Jackson State University
Department of Computer Science
CSC 323 Algorithm Design and Analysis
Spring 2015
Instructor: Dr. Natarajan Meghanathan
Programming Project 4
Determining the Common Elements across All Arrays using Hash Tables and Java
Collection Classes

Due: March 19, 2015, 1 PM Maximum Points: 100

The objective of this project is to find the common elements among a given number of arrays. You
should use the Java Collections classes (like Vector and TreeMap) to implement this project.

You will input values for the following parameters from the user:
* Number of arrays, N

* Number of elements per array, E

* Hash Table size, P

* Maximum value of any element in the array, M

Design Idea

You will generate the contents of the array using a random number generator (Random class in the
java.util package). The values of the integers in each array should be bounded above by the maximum
value of the elements (input by the user). An integer should not appear more than once in an array; but it
may occur in more than one array (remember: the objective of the project is to find integers that appear in
all the arrays). I suggest using separate random number generators for each array and a different seed for
each of these random number generators.

After populating all the arrays with the randomly generated integers (as described above), create a
Vector of size equal to the Hash Table Size, P. The Vector will serve as our hash table. Initialize each
entry of this Vector with an empty TreeMap object. Now, iterate through each of the arrays. Compute the
hash value for every integer x in each of the arrays. Use the following hash function: h(x) = x mod P,
where P is the Hash Table Size. Now, index the Hash Table using the hash value h(x) and store the integer
x in the Hash Table as a <Key, Value> pair in the TreeMap at index h(x): the Key is the integer x and
Value is the number of times you have encountered (frequency) the integer x so far across all the arrays.
As you encounter the integer x in the different arrays, you increment the frequency value by 1.

After filling the Hash Table with the <Integer, Frequency of Appearance> pairs for every integer
(indexed into the appropriate TreeMaps) across all the arrays, index into each of these TreeMaps and
identify integers whose frequency of appearance equals the number of arrays (N) in the program. Such
integers are the common integers that appear across all the arrays. Collect all of these common integers
into a separate vector and print the contents of this vector. Note: Sometimes, you may not be able to find
any common elements. In that case, run your program few more times to see if you can get an output that
displays one or more common elements.

Time Evaluation: For each of the following combinations of the input values, you should also determine
the total time it takes for your program. Use the System.nanoTime() method of the System class that
returns the number of nano seconds since Jan 1, 1970, as a value of type long. Call this method after
getting the inputs from the user and before beginning any other processing. Likewise, after completing all
the processing and before printing the vector of common elements, call the System.nanoTime() method.
The difference between the two time instants is the run-time of your program in nano seconds. You need
to then convert the time difference to milliseconds or microseconds and report the values.

Input Values

Student Name # Arrays # Elements per Array | Hash Table | Maximum Value of any
Size Element in the Array
Leon Anderson 4 200 53 500
Jeffery Taylor 4 200 101 500
Jonathan Dallas 6 200 59 500
Andrew Villarrubia 6 200 107 500
Fred Clovis 8 200 67 500
Raymond Triplett 8 200 103 500

Outputs: The common elements of the arrays and the run-time.

Example:
25 (|55 || 15
12 || 47 || 42 0 1 2 3 4 5 6 7 8 9 10
85 (|12 || 78
1 4 1 [] 63 L L ¥ ¥ ¥ ¥ ¥ ¥ L ¥
63 || 98 || 55 22,1 [12,3] 35,1 [10,1] 15,1 [49,1 | [621 41,1 42,1 10,2
35 || 62 || 12 55,2 (| 78,3 || 57,2 ;g: 85,1 || 63,3 g, 2
. 85, 2
22 || 57 || 85 47 1
49 || 63 || 98
78 || 78 10 H(x) = x mod 11
10 1121 || 95 (x)=xmo

Common Elements: [12, 78, 63]

Video: Record your explanation of the complete program and show the execution for the inputs specified
above. You should explain how the random integers are generated for all the arrays, how the hash table is
populated with the <integer, frequency of appearance> pairs for every integer across all the arrays, and
how you go through the hash table to list the common elements across all the arrays. Your explanation
should last for at least 7 minutes. You could try using one of the desktop recording software (or
anything of your choice): CamStudio: http://sourceforge.net/projects/camstudio/files/legacy/

Debut: http://www.nchsoftware.com/capture/index.html

Sample Programs and Video Links: Refer to the sample programs posted in the course website along
with this project description on Vector and TreeMap.

Video on Vector Example: http://www.youtube.com/watch?v=aiZHI18TXqE

Video on TreeMap Example: http://www.youtube.com/watch?v=sGrHITsTmxY

What to submit: (1) A Desktop recorded video (as explained above). (2) A softcopy of your complete
code and a screenshot of the result obtained for the input specified above, emailed to me.

Note that even though I am not specifying a minimum time for your video, your video explanation
is expected to last at least for 8-10 minutes and should cover all of the above required explanations.

Note that the contents of the desktop/programs captured through your video should be clearly readable.

Submission of the Video: Upload the video to your Google Drive and share it to
natarajan.meghanathan@ jsums.edu.

