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P, NP-Problems
• Class P: A class of optimization (min/max solutions) or decision 

problems (yes/no solutions) for which there exists algorithms to solve 
them with a worst-case time complexity of O(p(n)) where p(n) is a 
polynomial (incl. log time) of the problem’s input size n. 

• Note that there are many decision or optimization problems for which 
no polynomial-time algorithm has been found; but, neither the 
impossibility of such an algorithm been proved. 

– Example: Traveling Salesman problem, Hamiltonian Circuit problem

• Hamiltonian Circuit Problem: Determine whether a given graph has a 
Hamiltonian Circuit – a path that starts and ends at the same vertex 
and passes through all the other vertices exactly once.

• Traveling Salesman Problem: Find the shortest tour through n cities 
with known positive integer distances between them (find the 
shortest Hamiltonian Circuit in a complete graph with positive integer 
weights).



P, NP-Problems
• A deterministic algorithm is the one that produces the same output 

for a problem instance each time the algorithm is run.

• A non-deterministic algorithm is a two-stage procedure that takes as 

its input an instance I of a decision problem and does the following:

– Stage 1: Non-deterministic (“Guessing”) Stage: An arbitrary string S is 

generated that  can be thought of as a candidate solution to the given 

instance I (could be sometimes,  not a correct solution too).

– Stage 2: Deterministic (“Verification”) Stage: A deterministic algorithm 

takes both I and S as its input and outputs yes if S represents a solution 

to instance I.  Note that we do not want a non-deterministic algorithm to 

output a yes answer on an instance for which the answer should be no.

• A non-deterministic algorithm for the Traveling Salesman problem 

could be the one that inputs a complete weighted graph of n vertices, 

then (stage 1): generates an arbitrary sequence of n vertices and 

(stage 2): verifies whether or not that each vertex, except the starting 

vertex, is repeated only once in the sequence, and outputs a yes/no 

answer accordingly.



P, NP-Problems
• Class NP (Non-deterministic Polynomial) is the class of decision 

problems that can be solved by non-deterministic polynomial 

algorithms.

• Note that all problems in Class P are in Class NP: We can replace 

the non-deterministic guessing of Stage 1 with the deterministic 

algorithm for the decision problem, and then in Stage 2, 

deterministically verify the correctness of the solution of the 

deterministic algorithm. In other words, P     NP. However, it is not 

clear whether P = NP or P ≠ NP. 

• Polynomial reduction: A problem I is said to be reducible to another 

problem J in polynomial time (denoted I ≤P J), if every instance of I

can be reduced to an instance of J in polynomial time. So, if a 

polynomial time algorithm exists to solve an instance of problem J, 

then we can say that there exists a polynomial time algorithm for I.

⊆



NP-Complete Problems
• A problem I is said to be NP-complete, if: 

– I is in NP

– Every problem in class NP is polynomial-time reducible to I.

• There are several decision problems that have been proven to be 

NP-complete.

• If we could find a polynomial-time deterministic algorithm to solve 

any single NP-complete problem, then all problems in NP can be 

considered to also be solvable deterministically in polynomial-time. In 

that case P = NP.

– After proving that the problem they want to solve is an NP-complete 

problem, researchers do not break their heads to find a polynomial-time 

deterministic algorithm – if they find one, they would surely win the 

Turing award though!!!

– Instead, the focus will be on developing an approximate algorithm (called 

a heuristic) that can yield a solution that will be bounded below or above 

(depending on the context) by the optimal solution within a certain value, 

that is as minimal as possible. That is, aim for an approximation ratio that 

is closer to 1; but not equal to 1.



NP-Complete Problems
• How would you prove that a problem H is NP-complete?

• Let L be a problem that has been already proven to be NP-complete.

• We will show the following:

• (1) H is in NP: There is a polynomial-time algorithm that can verify 

whether a possible solution given by a non-deterministic algorithm is 

indeed a solution or not.

• (2) H is NP-hard: A problem H in NP is said to be NP-hard, if a NP-

complete problem is polynomial time reducible to H. In this case, we 

show that L ≤P H.

All NP-Problems 

except H

≤P

L H
Proof of NP-hard: ≤P



Traveling Salesman Problem
• Given a complete weighted graph (i.e., weighted edges representing 

distances in the Euclidean plane between any two vertices), find a 

minimum weight tour that starts from a particular vertex, goes 

through all the other vertices exactly once, and ends at the starting 

vertex. • Possible Combinations and their Tour 

Weights:

• a – b – c – d – a 10

• a – b – d – c – a 8

• a – c – b – d – a 14

• a – c – d – b – a 8

• a – d – c – b – a 10

• a – d – b – c – a 14

• Similarly 18 more tours, can be written (6 

each starting from b, c, or d). 

• The minimal tour weight is 8 and it could be 

one of the tours of the corresponding 

weight , as listed above.

Traveling Salesman

Problem (TSP)



Traveling Salesman Problem
• Given a complete weighted graph G of ‘n’ distinct vertices

• Let there be a non-deterministic algorithm that generates 
a sequence of n+1 vertices of G.

• NP: Polynomial-time Verification Algorithm:

– Check if the beginning and ending vertices of the sequence are 

the same.

– Check if every other vertex in G appears exactly once in the 

sequence.

– If a sequence satisfies the above two checks, then it is a solution 

for the TSP problem; otherwise, not.

• Note that while proving that a problem is in NP, we do not 

worry about an optimal solution for it (any solution is 

fine); while proving the problem is NP-hard, we talk about 

using an optimal solution for the problem to solve a 
known NP-complete problem.



Traveling Salesman Problem
• Both the Hamiltonian Circuit problem (HCP) and the Traveling 

Salesman problems (TSP) are NP-Complete problems. 

• We will prove the TSP problem is NP-hard by describing a 
polynomial-time reduction for the Hamiltonian Circuit Problem to a 
TSP problem.

• NP-Hard: Polynomial Reduction:

• We will see the polynomial-time reduction of a Hamiltonian Circuit 
problem to a Traveling Salesman problem.

• Recollect the Hamiltonian Circuit problem is to find a tour of a given 
unweighted graph that simply starts at one vertex and goes through 
all the other vertices and ends at the starting vertex. 

• Note that the input graph G to a Hamiltonian Circuit problem need 
not be a complete graph connecting all vertices.

• For the reduction, we will construct a complete graph G* such that 
there exists an edge of weight 1 in G* if the edge exists in G; 
otherwise, a weight of 2 is assigned to an edge between two vertices 
in G* if the edge does not exist in G.



Traveling Salesman Problem
• This way, if we solve the complete graph G* for the Traveling 

Salesman problem, if there exists a Hamiltonian Circuit in the original 

graph G, the minimum weight tour in G* will involve only edges of 

weight 1. All such edges in the minimal weight tour of G* will exist in 

an Hamiltonian Circuit of G. 

• The polynomial time reduction from a HCP to a TSP is involved in:

– Given an weighted graph G for the Hamiltonian Circuit problem, the 

construction of the complete graph G* for the Traveling Salesman

problem:

• For every edge (u, v) in G, include (u, v) in G* and weight (u, v) = 1

• For every edge (u, v) not in G, include (u, v) in G* and weight(u, v) = 2



Heuristic 1: Nearest Neighbor (NN) 
Heuristic for the TSP Problem

• Start the tour with a particular 

vertex, and include it to the tour.

• For every iteration, a vertex (from 

the set of vertices that are not yet 

part of the tour) that is closest to the 

last added vertex to the tour is 

selected, and included to the tour.

• The above procedure is repeated 

until all vertices are part of the tour.

• Time Complexity: It takes O(V) 

times to choose a vertex among the 

candidate vertices for inclusion as 

the next vertex on the tour. This 

procedure is repeated for V-1 times. 

Hence, the time complexity of the 

heuristic is O(V2).



NN Heuristic Example (contd..)



NN Heuristic Example (contd..)
v1 v3 v2

v6v4v5

3 5

2

59

6

Improvement to the NN Heuristic using 2-Change Heuristic
Pick two non-overlapping edges (with no common end vertices) and see if we can

swap for them using edges that connect the end vertices so that the connectivity of the 

tour is maintained and the tour cost can be further reduced. 

Strategy: Pick the costliest edge and a non-overlapping edge (i.e., no common end 

vertices) that is the next costliest

In the above example, we can pick v5 – v4 (edge wt: 9) and the next costliest non-

overlapping edge v3 – v2 (edge wt: 5) and replace them with edges v5 – v2 (wt: 3) and 

v4 – v3 (wt: 5). The revised tour is v1 – v3 – v4 – v6 – v2 – v5 – v1; tour weight: 24

v1 v3 v2

v6v4v5

3

2

5

6 3 5



Heuristic # 2 for the TSP Problem
Twice-around-the Tree Algorithm

• Step 1: Construct a Minimum Spanning 

Tree of the graph corresponding to a 

given instance of the TSP problem

• Step 2: Starting at an arbitrary vertex, 

perform a walk around the minimum 

spanning tree recording all the vertices 

passed by. This can be done by a DFS 

traversal.

• Step 3: Scan the vertex list obtained in 

Step 2 and eliminate from it all repeated 

occurrences of the same vertex except 

the starting one at the end of the list. 

The vertices remaining on the list will 

form a Hamiltonian Circuit, which is the 

output of the algorithm.

v1 v2 v3

v4v5v6

Step 1: MST of the Graph

Note: We will use the principle of Triangle 

Inequality for Euclidean plane:

The sum of the two sides of a triangle is 

greater than the third side of the triangle 



Heuristic # 2 for the TSP Problem
Twice-around-the Tree Algorithm

v1 v2v3

v4v5v6

Step 2: DFS Traversal of the MST

MST (vertices rearranged) from Step 1

v1 – v3 – v1 – v6 – v2 – v4 – v2 –

v5 – v2 – v6 – v1 

v1 v2v3

v4v5v6

Step 3: Optimizing the DFS Walk

Tour from Step 2:

v1 – v3 – v1 – v6 – v2 – v4 – v2 – v5 – v2 – v6 – v1 

Optimized Tour:

v1 – v3    v1    v6 – v2 – v4    v2    v5    v2   v6    v1 

v1 – v3 – v6 – v2 – v4 – v5 – v1

Tour Weight: 31

v1 v2v3

v4v5v6



Heuristic # 2 for the TSP Problem
Twice-around-the Tree Algorithm

TSP Tour of Twice-around-the-Tree Algorithm
v1 – v3 – v6 – v2 – v4 – v5 – v1

Tour Weight: 31

v1 v3 v6

v2v4v5

3 7

2

49

6

Improved Tour Weight: 26 Improvement  using 2-Change

v1 v3 v6

v2v4v5

3

5 2

4
6

6

v1 v3 v4

v2v6v5

3 5

4

26

6



Proof for the Approximation 
Ratio for Twice-around-the-Tree
• Let w(MST) be the weight of the MST generated from Step 1.

• The weight of the DFS walk generated from Step 2 could be at most 

2*w(MST), as seen in the example.

• In Step 3, we are trying to optimize the DFS walk and extract a 

Hamiltonian Circuit of lower weight. Even if no optimization is 

possible, the weight of the tour generated by the Twice-around-the-

Tree algorithm is at most twice the weight of the minimum spanning 

tree of the graph instance of the TSP problem.

• Note that w(MST) of the graph has to be less than the weight of an 

optimal tour, w(Optimal Tour). Otherwise, if w(Optimal Tour) ≤

w(MST), then the so-called MST with V-1 edges is not a MST. 

• W(Twice-around-the-Tree tour) ≤ 2*W(MST) < 2*w(Optimal Tour).

• W(Twice-around-the-Tree tour) / W(Optimal Tour) < 2.

• Hence, the approximation ratio of the Twice-around-the-Tree 

algorithm is less than 2.



Independent Set, Vertex Cover, Clique
• An independent set of a graph G is a subset IS of vertices such that 

there is no edge in G between any two vertices in IS.

• Optimization Problem: Find a maximal independent set of a graph

• Decision Problem: Given a graph G, is there an independent set of G of 
size k? 

– The objective is to find a subset of k vertices from the set of vertices 
in G, such that any two vertices among the k vertices do not have an 
edge in G.

• A Vertex Cover for a graph G is a subset of vertices VC such that every 
edge in G has at least one end vertex in VC. 

• The optimization problem is to find the vertex cover with the minimal set 
of vertices.

• Note that VC = V – IS, where V is the set of vertices and IS is the 
Independent Set. 

• A Clique of a graph G is a subset C of vertices such that there is an 
edge in G between any two vertices in C.

• Similar to the Independent set problem, one can have optimization and 
decision versions of the Clique problem. The objective will be to find a 
maximum clique of k vertices or more.



Independent Set, Vertex Cover, Clique

v1 v2 v3

v4 v5 v6

In the above graph,

the set of vertices

- {v2, v4, v6} form an Independent Set

- Thus, {v1, v3, v5} form the Vertex Cover

- {v1, v2, v5} form a Clique
Polynomial Reduction:

Given a graph G, find a Complement graph G* containing the same set of 

vertices, such that there exists an edge between any two vertices in G* if and 

only if there is no edge between them in G.

An Independent Set in G* is a Clique in G and vice-versa: the only reason there is 

no edge between two vertices in G* is because there is an edge between 

them in G.

Approach to find the Independent Set, Vertex Cover and Clique for a Graph G

1. Find the Independent Set, IS, of graph G using the Minimum Neighbors 

Heuristic

2. The Vertex Cover of G is V – IS, where V is the set of vertices in G

3. Find the Complement Graph G* of G and run the Minimum Neighbors 

Heuristic on it. The Independent Set of G* is the Clique of G.



Proof for the Polynomial Reductions
• Clique ≤P Independent Set
• Let G* be the complement graph of G. There exists an edge in G* if 

and only if there is no edge in G. 

• Determine a Maximal Independent Set C* of G*. There exists no edge 
between any two vertices in C* of G*. ==> There exists an edge 
between the two vertices of C* in G. For any two vertices in C*, there 
is an edge in G. Hence, C* is a Maximal Clique of G.

• Independent Set ≤P Clique
• By the same argument as above, we can determine a maximal clique

in G*; there is an edge between any two vertices in the maximal 
clique of G* �there are no edges between any two of these vertices 
in G. These vertices form the maximal independent set in G.

• Vertex Cover ≤P Independent Set
• Let IS be an independent set of graph G.

• Let the vertex cover of G be V – IS, where V is the set of all vertices 
in the graph.

• For every edge in G, the two end vertices are not in IS. Hence, at 
least one of the two end vertices must be in V – IS. Thus, V – IS 
should be a vertex cover for G.



Example 1 to Find Independent Set 
using the Minimum Neighbors Heuristic

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

3 3 3

2 25

v1 v2 v3

v4 v5 v6

1 2

1

v1 v2 v3

v4 v5 v6

0

Idea: Give preference to vertices with minimal number

of (uncovered) neighbors to be part of the Independent

Set. A vertex is said to be covered if itself or any of its

neighbors in the Independent Set.

Independent Set for the above graph = {v2, v4, v6}

This is also the Maximal Independent Set (i.e.,

there exists no Independent Set of size 4 or more

for the above graph). However, the heuristic is

not guaranteed in general to give a maximal 

Independent set.

Vertex Cover = {v1, v3, v5}

v1 v2 v3

v4 v5 v6



v1 v2 v3

v4 v5 v6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

2

2

2

0

3

3

v1

v2

v3

v4

v5

v6

1

1

v1

v2

v3

v4

v5

v6

{v1, v2, v5}

is an Independent

Set in G* and it is 

a clique in G.

Given G ------->

Find G*, complement of G

Example 1 to Determine a Clique

Using the Minimum Neighbors

Heuristic to Approximate an 

Independent Set



Example 2 to Find Independent Set 
using the Minimum Neighbors Heuristic

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

2 3 2

232

v1 v2 v3

v4 v5 v6

1 2

1

v1 v2 v3

v4 v5 v6
0

v1 v2 v3

v4 v5 v6

Independent Set = {v1, v2, v6}

Vertex Cover = {v3, v4, v5}



Given G ------->

Find G*, complement of G

v1 v2 v3

v4 v5 v6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

3 3

2

3 3

2

v1

v2

v3

v4

v5

v6

2

2

2

v1

v2

v3

v4

v5

v6

Independent Set of G* = {v2, v3}

Clique of G = {v2, v3}

Note that Clique of G* = {v1, v2, v6} is an Independent

Set of G, leading to a Vertex Cover of {v3, v4, v5} of G.



Minimum Connected Dominating Set
• Given a connected undirected graph G = (V, E) where V is the set of 

vertices and E is the set of edges, a connected dominating set (CDS) 

is a sub-graph of G such that all nodes in the graph are included in the 

CDS or directly attached to a node in the CDS.

• A minimum connected dominating set (MCDS) is the smallest CDS (in 

terms of the number of nodes in the CDS) for the entire graph.

• For broadcast communication, it is sufficient if the data goes through all 

the nodes in the MCDS. Each node in the MCDS can in turn forward

the data to its neighbors.

• Determining the MCDS in an undirected graph like that of the unit disk 

graph is NP-complete. 

1 2

3 4

5 6 MCDS = [3, 4]

The size of a MCDS clearly depends on 

the degree of the nodes. Hence, we will

study a degree-based heuristic to approximate

the MCDS
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Heuristic to Approximate a MCDS
Input: Graph G = (V, E), where V is the vertex set and E is the edge set.

Source – vertex, s V.

Auxiliary Variables and Functions:

CDS-list, Covered-list, Neighbors(v) for every v in V.  

Output: CDS-list

Initialization: Covered-list = {s}, CDS-list = Φ

Begin d-MCDS

while ( |Covered-list| < |V| ) do

Select a vertex r Covered-list and r CDS-list such that r has the 

maximum neighbors that are not in Covered-list.

CDS-list = CDS-list U {r}

For all u    Neighbors(r) and u Covered-list,                                   

Covered-list = Covered-list U {u}

end while

return CDS-list

End d-MCDS

∈

∈ ∉

∉

Run-time Complexity: We can use a heap to store the

node degrees. In each iteration, we also need to recalculate

the # uncovered neighbors per node. Updating the heap in 

each iteration takes O(logV) time. This would take O(E)

time. There could be O(V) iterations. 

Hence, the overall time complexity is: O(VElogV).
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Example for d-MCDS Heuristic
A B C D

E F G H

I J K L

M N O P

2 5 4 2

4
3

6 4

3 6
3 5

3 3 5 2

A B C D

E F G H

I J K L

M N O P

1 3 1
0

3
1

0 1

2 5
1 2

2 2 2 1

A B C D

E F G H

I J K L

M N O P

1 2 1
0

1
1

0 1

1 0
0 1

0 0 1 0

A B C D

E F G H

I J K L

M N O P

0 0 1
0

0
0

0 1

0 0
0 1

0 0 1 0
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Example for d-MCDS Heuristic
A B C D

E F G H

I J K L

M N O P

0 0 0
0

0
0

0 0

0 0
0 1

0 0 1 0

A B C D

E F G H

I J K L

M N O P

0 0 0
0

0
0

0 0

0 0
0 0

0 0 0 0

MCDS Nodes = [G, J, B, C, L]A B C D

E F G H

I J K L

M N O P

d-MCDS

5 nodes

5 edges

Shortest-Paths

M – H: M – J – G – H

A – P: A – B – G – L – P

D – N: D – C – G – J – N


