If necessary,  swap new root with larger child until the heap 
condition holds

Overall time complexity of Heap Sort 

= Θ(nlogn), for heaps constructed using 

bottom-up and top-down strategies



Insertion of a New Element into a Heap
• Used as the Top-Down approach

• Insert the new element at last position in heap. 

• Compare it with its parent and, if it violates heap 
condition, exchange them

• Continue comparing the new element with nodes up the 
tree until the heap condition is satisfied

• Efficiency: Θ(log n)

Example: Inserting Key ’10’ into the heap



2

5 3

1 8

2

8 3

1 5

8

2 3

1 5

8

5 3

1 2

Proper (Initial) Heap

-10000 8 5 3 1 2

Iteration # 1: Remove key 8

Initial Array (satisfying the heap property)

Array sorting in progress

-10000 5 2 3 1 8

Bottom-Up Construction
2, 5, 3, 1, 8

8

5 3

1 2

2

5 3

1

5

2 3

1

Example 1

Sorting the Array



Iteration # 2: Remove key 5

Iteration # 3: Remove key 3

1

2

2

1

Iteration # 4: Remove key 2

1

Array sorting in progress

-10000 2 1 3 5 8

Array sorting in progress

-10000 1 2 3 5 8

Iteration # 5: Remove key 1
Final sorted array

-10000 1 2 3 5 8

3

2 1

Array sorting in progress

-10000 3 2 1 5 8



2

Top-Down Construction2, 5, 3, 1, 8

2

5

5

2

5

2 3

5

2 3

1

5

2 3

1 8

5

8 3

1 2

8

5 3

1 2

8

5 3

1 2

Final-Heap

(Top-down)

Example 1



7

5 9

6 3

Bottom-Up Construction7, 5, 9, 6, 3

7

6 9

5 3

9

6 7

5 3

Example 2



7

Top-Down Construction7, 5, 9, 6, 3

7

5

7

5 9

9

5 7

9

5 7

6

9

6 7

5

9

6 7

5 3

Example 2



1

8 6

5 3

Bottom-Up Construction
1, 8, 6, 5, 3, 7, 4

7 4

1

8 7

5 3 6 4

8

1 7

5 3 6 4

8

5 7

1 3 6 4

Proper (Initial) Heap

-10000 8      5      7      1      3      6      4

Initial Array (satisfying the heap property)
8

5 7

1 3 6 4

Iteration # 1: Remove key 8

4

5 7

1 3 6

7

5 4

1 3 6

7

5 6

1 3 4

-10000 7      5      6      1      3      4      8
Array sorting in progress

Example 3

Sorting the Array



Iteration # 2: Remove key 7

4

5 6

1 3

-10000 6      5      4      1      3     7      8
Array sorting in progress

6

5 4

1 3

Iteration # 3: Remove key 6

-10000 5      3      4      1      6 7      8
Array sorting in progress

3

5 4

1

5

3 4

1

Iteration # 4: Remove key 5

-10000 4      3      1      5 6 7      8
Array sorting in progress

1

3 4

4

3 1



Iteration # 5: Remove key 4

-10000 3      1      4 5 6 7      8
Array sorting in progress

1

3

3

1

Iteration # 6: Remove key 3

-10000 1      3 4 5 6 7      8
Array sorting in progress

1

Iteration # 7: Remove key 1

-10000 1 3 4 5 6 7      8
Array sorting in progress



1

Top-down Construction1, 8, 6, 5, 3, 7, 4

1

8

8

1

8

1 6

8

1 6

5

8

5 6

1

8

5 6

1 3

8

5 6

1 3 7

8

5 7

1 3 6

8

5 7

1 3 6 4

Example 3



1

2 3

Bottom-Up 
Construction

1, 2, 3

3

2 1 -10000 3 2 1

Array (satisfying the heap property)

1

Top-Down 
Construction

1, 2, 3

1

2

2

1

2

1 3

3

1 2

3

1 2

-10000 3 1 2

Array (satisfying the heap property)

Thus, for a given input sequence, the arrays (satisfying the heap property) 

that are constructed using the bottom-up approach and the top-down 
approach need not always be the same, as observed in the above example.

Example 4



2.5 Space-Time Tradeoff



In-place vs. Out-of-place Algorithms
• An algorithm is said to be “in-place” if it uses a minimal 

and/or constant amount of extra storage space to 
transform or process an input to obtain the desired output.
– Depending on the nature of the problem, an in-place algorithm may 

sometime overwrite an input to the desired output as the algorithm 
executes (as in the case of in-place sorting algorithms); the output 
space may sometimes be a constant (for example in the case of 
string-matching algorithms).

• Algorithms that use significant amount of extra storage 
space (sometimes, additional space as large as the input 
– example: merge sort) are said to be out-of-place in 
nature.

• Time-Space Complexity Tradeoffs of Sorting Algorithms: 
– In-place sorting algorithms like Selection Sort, Bubble Sort, Insertion Sort 

and Quick Sort have a worst-case time complexity of Θ(n2). 

– On the other hand, Merge sort has a space-complexity of Θ(n), but has a 
worst-case time complexity of Θ(nlogn).



Time and Space Complexity Analysis 
of Recursive Sorting Algorithms

• Merge Sort: 

• Is the algorithm in-place? 

• Answer: No, The algorithm requires an equal amount of additional 

space as that of the original input array for each recursive call of the 

algorithm. The two sub-arrays B and C are stored in a different 

memory location and are not part of the original array A.

Time-complexity: Θ(nlogn)

Space-complexity: Θ(n)



Time-Space Complexity of Heap Sort
• Heap sort is probably the best algorithm we have seen in this course 

with respect to time and space complexity. It is an in-place algorithm

with all the heapify and element rearrangement operations conductible 

in the input array itself and no additional space is needed.

• As we know, there are two stages of heap sort of n elements.

– Stage 1: Construct the heap – can be done with a top-down strategy in 

Θ(nlogn) time or with a bottom-up strategy in Θ(n) time.

– Stage 2: Remove the root n-1 times. Each time a root is removed, the 

binary tree has to be re-heapified to make it become a heap. This involves 

moving down the new temporary root all the way to an appropriate position 

in the heap, and moving the largest element among the remaining unsorted 

elements in the binary tree as the root of the heap. This can be done in 

Θ(logn) time for each root removal. Hence, Θ(nlogn) time for n-1 root 

removals.

– The overall time-complexity of heap sort is thus 

– {Θ(nlogn)   or    Θ(n)}    +    Θ(nlogn) = Θ(nlogn).
Top-down Bottom-up



Hashing
• A very efficient method  for implementing a dictionary, i.e., a set with 

the operations: find, insert and delete

• Based on representation-change and space-for-time tradeoff ideas

• We consider the problem of implementing a dictionary of n records with 
keys K1, K2, …, Kn.

• Hashing is based on the idea of distributing keys among a one-
dimensional array H[0…m-1] called a hash table.

– The distribution is done by computing, for each of the keys, the value of 
some pre-defined function h called the hash function.

– The hash function assigns an integer between 0 and m-1, called the hash 
address to a key.

– The size of a hash table m is typically a prime integer.

• Typical hash functions

– For non-negative integers as key, a hash function could be h(K)=K mod m; 

– If the keys are letters of some alphabet, the position of the letter in the 
alphabet (for example, A is at position 1 in alphabet A – Z) could be used as 
the key for the hash function defined above.

– If the key is a character string c0 c1 … cs-1 of characters from an alphabet, 
then, the hash function could be: 



Collisions and Collision Resolution
If   h(K1) = h(K2), there is a collision

• Good hash functions result in fewer collisions but some 
collisions should be expected

• Two principal hashing schemes handle collisions 
differently: 

– Open hashing
– each cell is a header of linked list of all keys hashed to it

– Closed hashing

• one key per cell  

• in case of collision, finds another cell by 
– linear probing: use next free bucket 

– double hashing: use second hash function to compute increment



Open Hashing



Open Hashing (Separate Chaining)
Keys are stored in linked lists outside a hash table whose

elements serve as the lists’ headers.

Example: A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED

h(K) = sum of K ‘s letters’ positions in the alphabet MOD 13

A – 1 D – 4 G – 7 J – 10 M – 13 P – 16 S – 19 V – 22 Y – 25

B – 2 E – 5 H – 8 K – 11 N – 14 Q – 17 T – 20 W – 23 Z – 26

C – 3 F – 6 I – 9 L – 12 O – 15 R – 18 U – 21 X – 24

Hash address for “KID” = 24 mod 13 = 9 �NOT FOUND



Open Hashing
• Inserting and Deleting from the hash table is of the same 

complexity as searching.

• If hash function distributes keys uniformly, average length of 
linked list will be α = n/m.  This ratio is called load factor.

• Average-case number of key comparisons for a successful search 
is α/2; Average-case number of key comparisons for an 
unsuccessful search is α.

• Worst-case number of key comparisons is Θ(n) – occurs if we get 
a linked list containing all the n elements hashing to the same 
index. To avoid this, we need to be careful in selecting a proper 
hashing function. 

– Mod-based hashing functions with a prime integer as the divisor are more 
likely to result in hash values that are evenly distributed across the keys.

• Open hashing still works if  the number of keys, n > the size of 
the hash table, m.



Closed Hashing
• All keys are stored in the hash table itself without the use of linked lists.

– The size of the hash table (m) has to be at least as large as the number of 
keys (n). That is, m >= n � n ≤ m.

• Collision resolution could be avoided through linear probing or through 
the use of a secondary hash function.

• With linear probing, we check the cell following the one where the 
collision occurs.

– If that cell is empty, the new key is installed there. 

– If the next cell is already occupied, the availability of that cell’s immediate 
successor is checked and so on, until we find an empty cell. If the end of 
the hash table is reached, we wrap around.

• The search for a given key K is done by computing its hash value h(K) 
and locating the cell with this hash address. 

– If the cell h(K) is empty, the search is unsuccessful. 

– If the cell is not empty, we must compare K with the contents of the cell: if 
they are equal, we have found a matching key; if they are not, we compare 
K with a key in the next cell and continue in this manner until we encounter 
either a matching key (a successful search) or {an empty cell or traversed 
the whole hash table without finding the key (unsuccessful search)}.



Closed Hashing



Lazy Deletion
• With deletions in a Closed Hashing 

Table, if we simply delete a key, then 
we may not be able to successfully 
search for a key that has the same 
hash value as that of the key being 
deleted. 

• With Lazy Deletion, the previously 
occupied locations of the deleted 
keys can be marked by a special 
symbol (or a dummy value, say -
10000) to distinguish them from 
locations that have been actually 
occupied. 

• The locations containing the special 
symbols are considered to be 
available for key insertions.

• However, during a key search, these 
locations are considered to be 
occupied.

Upon deleting key - 20

Upon deleting key - 56

A search for key 54 in the above hash table 

requires 4 key comparisons…

A search for key 75 requires 2 comparisons

To insert key 21

To insert key 21, it would require 3 key 

comparisons



Example 2 for Closed Hashing

Search and insertion operations are straightforward with closed hashing

However, deletion has to be carefully handled. For example, if we simply the delete

the key ‘ARE’ from the hash table (Above), we will be unable to find the key ‘SOON’

afterward. Because, h(SOON) =11, the algorithm would find the location empty and 

report unsuccessful search. A simple solution is to use “Lazy Deletion,” i.e., to mark 

previously occupied locations by a special symbol to distinguish them from locations

that have not been occupied.

h(K) = sum of K ‘s letters’ positions in the alphabet MOD 13


