
Centrality

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University, Jackson, MS

E-mail: natarajan.meghanathan@jsums.edu

Centrality
• Tells us which nodes are important in a network

(instead of just looking at the popularity of nodes)
– How influential a person is within a social network

– Which genes play a crucial role in regulating systems
and processes

– Infrastructure networks: if the node is removed, it would
critically impede the functioning of the network.

Y Z

Nodes X and Z have higher

Degree

Node Y is more central from

the point of view of

Betweenness – to reach from

one end to the other

Closeness – can reach every

other vertex in the

fewest number of hops

X

Example of a real-world trading network

• Size of a node (buying): in-degree

• Darkness of the color of a node (selling): out-degree

A B
Node A selling to

Node B

(Node B buying

from Node A)

One node buying

from many others

High In-Centralization

Buying is more evenly distributed

Besides, topology it is important to also

understand what does the network represents

Out-degree

• The thickness of an edge could indicate the weight (e.g., amount of oil
exported), the radius of the node circles could indicate the number of
exports; node color – ratio of the number of exports to imports.

Typical Degree Distribution of
Common Networks

Degree, k

P(k)

Regular

Poisson

Star

Fat-tail

1

Undirected Degree Centrality

• Degree centrality for an individual node
– Just count the numbers

– Sometimes, we normalize: divide the degree by
N-1, where N - # nodes

• (not suited for larger networks)

5

1

1

1

1

1

1.0

0.2

0.2

0.2

0.2

0.2

Centralization: Skewness in Distribution

• Captures the variations in the centrality

scores among the nodes in a network.

• Example for Degree Centralization of a Network

[]

[])2)(1(

)(*)(
1

−−

−

=
∑

=

NN

iCnC

C

N

i

XX
Network

X

X – Degree; Closeness;

Betweenness

5

1

1

1

1

1

n* - max. centrality score

[(5 – 5) + (5 – 1) * 5] 20

----------------------------- = ---------- = 1.0

[(6-1)(6-2)] 5 * 4

If the Degree Centralization of a Network is 1.0,

it indicates a hub and spoke network

Degree Centralization of a Network

2 2

2 2

Degree Centralization of the Network = 0.0

- All nodes have the same degree

1 2 2 1

[(2-2)*2 + (2-1)*2] 2

------------------------- = ------- = 0.33

[(4-1)(4-2)] 3*2

2

2

2 3

2

2

3
[(3-3)*2 + (3-2)*5] 5

------------------------- = ------ = 0.167

[(7-1)(7-2)] 6*5

Degree Centralization: Directed Graphs

2
2

1
2

0
1

1

2

In-Centralization

[(2-2)*4 + (2-1)*3 + (2-0)*1] 3 + 2

------------------------------------ = ---------- = 0.119

[(8-1)(8-2)] 7*6

2
2

1
1

2
2

1

0

Out-Centralization

[(2-2)*4 + (2-1)*3 + (2-0)*1] 3 + 2

------------------------------------ = ---------- = 0.119

[(8-1)(8-2)] 7*6

As the sum of the in-degrees of the vertices

should be equal to the sum of the out-degrees

of the vertices, in-centralization = out-centralization

Problem with Degree Centrality

Both nodes A and B have the same degree (2)

But, node B is much more important to the functioning of the network than node A

Centrality: Four Primary Ways

• Degree – connectedness

• Closeness, Decay – ease of reaching other nodes

• Betweenness – role as an intermediary, connector

• Influence, Prestige, Eigenvectors

– “Not what you know, but who you know”

• Lots of different measures that capture different
aspects of information

– Needs to be used depending on the context

• There is not one that is the best

Betweenness: Brokerage

Hey, you are the only

one, I do business with

Really??

Really?? Hey, you are the only

one, I do business with

Hey, you are the only

one, I do business with

Hey, you are the only

one, I do business withI feel

honored!!

I feel

honored!!

Betweenness: Brokerage
• A measure of how significant a node is in facilitating

communication between the other nodes in the network (on
the shortest path – min. # hops).
– If several nodes in the network can communicate only by going

through node X, then node X is said to have high Betweenness
Centrality.

∑
<

=
kj

jkB ispiC)()(

spjk(i) - # shortest paths between vertices

j and k that go through vertex i

A measure of the fraction of the

Shortest paths a node lies on

Betweenness on Toy Networks (1)

6

0 0

0 0

There are 4*3/2 = 6 node pairs

The central node lies on the

shortest path for each node pair

There is only one shortest path

between each node pair

Hence, the Betweenness of

the central node is 6.

[(6 - 6)*1 + (6 - 0)*4] 24

Betweenness Centralization = ------------------------------ = -------- = 2.0

[(5-1) * (5-2)] 4*3

Betweenness on Toy Networks (2)

0 3 4 3 0

A B C D E

B is on the shortest path from A to C, A to D, A to E. Likewise,

D is on the shortest path from E to C, E to B, E to A.

C is on the shortest path from A to D, A to E

B to D, B to E

There is only one shortest path between any two vertices.

[(4 - 4)*1 + (4 - 3)*2 + (4 - 0)*2] 10

Betweenness Centralization = --- = -------- = 0.83

[(5-1) * (5-2)] 4*3

Betweenness on Toy Networks (3)

X is on the shortest path from A to C, A to D, B to C, B to D.

A to Y, A to Z, B to Y and B to Z

Z is on the shortest path from C to A, C to B, D to A, D to B

C to X, C to Y, D to X and D to Y.

Y is on the shortest path from A to C, A to D, B to C, B to D.

A to Y, A to Z, B to Y and B to Z; X to Y

There is only one shortest path between any two vertices.

[(9 - 9)*1 + (9 - 8)*2 + (9 - 0)*4] 38

Betweenness Centralization = --- = -------- = 1.27

[(7-1) * (7-2)] 30

0

0

9 8

0

0

8

X Y Z

A

B

C

D

Betweenness on Toy Networks (4)

B: B is on the shortest path from A to C, A to D and A to E

(only one shortest path exist between these pairs of vertices)

For the pair C-E, there exists a shortest path through B and another one

through D. B does not lie on the shortest path of any other pairs.

Betweenness of B = (1/1) + (1/1) + (1/1) + (1/2) = 3.5.

C: C lies on the shortest path from A to D, B to D. But there is also another

shortest path from A to D (through E) and from B to D (through E)

Betweenness of C = ½ (A to D) + ½ (B to D) = 1.0

E: Like C, the Betweeness of E = ½ (A to D) + ½ (B to D) = 1.0

D: Betweenness of D = ½ (C to E) = 0.5.

3.5

1.0

1.0

0.50

A
C

B
D

E

[(3.5 – 3.5)*1 + (3.5 – 1.0)*2 + (3.5 – 0.5)*1 + (3.5 – 0)*1]

Betweenness --- = 0.958

Centralization [(5-1)(5-2)]

Betweenness on Toy Examples (5)

A

B

D

C

E

F G H K

J

L

I

A

B

D

C

E

F G H K

J

L

I

G lies on the shortest path of 6*5 = 30 node pairs.

No other shortest path exist between these

node pairs. Hence, betweenness of G = 30

A

B

D

C

E

F G H K

J

L

I

F lies on the shortest path of 5*6 = 30 node pairs.

No other shortest path exist between these pairs.

Hence, betweenness of F = 30

A

B

D

C

E

F G H K

J

L

I

K lies on the shortest path of 8*3 = 24 node pairs.

No other shortest path exist between these pairs.

Hence, betweenness of K = 24

Betweenness on Toy Examples (5)

A

B

D

C

E

F G H K

J

L

I

H lies on the shortest path of 7*4 = 28 node pairs. No other shortest path exist

between these node pairs. Hence, betweenness of H = 28

Nodes A, B, C, D and E have high degree; but the betweenness for each is 0.

Likewise, the betweenness of I, J and L is also 0.

[(30 – 30)*2 + (30 – 24)*1 + (30 – 28)*1 + (30 – 0)*8]

Betweenness Centrality = --- = 2.25

[(12-1)(12-2)]

Closeness
• A measure of how far away is the rest of the network from

a certain node.

– Based on the length of the average shortest path

between a node and all other nodes.

The shaded node has a high closeness

as it is just one hop away from the

most central node and can reach the rest of

the network in fewer hops.

If the network is one single connected

component

d(i, j) is the hop count on the shortest

path from node i to node j.

Closeness: Toy Example (1)

0 3 4 3 0

A B C D E

A B C D E Sum Closeness

A 0 1 2 3 4 10 0.1

B 1 0 1 2 3 7 0.14

C 2 1 0 1 2 6 0.17

D 3 2 1 0 1 7 0.14

E 4 3 2 1 0 10 0.1

[(0.17 – 0.17)*1 + (0.17 – 0.14)*2 + (0.17 – 0.1)*2]

Closeness Centrality = --- = 0.017

[(5-1)(5-2)]

Closeness on Toy Networks (2)

6

0 0

0 0

[(0.25 – 0.25)*1 + (0.25 – 0.17)*4]

Closeness Centralization = --- = 0.0267

[(5-1) * (5-2)]

A B C D E Sum Closeness

A 0 1 1 1 1 4 0.25

B 1 0 2 2 2 7 0.14

C 1 2 0 2 2 7 0.14

D 1 2 2 0 2 7 0.14

E 1 2 2 2 0 7 0.14

A

B

C

D E

Closeness on Toy Networks (3)

A B C D X Y Z Sum Closeness

A 0 1 4 4 1 2 3 15 0.067

B 1 0 4 4 1 2 3 15 0.067

C 4 4 0 1 3 2 1 15 0.067

D 4 4 1 0 3 2 1 15 0.067

X 1 1 3 3 0 1 2 11 0.091

Y 2 2 2 2 1 0 1 10 0.1

Z 3 3 1 1 2 1 0 11 0.091

[(0.1 – 0.1)*1 + (0.1 – 0.067)*4 + (0.1 – 0.091)*2]

Closeness Centralization = ---

[(7-1) * (7-2)]

0

0

9 8

0

0

8

X Y Z

A

B

C

D

= 0.005

Farness Centrality
• The closeness centrality equally ranks nodes that have the

same sum of the distances to every other node.
– However, the closeness centrality does not take into consideration

the variations in the distances of a node to every other node.

• Farness Centrality prefers nodes with the smallest total
distance to every other node and if there is a tie, it gives
preference to nodes that have less variations in the
individual distances of the vying node to every other node.

• Farness Centrality of a node i is the value in the ith entry of
the Principal Eigen Vector (the Eigen Vector corresponding
to the largest Eigen Value) of the Distance Matrix that
captures the # hops between any two nodes in the
network.

Farness Centrality: Example

1 23

6 7

8

4

5

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

0 1 1 1 1 2 3 2

1 0 2 2 2 1 2 1

1 2 0 2 2 3 4 3

1 2 2 0 2 3 4 3

1 2 2 2 0 3 4 3

2 1 3 3 3 0 1 2

3 2 4 4 4 1 0 3
2 1 3 3 3 2 3 0

Distance Matrix η1 = 16.315

δ1 =

[0.6717

0.6691

1.0023

1.0023

1.0023

0.8711

1.1799
1]

Ranking of Nodes

Score Node ID

0.6691 2

0.6717 1

0.8711 6

1 8

1.0023 3

1.0023 4

1.0023 5

1.1799 7

Decay Centrality
• Incorporates the value of the connection to the other

nodes.

• With a parameter δ, the value decays with distance as δ1,
δ2, δ3, …, where 1, 2, 3, …, are the distances of the node
to the other nodes.

• Ci
dec(G) = Σj≠i δ

dist(i, j)

– If δ is close to 1, decay centrality becomes a measure of the
component size (each node contributes a value closer to 1)

– If δ is close to 0, decay centrality becomes a measure of the node
degree (the contributions of the higher order terms of δ become
negligible)

– Intermediate values of δ capture the decay centrality (weigh the
indirect connections less than the direct connections).

• Captures the importance of a node being closer to many
nodes.

Decay Centrality

1

2

3

4 5

6

7

Node 4 Node 1 Node 2

δ = 0.25 0.75 0.8438 0.5859

δ = 0.50 2.0 2.0 1.50

δ = 0.75 3.75 3.656 3.117

δ = 0.85 4.59 4.5 4.08

δ = 0.95 5.51 5.46 5.29

For the perceived node with high centrality (node 4),

the intermediate values of δ = 0.5, 0.75 result in more nodes contributing to a
lower order exponent for δ, leading to a smaller decay, and an overall high

Centrality score.

Assortativity
• Assortativity or Assortative mixing is a preference for a network’s

nodes to attach to others that are similar in some way.
– Often examined with respect to node degree

– In social networks, highly connected nodes tend to be connected with other
high degree nodes

• Disassortativty: High-degree nodes attach to low-degree nodes and
vice-versa.
– Technological and biological networks typically show disassortative mixing

• Assortativity is measured in the form of Correlation Coefficient between
the cause and effect.

• Assortativity Coefficient Computation for Node Degree

∑∑

∑

==

=

−−

−−

=
m

i

i

m

i

i

m

i

ii

XY

YYXX

YYXX

r

1

2

1

2

1

)()(

))((
m – the number of edges

(Xi, Yi) – the degrees of endpoints

of edge i

X Y(,): the mean of the

degrees of the endpoints

of edge i

Assortativity Example (1)

2
3

1

4

5

1 2 3 4 5

1 0 1 0 0 0

2 1 0 1 1 1

3 0 1 0 0 0

4 0 1 0 0 0

5 0 1 0 0 0

Node ID Degree

1 1

2 4

3 1

4 1

5 1

Edge Xi Yi Xi-AvgX Yi-AvgY (Xi-AvgX)(Yi-AvgY)

1-2 1 4 -2.25 2.25 -5.063

2-3 4 1 0.75 -0.75 -0.563

2-4 4 1 0.75 -0.75 -0.563

2-5 4 1 0.75 -0.75 -0.563

Avg X 3.25 1.75

Sum (sample-mean)^2 6.75 6.75

Pearson Correlation Coefficient = -1.0 Disassortative

Assortativity Example (2)

2
3

1

4

5

Node ID Degree

1 2

2 3

3 2

4 2

5 3

Edge Xi Yi Xi-AvgX Yi-AvgY (Xi-AvgX)(Yi-AvgY)

1-2 2 3 -0.33 0.33 -0.1089

1-4 2 2 -0.33 -0.67 0.2211

2-3 3 2 0.67 -0.67 -0.4489

2-5 3 3 0.67 0.33 0.2211

3-5 2 3 -0.33 0.33 -0.1089

4-5 2 3 -0.33 0.33 -0.1089

Avg X 2.33 2.67

Sum (sample-mean)^2 1.3334 1.3334

1 2 3 4 5

1 0 1 0 1 0

2 1 0 1 0 1

3 0 1 0 0 1

4 1 0 0 0 1

5 0 1 1 1 0

Pearson Correlation Coefficient = -0.25 Non-assortative

Assortativity of Real-World Networks

Assortativity
of Scale-

Free
Networks

Link Analysis-based Ranking

• We want to rank a node in a graph based on the
number of edges pointing to it and/or leaving it as
well as based on the rank of the nodes at the other
end of these edges.

• Used primarily in web search
– We model the web as a graph: the pages as nodes and

the edges are directed edges – a page citing (having a
link to) another page.

• Hubs and Authorities (HITS) algorithm

• PageRank algorithm

Hypertext Induced Topic Search
(HITS) Algorithm

• Hub: Node that points to lots of pages
– Yahoo like directory

• Authority: Node to which several other nodes point to
– The larger the number of nodes pointing to a node, the

more authoritative is the view presented by a node on a
particular subject

• The HITS algorithm assigns two scores for each
page:
– Authority: an estimate of the value of the contents of the

page
– Hub: an estimate of the value of its links to other pages

• A page is considered to be more authoritative if it is
referenced by many hub pages that are relevant to a
search query

• A page is a hub page for a search query if it points to
many authoritative pages for that query

• Good authoritative and hub pages reinforce one
another.

HUB

Auth

ority

A variant of HITS is used by Ask.com

Finding Pages for a Query in HITS

• Initial Work

• Step 1: Submit query q to a similarity-based engine and
record the top n, i.e., the root set RS(q) pages.

• Step 2: Expand set RS(q) into the base set BS(q) to
include pages pointed by RS(q) pages

• Step 3: Also include into BS(q), the pages pointing to
RS(q) pages.

• Run the HITS algorithm
– For each page pj, compute the authority and hub score of pj

through a sequence of iterations.

• After obtaining the final authority and hub scores for
each page, display the search results in the decreasing
order of the authority scores. Pages having zero authority
scores (nodes with no incoming links – strictly hubs) are
listed in the decreasing order of their hub scores.
– Note: nodes that are strictly hubs still contribute to the authority of

the nodes that it points to.

HITS Algorithm
• Let E be the set of links in BS(q) and a link from page pi to pj is

denoted by the pair (i, j).

• A: Authority Update Step H: Hub Update Step

• After each iteration i, we scale the ‘a’ and ‘h’ values:

• As can be noted above, the two steps are interwined: one uses the

values computed from the other.

– In this course, we will follow the asynchronous mode of

computation, according to which the authority values are updated

first for a given iteration i and then the hub values are updated.

• The hub values at iteration i are using the authority values just

computed in iteration i (rather than iteration i – 1).

∑
∈

=
Eji

ij phpa
),(

)()(∑
∈

=
Ekj

kj paph
),(

)()(

()∑
=

k k

i

j

i

j

i

pa

pa
pa

2)(

)(

)(

)(

)(
)(

()2)(

)(

)(

)(

)(
)(

∑
=

k k

i

j

i

j

i

ph

ph
ph

HITS Example (1)

1

2

3

4

5

It # 1

a = [1 0 0 3 2] h = [5 3 5 1 0]

After Normalization,

a = [0.26 0 0 0.80 0.53] h = [0.64 0.38 0.64 0.12 0]

It # 2

a = [0.12 0 0 1.66 1.28] h = [2.94 1.66 2.94 0.12 0]

After Normalization,

a = [0.057 0 0 0.79 0.61] h = [0.66 0.37 0.66 0.027 0]

It # 3

a = [0.027 0 0 1.69 1.32] h = [3.01 1.69 3.01 0.027 0]

After Normalization,

a = [0.0126 0 0 0.79 0.61] h = [0.66 0.37 0.66 0.006 0]

Initial

a = [1 1 1 1 1] h = [1 1 1 1 1]

Order Pages

Listed after

Search

4

5

1

3

2

It # 4

a = [0.006 0 0 1.69 1.32] h = [3.01 1.69 3.01 0.006 0]
After Normalization,

a = [0.003 0 0 0.79 0.61] h = [0.66 0.37 0.66 0.001 0]

HITS Example (2)

1 2

3 4

It # 1

a = [0 3 1 1] h = [3 1 4 3]

After Normalization,

a = [0 0.91 0.30 0.30] h = [0.51 0.17 0.68 0.51]

Initial

a = [1 1 1 1] h = [1 1 1 1]

It # 2

a = [0 1.70 0.17 0.68] h = [1.70 0.17 2.38 1.70]

After Normalization,

a = [0 0.92 0.09 0.37] h = [0.50 0.05 0.70 0.50]

It # 3

a = [0 1.70 0.05 0.70] h = [1.70 0.05 2.4 1.70]

After Normalization,

a = [0 0.92 0.027 0.38] h = [0.50 0.014 0.70 0.50]

It # 4

a = [0 1.70 0.014 0.70] h = [1.70 0.014 2.4 1.70]
After Normalization,

a = [0 0.92 0.008 0.38] h = [0.50 0.004 0.71 0.50]

Order Pages

Listed after

Search

2

4

3

1

HITS Example (3)1

2

3 4

It # 1

a = [3 1 2 0] h = [0 5 3 6]

After Normalization,

a = [0.80 0.27 0.53 0] h = [0 0.59 0.36 0.72]

Initial

a = [1 1 1 1] h = [1 1 1 1]

It # 2

a = [1.67 0.72 1.31 0] h = [0 2.98 1.67 3.7]

After Normalization,

a = [0.745 0.32 0.58 0] h = [0 0.59 0.33 0.73]

It #3

a = [1.65 0.73 1.32 0] h = [0 2.97 1.65 3.7]

After Normalization,

a = [0.74 0.32 0.59 0] h = [0 0.59 0.33 0.73]

Order Pages

Listed after

Search

1

3

2

4

HITS Example (4)

• Assume ‘x’ web-pages
point to page X and ‘y’
pages point to page Y,
where x >> y. What
happens with the hubs
and authority values of
X and Y respectively?

• Assume no
normalization is done
at the end of each
iteration.

X

Y

It # 1

a = [8 2 0 0 0 0 0 0 0 0 0 0]

h = [0 0 8 8 8 8 8 8 8 8 2 2]

It # 2

a = [64 4 0 0 0 0 0 0 0 0 0 0]

h = [0 0 64 64 64 64… 64 4 4]

Initial

X Y ����x web-pages ����<-y ->
a = [1 1 1 1 1 1 1 1 1 1 1 1]

h = [1 1 1 1 1 1 1 1 1 1 1 1]

We can notice that with each iteration i, the ratio of the authority values

of X and Y is proportional to (x/y)^i. After a while, X will completely

dominate Y. There is no change in the hub values of X and Y though.

PageRank
• The basic idea is to analyze the link structure of the web to

figure out which pages are more authoritative (important) in
terms of quality.

• It is a content-independent scheme.

• If Page A has a hyperlink to Page B, it can be considered
as a vote of A for B.
– If multiple pages link to B, then page B is likely to be a good page.

• A page is likely to be good if several other good pages link
to it (a bit of recursive definition).
– Not all pages that link to B are of equal importance.

– A single link from CNN or Yahoo may be worth several times

• The web pages are first searched based on the content.
The retrieved web pages are then listed based on their
rank (computed on the original web, unlike HITS that is run
on a graph of the retrieved pages).

• The Page Rank of the web pages are indexed
(recomputed) for every regular time period.

PageRank

(Random Web Surfer)
• Web – graph of pages with the

hyperlinks as directed edges.

• Analogy used to explain PageRank
algorithm (Random Web Surfer)

• User starts browsing on a random page

• Picks a random out-going link listed in
that page and goes there (with a
probability ‘d’, also called damping
factor)
– Repeated forever

• The surfer jumps to a random page with
probability 1-d.
– Without this characteristic, there could be a

possibility that someone could just end up
oscillating between two pages B and C as in
the traversing sequence below for the graph
shown aside:

G � E � F � E � D � B � C

B

C

E

FD

A

G

H
I

J

K

Lets say d = 0.85.

To decide the next page

to move, the surfer simply

generates a random

number, r. If r <= 0.85,

then the surfer randomly

chooses an out-going link

from the existing page.

Otherwise, jumps to a

randomly chosen page

among all the pages,

including the current page.

PageRank Algorithm
• PageRank of Page X is the

probability that the surfer is at page
X at a randomly selected time.
– Basically the proportion of time, the

surfer would spend at page X.

• PageRank Algorithm
• Initial: Every node in the graph gets

the same pagerank. PR(X) = 100% /
N, where N is the number of nodes.

• At any time, at the end of each
iteration, the page rank of all nodes
add up to 100%.

• Actually, the initial pagerank value of
a node is the pagerank at any time, if
there are no edges in the graph. We
have 100% / N chance of jumping to
any node in the graph at any time.

9.1

Initial PageRank

of Nodes

9.1

9.1

9.1 9.1

9.1

9.1

9.1

9.19.1

9.1

PageRank Algorithm

• Page Rank of Node X is the probability of being at
node X at the current time.

• How can we visit node X from where we are?

– (1-d) term: Random Jump: The probability of ending

up at node X because of a random jump from some

node, including node X, is 1/N.

– However, such a random jump itself could occur with a
probability of (1-d).

– This amounts to a probability of (1-d)/N to be at node X

due to a random jump.

Page Rank of
Node X

Assuming

there are NO

Sink nodes
∑

>−

+
−

=
xy yOut

yPR
d

N

d
xPR

)(

)(100*)1(
)(

PageRank Algorithm

• Page Rank of Node X is the probability of being at node X
at the current time.

• How can we visit node X from where we are?
– d term: Edge Traversal from a Neighbor:

– We could visit node X from one of the nodes that point to node X.

– Lets say, we are at node Y in the previous iteration. The probability
of being at node Y in the previous iteration is PR(Y). We can visit
any of Y’s neighbors.

– The probability of visiting node X among the Out(Y) out-going links
of node Y is PR(Y) * (1 / Out(Y)) = PR(Y) / Out(Y).

– Likewise, we could visit X from any of its neighbors.

– All the probabilities of visiting X from any of its neighbors have to be
added, because visiting X from any of its neighbors is independent
of the neighbors.

– The whole event of visiting from a neighbor occurs with a prob. ‘d’

Page Rank of
Node X

Assuming

there are NO

Sink nodes
∑

>−

+
−

=
xy yOut

yPR
d

N

d
xPR

)(

)(100*)1(
)(

PageRank
• Since Page Rank PR(X) denotes the probability of

being at node X at any time, the sum of the Page
Ranks of all the nodes at any time should be
equal to 1.

• We can also interpret the traversal from a node Y
to node X as node Y contributing a part of its PR
to node X (node Y equally shares its PR to the
nodes connected to it through its out-going links).

• Implementation:
– Note that (unlike HITS) we need to use the page rank

values of the nodes from the previous iteration to
update the page rank values of the nodes in the current
iteration.

• Need to maintain two arrays at any time t: PR(t-1) and PR(t)

Calculating PageRank
of Node B

9.1

Initial PageRank

of Nodes

9.1

9.1

9.1 9.1

9.1

9.1

9.1

9.19.1

9.1

B

Iteration 1

9.1

9.1

4.5
4.5

3.0

4.54.5

4.5

B
A

D

C

F

E

G

H
I

J

K G

H
I

D

C

F

E

For any iteration,

PR(B) = 0.15 * 9.1 +

0.85 * [PR(C) + ½ PR(D) +

⅓ PR(E) + ½ PR(F) +

½ PR (G) + ½ PR(H) + ½ PR(I)]

Assume the damping factor d = 0.85 For Iteration 1,

Substituting the PR values of

the nodes (initial values),

we get PR(B) ≈ 31

Final PageRank Values for the
Sample Graph

9.1
9.1

9.1

9.1 9.1

9.1

9.1

9.1

9.19.1

9.1

B
A

D

C

F

E

G

H
I

J

K

3.3 38.4
34.3

3.9 3.9

8.1

1.6

1.6

1.61.6

1.6

BA

D

C

F

E

G

H
I

J

K

PageRank: More Observations
• Algorithm converges (few iterations sufficient)

• For an arbitrary graph, it is pretty difficult to figure out the
final page rank values of the nodes.

• Certain inferences could be however made.

• For our sample graph:
– For nodes that do not have any in-links pointing to them,

the only way we will end up at these nodes is through a random
jump: this happens with a probability (1-d)/N.
In our case, it is (1-0.85)* 100/11 = 1.6%.

– Two nodes with links from the same node (symmetric in-links)
have the same PR. (nodes D and F) and it will be higher than
those nodes without any in-links.

– One in-link from a node with high PR value contributes significantly
to the PR value of a node compared to the in-links from several
low PR nodes.

• In our sample graph, an in-link from node B contributes significantly
for node C compared to the several in-links that node E gets from the
low-PR nodes. So, the quality of the in-links matters more than the
number of in-links.

A B

C D
Note that there are NO sink nodes

(nodes without any out-going links)

PR(A) = (1-d)*100/4

PR(B) = (1-d)*100/4 + d*[PR(A) + 1/2 * PR(C) + PR(D)]

PR(C) = (1-d)*100/4 + d*[PR(B)]

PR(D) = (1-d)*100/4 + d*[1/2*PR(C)]

Initial

PR(A) = 25

PR(B) = 25

PR(C) = 25

PR(D) = 25

It # 1

PR(A) = 3.75

PR(B) = 56.88

PR(C) = 25

PR(D) = 14.38

Assume damping
Factor d = 0.85

It # 2

PR(A) = 3.75

PR(B) = 29.79

PR(C) = 52.10

PR(D) = 14.38

It # 3

PR(A) = 3.75

PR(B) = 41.30

PR(C) = 29.07

PR(D) = 25.89

It # 4

PR(A) = 3.75

PR(B) = 41.29

PR(C) = 38.86

PR(D) = 16.10

It # 5

PR(A) = 3.75

PR(B) = 37.14

PR(C) = 38.85

PR(D) = 20.27

It # 6

PR(A) = 3.75

PR(B) = 40.68

PR(C) = 35.32

PR(D) = 20.26

It # 7

PR(A) = 3.75

PR(B) = 39.17

PR(C) = 38.33

PR(D) = 18.76

It # 8

PR(A) = 3.75

PR(B) = 39.17

PR(C) = 37.04

PR(D) = 20.04

It # 9

PR(A) = 3.75

PR(B) = 39.71

PR(C) = 37.04

PR(D) = 19.49

It # 10

PR(A) = 3.75
PR(B) = 39.25
PR(C) = 37.5

PR(D) = 19.49

Ranking

B

C
D

A

Page Rank Example (1)

Page Rank: Graph with Sink Nodes
Motivating Example

• Consider the graph: A � B

• Let d = 0.85

• PR(A) = 0.15*100/2 PR(B) = 0.15*100/2 + 0.85*PR(A)

• Initial: PR(A) = 50, PR(B) = 50

• Iteration 1:

– PR(A) = 0.15*100/2 = 7.5

– PR(B) = 0.15*100/2 + 0.85 * 50 = 50.0

– PR(A) + PR(B) = 57.5

– Note that the PR values do not add up to 1.

– This is because, B is not giving back the PR that it receives from A

to any other node in the graph. The (0.85*50 = 42.5) value of PR

that B receives from A is basically lost.

– Once we get to B, there is no way to get out of B other than random

jump to A and this happens only with probability (1-d).

Page Rank: Sink Nodes (Solution)
• Assume implicitly that the sink node is connected to every node in the

graph (including itself).

– The sink node equally shares its PR with every node in the graph,
including itself.

– If z is a sink node, with the above scheme, out(z) = N, the number
of nodes in the graph.

• The probability of getting to node X at a given time is still the two terms
below:

• Random jump from any node (probability, 1-d)

• Visit from a node with in-link to node X (probability, d)

Page Rank

of Node X

the second term of the original Page Rank formula is now broken between

that of nodes with explicit out-going links to one or more selected nodes and

the sink nodes with implicit out-going links to all nodes.

Explicit out-going

links to certain nodes

Implicit out-going

links to all nodes

(sink nodes)

∑ ∑
>− >−

++
−

=
xy z

zPR
N

d

yOut

yPR
d

N

d
xPR

ϕ

)(
)(

)(100*)1(
)(

Consolidated PageRank Formula

A

B

C D

PR(A) = (1-d)*100/4 + d [PR(B)/2 + PR(C)/1 + PR(D)/3] + (d/4)*[PR(A)]

PR(B) = (1-d)*100/4 + d [PR(D)/3] + (d/4)*[PR(A)]

PR(C) = (1-d)*100/4 + d [PR(B)/2 + PR(D)/3] + (d/4)*[PR(A)]

PR(D) = (1-d)*100/4 + (d/4)*[PR(A)]

Initial

PR(A) 25

PR(B) 25
PR(C) 25
PR(D) 25

It # 1

PR(A) 48.02

PR(B) 16.15
PR(C) 26.77

PR(D) 9.063

It # 2

PR(A) 46.14

PR(B) 16.52
PR(C) 23.386

PR(D) 13.954

It # 3

PR(A) 44.41

PR(B) 17.51
PR(C) 24.53

PR(D) 13.55

It # 4

PR(A) 45.32

PR(B) 17.03
PR(C) 24.47

PR(D) 13.18

Page Rank Example (2)

Node Ranking: A, C, B, D

∑ ∑
>− >−

++
−

=
xy z

zPR
N

d

yOut

yPR
d

N

d
xPR

ϕ

)(
)(

)(100*)1(
)(

Page Rank Example (3)
A

B C D

PR(A) = (1-d)*100/4 + d*[½*PR(B) + ½*PR(C) + PR(D)]

PR(B) = (1-d)*100/4 + d*[PR(A)]

PR(C) = (1-d)*100/4 + d*[½*PR(B)]

PR(D) = (1-d)*100/4 + d*[½*PR(C)]

Initial

PR(A) 25

PR(B) 25

PR(C) 25

PR(D) 25

It # 1

PR(A) 46.25

PR(B) 25

PR(C) 14.38

PR(D) 14.38

It # 2

PR(A) 32.71

PR(B) 43.06

PR(C) 14.38

PR(D) 9.86

It # 3

PR(A) 36.54

PR(B) 31.55

PR(C) 22.05

PR(D) 9.86

It # 4

PR(A) 34.91

PR(B) 34.81

PR(C) 17.16

PR(D) 13.12

It # 5

PR(A) 36.99

PR(B) 33.42

PR(C) 18.54

PR(D) 11.04

It # 6

PR(A) 35.22

PR(B) 35.12

PR(C) 17.95

PR(D) 11.63

It # 7

PR(A) 36.19

PR(B) 33.68

PR(C) 18.68

PR(D) 11.38

It # 8

PR(A) 35.68

PR(B) 34.51

PR(C) 18.06

PR(D) 11.69

It # 9

PR(A) 36.03

PR(B) 34.08

PR(C) 18.42

PR(D) 11.43

Node Ranking: A B C D

Computing Huffman Codes for
Nodes using their PageRank Values

3.3 38.4
34.3

3.9 3.9

8.1

1.6

1.6

1.61.6

1.6

BA

D

C

F

E

G

H
I

J

K

A 3.3

B 38.4

C 34.3

D 3.9

E 8.1

F 3.9

G 1.6

H 1.6

I 1.6

J 1.6

K 1.6

HEBC

B 0

C 11

K 10000

I 100010

J 100011

A 10011

G 100100

H 100101

D 10100

F 10101

E 1011

100101 1011 0 11

The Huffman codes could be used to efficiently
represent paths and frequently used links in the network

A 3.3 B 38.4 C 34.3 D 3.9 E 8.1

F 3.9 G 1.6 H 1.6 I 1.6 J 1.6
K 1.6

G HI JK A D F E CB

3.23.2

4.8 6.5

7.8

11.3

15.9

27.2

61.5

100

0

1

0

10
1

0
1

0 1

0 1

0
1

0 1

0

1

0 1

B 0

C 11

K 10000

I 100010

J 100011

A 10011

G 100100

H 100101

D 10100

F 10101

E 1011

2.41 bits / node
Huffman

4 bits / node
Fixed

40% compression

ratio

EigenVector Centrality
• The idea is to assign scores to all nodes in the network based on the

concept that connections to high-scoring nodes contribute more to the
score of the node (compared to connections to low-scoring nodes)

• EV Centrality is very useful for analyzing the centrality of nodes in large
sparse graphs.

• EV Centrality scores of the vertices are given by the Eigen Vector
corresponding to the largest Eigen Value of the Adjacency matrix of a
graph.

• The EV Centrality Vector has positive values only

– Perron-Frobenius Theorem: A real square matrix with positive
entries has a unique largest real eigenvalue and that the
corresponding Eigenvector has strictly positive components.

• Power Iteration for EV Centrality

Eigen Vector at iteration i+1
||||

1

i

i
i

AX

AX
X =+

|| A Xi || is the normalized value of the product matrix: A Xi

EigenVector Centrality Example (1)

1

2

3

4

5

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

Iteration 1

Let X0 =
1

1

1

1
1

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

1

1

1

1

1

=

1

2

2

3

2

Normalized Value = 4.69

≡

0.213

0.426

0.426

0.639

0.426

Iteration 2

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

0.213

0.426

0.426

0.639

0.426

=

0.426

0.852

1.065

1.278

1.065

Normalized Value = 2.19

0.195

0.389

0.486

0.584

0.486

≡

EigenVector Centrality Example (1)

1

2

3

4

5

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

Let X0 =
1

1

1

1
1

Iteration 3

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

=

0.389

0.779

1.07

1.361

1.07

Normalized Value = 2.21

0.195

0.389

0.486

0.584

0.486

0.176

0.352

0.484

0.616

0.484

≡

Iteration 4

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

Normalized Value = 2.21 converges

0.176

0.352

0.484

0.616

0.484

0.352

0.792

1.100

1.320

1.100

=

0.176

0.352

0.484

0.616

0.484

Eigen Vector

Centrality

EigenVector Centrality Example (2)

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Let X0 =

1

1

1

1
1

1

6

Iteration 1

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

1

1

1

1

1

1

2

2

1

3

1

1

=

Normalized Value = 4.472

0.447

0.447

0.224

0.671

0.224

0.224

Iteration 2

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1.674

0.447

0.447

0.224

0.671

0.224
0.224

0.671

0.671

0.447

0.895

0.671
0.671

0.401

0.401

0.267

0.535

0.401
0.401

=

≡

≡

EigenVector Centrality Example (2)

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Let X0 =

1

1

1

1
1

1

6

Iteration 3

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1.872

0.401

0.401

0.267

0.535

0.401
0.401

0.668

0.936

0.401

1.203

0.535

0.535

0.357

0.500

0.214

0.643

0.286

0.286

Iteration 4

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1. 901

0.357

0.500

0.214

0.643

0.286

0.286

0.714

1.000

0.357

1.072

0.643

0.643

0.376

0.526

0.188

0.564

0.338

0.338

≡

≡

=

=

EigenVector Centrality Example (2)

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Let X0 =

1

1

1

1
1

1

6

Iteration 5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1. 901 converges

0.376

0.526

0.188

0.564

0.338

0.338

0.714

0.940

0.376

1.202

0.564

0.564

0.376

0.494

0.198

0.632

0.297

0.297

≡=

0.376

0.494

0.198

0.632

0.297
0.297

EigenVector

Centrality

Node

Ranking

4

2

1

5

6

3

Note that we typically

stop when the EigenVector

values converge.

For exam purposes,

we will Stop when

the Normalized value

converges.

Eigen Vector Centrality for Directed Graphs
• For directed graphs, we can use the Eigen Vector centrality to evaluate

the “importance” of a node (based on the out-degree Eigen Vector) and
the “prestige” of a node (through the in-degree Eigen Vector)
– A node is considered to be more important if it has out-going links to nodes

that in turn have a larger out-degree (i.e., more out-going links).

– A node is considered to have a higher “prestige”, if it has in-coming links
from nodes that themselves have a larger in-degree (i.e., more in-coming
links).

2 1

3 4

5

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

1 0 0 0 0

Out-going links

based Adj. Matrix

Importance of Nodes

(Out-deg. Centrality)

Node Score

1 1.272

4 1.0

5 1.0

3 0.786

2 0.618

0 0 0 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

In-coming links
based Adj. Matrix

Prestige of Nodes

(In-deg. Centrality)

Node Score

1 1.272

2 1.0

5 1.0

3 0.786

4 0.618

Katz Centrality
• Katz Centrality computes the relative influence of a node within a

network by measuring the number of the immediate neighbors and also
all other nodes in the network that connect to the node under
consideration through these immediate neighbors.

• Connections made with neighbors at distance d (d - # hops) are
penalized by an attenuation factor αd.

• The attenuation factor α should be lower than the inverse of the largest
Eigen Value of the Adjacency matrix.

• Suited specifically for directed acyclic graphs (DAGs) wherein there are
no cycles to influence the number of paths of a certain hop count
between any two vertices.

A – adjacency matrix

Ak captures the number of paths

of length (hops) k between any two

nodes in the graph

α is the attenuation factor

()∑ ∑
∞

= =

=
1 1

)(
k

n

j

ji

kk

Katz AiC α

Katz Centrality Example (1)
A

B C D

0 0 0 0

1 0 1 0

1 0 0 1

1 0 0 0

Adjacency Matrix A =
CKatz

Distance d = 1

A1 =

0 0 0 0

1 0 1 0

1 0 0 1

1 0 0 0

0 0 0 0

CKatz

3 0 1 1

α = 0.1

0 0 0 0

* (0.1)1

0.3 0 0.1 0.1

Distance d = 2

A2 = A1 * A =

0 0 0 0

1 0 1 0

1 0 0 1

1 0 0 0

0 0 0 0

1 0 1 0

1 0 0 1

1 0 0 0

*

0 0 0 0

1 0 0 1

1 0 0 0

0 0 0 0

2 0 0 1

* (0.1)2

+

CKatz

0.3 0 0.1 0.1

+

0.32 0 0.1 0.11

=

Katz Centrality Example (1)
A

B C D

0 0 0 0

1 0 1 0

1 0 0 1

1 0 0 0

Adjacency Matrix A =
CKatz 0 0 0 0

α = 0.1

Distance d = 3

A3 = A2 * A =

0 0 0 0

1 0 1 0

1 0 0 1

1 0 0 0

*

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

* (0.1)3

CKatz

0.32 0 0.1 0.11

+

0.321 0 0.1 0.11

0 0 0 0

1 0 0 1

1 0 0 0

0 0 0 0

Katz Centrality Example (1)
A

B C D

0 0 0 0

1 0 1 0

1 0 0 1

1 0 0 0

Adjacency Matrix A =
CKatz 0 0 0 0

α = 0.1

Distance d = 4

A4 = A3 * A =

0 0 0 0

1 0 1 0

1 0 0 1

1 0 0 0

*

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

* (0.1)4

CKatz

0.321 0 0.1 0.11

+

0.321 0 0.1 0.11

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

For DAGs, We could stop once all the entries in Ak are 0

(or) if distance equals to Number of Nodes – 1,

whichever is larger.

Final Katz Centrality Vector for the given DAG

[0.321 0 0.1 0.11]

Ranking of the Nodes: A D C B

Subgraph Centrality
• The subgraph centrality of a node is a measure of the

number of sub graphs a node is part of.
– Gives more importance to the smaller sub graphs

– Measured as the weighted sum of the number of closed walks of
particular length (l = 1, 2, 3, ….) that a node is part of. The weights
are 1/l!

– For a given adjacency matrix A, Al gives the number of closed
walks of length l from a vertex to another vertex (incl. itself).

()
∑

∞

=

=
0 !

)(
l

ii

l

l

A
iEE

In closed form

where φj(i) is the ith entry of the jth Eigenvector associated with Eigenvalue λj

() []∑
=

==
n

j

jii

A jeieiEE
1

2
)()(

λ
ϕ

Subgraph Centrality Example (1)

1 2

3 4

5

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 0

1 0 1 0 0

A =

Real Eigenvalues: { -1.6180339887498933 ; -1.4728339089952571 ;

-0.4625984229747743 ; 0.618033988749895 ; 2.9354323319700297 }

Eigenvectors:

for Eigenvalue -1.6180339887498933:

[-1.6180339887499287 ; 1.618033988749923 ; 0 ; -1 ; 1]

for Eigenvalue -1.4728339089952571:

[0.3210368162407646 ; 0.32103681624073577 ; -1.7938707252360133 ; 1 ; 1]

for Eigenvalue -0.4625984229747743:

[-1.1617021380432389 ; -1.1617021380432393 ; 0.6991037150684648 ; 1 ; 1]

for Eigenvalue 0.618033988749895:

[0.6180339887498949 ; -0.6180339887498948 ; 0 ; -1 ; 1]

for Eigenvalue 2.9354323319700297:

[1.340665321802488 ; 1.3406653218024878 ; 1.5947670101675404 ; 1 ; 1]

Raw results from the website

Subgraph Centrality Example (2)

1 2

3 4

5

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 0

1 0 1 0 0

A =

λ1 = -1.618

λ2 = -1.473

λ3 = -0.463

λ4 = 0.618

λ5 = 2.935

-1.618 1.618 0 -1 1

0.321 0.321 -1.794 1 1

-1.162 -1.162 0.699 1 1

0.618 -0.618 0 -1 1

1.341 1.341 1.595 1 1

1

2

3

4

5

Eigenvalue

entries

1 2 3 4 5

Node IDs

λ1 = -1.618 0.2

λ2 = -1.473 0.23

λ3 = -0.463 0.63

λ4 = 0.618 1.852

λ5 = 2.935 18.654

EE(Node 1) = { (-1.618)2 * e^(-1.618) + (0.321)2 e^(-1.473) + (-1.162)2 e^(-0.463)

+ (0.618)2 * e^(0.618) + (1.341)2 * e^(2.935) } = 35.65

EE(Node 2) = { (1.618)2 * e^(-1.618) + (0.321)2 e^(-1.473) + (-1.162)2 e^(-0.463)

+ (-0.618)2 * e^(0.618) + (1.341)2 * e^(2.935) } = 35.65

eλj

1 2

3 4

5

-1.618 1.618 0 -1 1

0.321 0.321 -1.794 1 1

-1.162 -1.162 0.699 1 1

0.618 -0.618 0 -1 1

1.341 1.341 1.595 1 1

1

2

3

4

5

1 2 3 4 5

Node IDs

EE(Node 3) = { (0)2 * e^(-1.618) + (-1.794)2 e^(-1.473) + (0.699)2 e^(-0.463)

+ (0)2 * e^(0.618) + (1.595)2 * e^(2.935) } = 48.5

EE(Node 4) = { (-1)2 * e^(-1.618) + (1)2 e^(-1.473) + (1)2 e^(-0.463)

+ (-1)2 * e^(0.618) + (1)2 * e^(2.935) } = 21.6

48.5

35.6 35.6

21.6

21.6

EE(Node 5) = { (1)2 * e^(-1.618) + (1)2 e^(-1.473) + (1)2 e^(-0.463)

+ (1)2 * e^(0.618) + (1)2 * e^(2.935) } = 21.6

λ1 = -1.618 0.2

λ2 = -1.473 0.23

λ3 = -0.463 0.63

λ4 = 0.618 1.852

λ5 = 2.935 18.654

