
Community Detection

Algorithms

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University, Jackson, MS

E-mail: natarajan.meghanathan@jsums.edu

Community
• Community: It is formed by individuals such that those within a group

interact with each other more frequently than with those outside the
group.

• Community detection: discovering groups in a network where individuals’
group memberships are not explicitly given.

– Interactions (edges) between nodes can help determine communities

• Community structures are quite common in real networks. Social
networks include community groups based on common location,
interests, occupation, etc.

• Metabolic networks have communities based on functional groupings.

• Citation networks form communities by research topic.

• Identifying the community sub structures within a network can provide
insight into how network function and topology affect each other.

There is most likely a path from one vertex to another

vertex within a community through the vertices that are

also part of the same community.

For the Karate Club network (to the left), the internal

densities of the two communities are 0.26 and 0.24;

the external densities are 0.035; the overall network

density is 0.14.

Internal and External Community Densities

• Let C be a subset of nodes (V) that form a community.

• For every node i in C, let ki
int and ki

ext be the # links connecting node i to

a node in C and outside C respectively.

)1(
)(

int

int
−

=
∑

CC

i

i

nn

k

Cδ
)1(2

)(
−

=
∑

CC

i

ext

i

ext
nn

k

Cδ

The internal density of every cluster

is significantly larger than the external

density as well as the total density of

the network.

C1 C2 C3

Internal Densities
C1 (4*3 + 1*4) / (5*4) = 0.8

C2 (6*5)/(6*5) = 1.0

C3 (4*3)/(4*3) = 1.0

External Densities
C1 (1 + 1) / (2*5*4) = 0.05

C2 (1 + 1 + 1 + 1)/(2*6*5) = 0.067

C3 (1 + 1)/(2*4*3) = 0.083

Schemes for Identifying Communities

• The number of communities within a network is
typically unknown and the communities are often of
unequal size and/or density.

• Schemes:
– Clique-based

– Hierarchical Clustering
• Bottom-up and Top-down

– Neighborhood Overlap based

– Homophily

– Eigen Vector based

• Evaluation:
– Modularity Maximization

– Silhouette Index

Clique-based Schemes

Clique (Complete Mutuality)
• A clique in a graph is a sub graph in which all the constituent

nodes are directly reachable from one another.

• It is a NP-hard problem to find the maximum-sized clique in
a graph.
– Independent Set-based Minimum Neighbors Heuristic

• Could find more than one clique of different sizes

– Repeated Vertex and Edge Removal Heuristic
• To find a clique of maximum size (depends on an underlying heuristic)

– Clique Percolation methods (could find overlapping communities)

• We will use the notion of Independent Sets to find a clique in
a graph
– Independent Set: A subset of vertices such that there is no edge in

the graph between any two vertices in the subset

– For a given graph G, we will find a complement graph G*
• The vertices in G and G* are the same.

• If an edge (u, v) is in G, there is no edge (u, v) in G*

• If an edge (u, v) is not in G, there is an edge (u, v) in G*

– An independent set in the complement graph G* is a clique in the
original graph G.

Example to Find Independent Set and
Clique: Minimum Neighbors Heuristic

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

3 3 3

2 25

v1 v2 v3

v4 v5 v6

1 2

1

v1 v2 v3

v4 v5 v6

0

Idea: Give preference to vertices with minimal number

of (uncovered) neighbors to be part of the Independent

Set. A vertex is said to be covered if itself or any of its

neighbors in the Independent Set.

Independent Set for the above graph = {v2, v4, v6}

This is also the Maximal Independent Set (i.e.,

there exists no Independent Set of size 4 or more

for the above graph). However, the heuristic is

not guaranteed in general to give a maximal

Independent set.

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

2

2

2

0

3

3

v1

v2

v3

v4

v5

v6

1

1

v1

v2

v3

v4

v5

v6

{v1, v2, v5}

is an Independent

Set in G* and it is

a clique in G.

Given G ------->

Find G*, complement of G

Example 1 to Determine a Clique

Using the Minimum Neighbors

Heuristic to Approximate an

Independent Set

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Find the Complement Graph G* Finding Clique # 1

Example to Find
Several Cliques
In a Graph

1

2

3

4

5

6

7

8

4

4

2

3

4

43

2

1

2

3

4

5

6

7

8

2

2

3

2

1

1

2

3

4

5

6

7

8

1

1

2

1

2

3

4

5

6

7

8

1

1

Max. Independent

Set 1 in G*

= {5, 6, 7, 8}

= Max. Clique in G

Removing the edges associated with 5, 6, 7, 8

from the original graph G and generate a new graph G’
Find a new complement Graph G** (for G’)

Remove stub nodes and isolated nodes

(nodes with only one edge or no edge)

New Complement Graph G**

Reduced graph G’

1

2

3

4

5

6

1

2

3

4

5

6

[5, 6, 7, 8] is Clique # 1

1

2

3

4

5

6

3

2

3 2

1

1
1

2

3

4

5

6

3

2

3 2

1

1

1

2

3

4

5

6

2

1

2

1

1

2

3

4

5

6
1

1

{1, 2, 3} is a clique

in G’

1

2

3

4

5

6

[1, 2, 3] is Clique # 2
Removing edges associated with 1, 2, 3

1

2

3

4

5

6

3

4

5

6

Graph G’’

3

4

5

6

Complement Graph

G*** for G’’

0

1 1

2

3

4

5

6

1 1

2

3

4

5

6

0

[3, 4, 5] is a clique in G’’

1

2

3

4

5

6

7

8

The three cliques
[5, 6, 7, 8]

[1, 2, 3]

[3, 4, 5]

Pruning Technique: Maximum Clique

• Lets say, we are interested to find a clique of size k.

– All vertices in such clique must have degree at least k-1.

• Repeat the following until we only have vertices with degree k-1 or

above in the graph

– Step 1: Remove vertices that have degree less than k-1

– Step 2: Because of the removal of the vertices in Step 1, the degree

of some other vertices would have become less than k-1.

» If any such vertices exist, Go to Step 1.

» Otherwise, exit from the loop

• If the reduced graph obtained from the above has one or more

components in which each component has vertices with degree k-

1 or above, run any heuristic to find clique (say, the Independent

Set-based heuristic) on the reduced graph

1

2

3

4

5

6

7

8

Anticipating a Clique of Size 4 (i.e., each vertex in the clique has degree 3)

Remove from the graph all vertices with degree less than 3.

Recursively remove all the vertices and associated edges until each vertex

has degree 3 or above.

1

2

3

4

5

6

7

8

1

3

4

5

6

7

8

Finding the Maximum Clique

May not be effective all the time

Example to Find

The Maximum Clique

Using Pruning Technique

3

4

5

6

7

8

4

5

6

7

8

5

6

7

8

Apply the Independent Set Heuristic

5

6

7

8

[5, 6, 7, 8] form an independent

set in the complement graph

Hence [5, 6, 7, 8] form a clique

in the original graph

Clique Percolation Method

• Used to find overlapping communities

– Input

• A parameter k, and a network

– Procedure

• Find out all cliques of size k in a given network

• Construct a clique graph. Two cliques are adjacent if

they share k-1 nodes

• Each connected component in the clique graph forms

a community

Example 1: Clique Percolation Method

Example 2: Clique Percolation Method

1

2

3

4

5

6

7

8

[1, 2, 3]

[1, 3, 4]

[3, 4, 5]

[4, 5, 6]

[5, 6, 7]

[5, 6, 8]
[5, 7, 8]

[6, 7, 8]

Cliques of Size 3

1, 2, 3

1, 3, 4

3, 4, 5

4, 5, 6
5, 6, 7

5, 6, 8

5, 7, 8

6, 7, 8

The following is the clique graph.

All the cliques of size 3 are

connected. Hence, all the vertices

in the given graph are said to be

in one single community.

CINET: Clique
• CINET can be used for the following:

– To count the number of cliques of a given size in a graph

– To find the maximal cliques containing a particular vertex

– To find the size of the largest clique in a graph and to find

its constituent nodes

• Example: The following results are obtained for the

American Football Network (114 nodes; 613 edges)

– # Cliques of Size 3 (# triangles): 810

– Largest Clique is of Size 9 and it comprises of nodes 25,

33, 109, 45, 1, 103, 89, 37, 105

– The maximal clique that contains vertex 0 is of size 8 and
the constituent nodes are: 0, 23, 16, 9, 93, 4, 104, 41

Modularity Maximization

Modularity Maximization
• Modularity measures the strength of a community partition by taking into

account the degree distribution.

• Given a network with m edges, the expected number of edges between
two nodes i and j with degrees di and dj respectively is di*dj / 2m.

1

2

3

4

5

6

7

8

Expected number of edges between

nodes 1 and 2 is (3)(2) / (2*15) = 0.20

Strength of a Community, C

∑
∈∈

−
CjCi

ji

ji
m

dd
A

,

,
2

For a network with k communities and a total of m edges

Modularity:

∑ ∑
= ∈∈

−=
k

l CjCi

ji

ji

ll
m

dd
AQ

1 ,

,
2

A larger value for Q

indicates a good

community structure

Modularity Maximization
• The intuition behind the idea of modularity is that a

community is a structural element of a network that has been
formed in a manner far from a random process.

• If we consider the actual density of links in a community, it
should be significantly larger than the density we would
expect if the links in the network were formed by a random
process.
– In other words, if two nodes i and j are end up being in the same

community, there should be more likely a link between them (i.e., Aij
= 1, leading to an overall high value for Q).

– If i and j end up being in a community such that the chances of
having a link between them is just as the same as between any two
nodes in the network (i.e., a random network), then the value of Q is
more likely to be low (because there could be some Aij = 0 that will
bring down the value of Q).

Evaluating Modularity (Example 1)

1

2

3

4

5

6

7

8

1

2
3

4

5

6

7

8

3 5

4

34

3 5 3Community [1, 4, 5, 7]

Edges with Aij = 1 Modularity
1 – 4 1 – (3)(4)/(2*15) = 0.60
4 – 5 1 – (4)(5)/(2*15) = 0.33
5 – 7 1 – (3)(5)/(2*15) = 0.50
Edges with Aij = 0

1 – 5 0 – (3)(5)/(2*15) = -0.50
1 – 7 0 – (3)(3)/(2*15) = -0.30
4 – 7 0 – (4)(3)/(2*15) = -0.40

Total Modularity Score for
Community [1, 4, 5, 7]

0.23

Community [2, 3, 6, 8]
Edges with Aij = 1 Modularity
2 – 3 1 – (3)(4)/(2*15) = 0.60
2 – 6 1 – (3)(5)/(2*15) = 0.50

6 – 8 1 – (3)(5)/(2*15) = 0.50
Edges with Aij = 0
2 – 8 0 – (3)(3)/(2*15) = -0.30
3 – 6 0 – (4)(5)/(2*15) = -0.67
3 – 8 0 – (4)(3)/(2*15) = -0.40

Total Modularity Score for
Community [2, 3, 6, 8]

0. 23Total Modularity for the two

Communities: 0.23 + 0.23 = 0.46

Evaluating Modularity (Example 2)

1

2

3

4

5

6

7

8

Community [1, 2, 3, 4]

Edges with Aij = 1 Modularity
1 – 2 1 – (3)(3)/(2*15) = 0.70
1 – 3 1 – (3)(4)/(2*15) = 0.60
1 – 4 1 – (3)(4)/(2*15) = 0.60
2 – 3 1 – (3)(3)/(2*15) = 0.70

3 – 4 1 – (4)(4)/(2*15) = 0.47
Edges with Aij = 0
2 – 4 0 – (3)(4)/(2*15) = -0.40

Total Modularity Score for
Community [1, 2, 3, 4]

2.67

Community [5, 6, 7, 8]
Edges with Aij = 1 Modularity
5 – 6 1 – (5)(5)/(2*15) = 0.17
5 – 7 1 – (3)(5)/(2*15) = 0.50

5 – 8 1 – (3)(5)/(2*15) = 0.50
6 – 7 1 – (3)(5)/(2*15) = 0.50
6 – 8 1 – (3)(5)/(2*15) = 0.50
7 – 8 1 – (3)(3)/(2*15) = 0.70

Total Modularity Score for
Community [2, 3, 6, 8]

2.87Total Modularity for the two

Communities: 2.67 + 2.87 = 5.54

1

2

3

4

5

6

7

8

3 5

4 3

3 5 3

4

CINET: Cliques and Communities
• The following communities could be predicted in the

American College Football network based on the cliques
identified by CINET. The modularity score of the
communities is 0.6.

Evaluating Clusters with

Silhouette Index

Silhouette Index
• Let there be r communities (clusters) C1, C2, …, Cr.

• For every node i, determine the shortest path distances (#
hops) to every other node j.

• Find the average distance of node i to the nodes in each of
the r clusters.

• For a node i in cluster Ck, find the minimum average
distance () to a cluster Cj (j ≠ k).mind

Silhouette Index

of a node i: { }ki

ki

Cdd

Cdd
is

,min,max

,min
)(

−
=

Silhouette Index

of a cluster Ck
∑

=

=
nCk

iC

k is
n

Cs

k
1

)(
1

)(

∑
=

=
r

j

rCs
r

Gs
1

)(
1

)(
Silhouette Index
of a graph G

s(i) � 1 implies

the node is in the

best possible cluster

s(i) � -1 implies the

node is in the wrong

Cluster

s(i) � 0, implies it

would be possible to

move the node to an

adjacent cluster

Silhouette Index: Correct Clustering

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

0 1 1 1 2 2 3 3

1 0 1 2 2 1 3 2

1 1 0 1 1 2 2 3

1 2 1 0 1 1 2 2

2 2 1 1 0 1 1 1

2 1 2 1 1 0 1 1

3 2 2 2 1 1 0 1

3 2 2 2 1 1 1 0

1

2

3

4

5

6

7

8

C1

5, 6, 7, 8

C2

1, 2, 3, 4
Mem.

cluster

C2 2.5 0.75 2.5 0.75 0.7

C2 2.0 1.0 2.0 1.0 0.5

C2 2.0 0.75 2.0 0.75 0.625

C2 1.5 1.0 1.5 1.0 0.333

C1 0.75 1.5 1.5 0.75 0.5

C1 0.75 1.5 1.5 0.75 0.5

C1 0.75 2.25 2.25 0.75 0.67

C1 0.75 2.25 2.25 0.75 0.67

(outside

own cluster)
mind

ki Cd ,
(Mem.cluster) { }ki

ki

Cdd

Cdd
is

,min,max

,min
)(

−
=

s(C2)

Avg(si)

= 0.54

s(C1)

Avg(si)

= 0.59

Overall Silhouette Index of the Network = Average of the index of all clusters = 0.565

C2C1

Silhouette Index: Wrong Clustering

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

0 1 1 1 2 2 3 3

1 0 1 2 2 1 3 2

1 1 0 1 1 2 2 3

1 2 1 0 1 1 2 2

2 2 1 1 0 1 1 1

2 1 2 1 1 0 1 1

3 2 2 2 1 1 0 1

3 2 2 2 1 1 1 0

1

2

3

4

5

6

7

8

C1

2, 3, 6, 8

C2

1, 4, 5, 7
Mem.

cluster

C2 1.75 1.5 1.75 1.5 0.143

C1 1.0 2.0 2.0 1.0 0.5

C1 1.5 1.25 1.25 1.5 -0.2

C2 1.5 1.0 1.5 1.0 0.333

C2 1.25 1.0 1.25 1.0 0.2

C1 1.0 1.25 1.25 1.0 0.2

C2 1.5 1.5 1.5 1.5 0

C1 1.25 1.75 1.75 1.25 0.286

(outside

own cluster)
mind

ki Cd ,
(Mem.cluster) { }ki

ki

Cdd

Cdd
is

,min,max

,min
)(

−
=

s(C2)

Avg(si)

= 0.17

s(C1)

Avg(si)

= 0.197

Overall Silhouette Index of the Network = Average of the index of all clusters = 0.183

C1
C2

Hierarchical Clustering

(Complete Linkage Clustering)

Bottom-Up Approach

(Agglomerative)

Complete Linkage Clustering
• Compute the “pair-wise” distance matrix P between any two

vertices.

• Initially, start with each vertex in its own cluster.

• Merge the two “closest” vertices (clusters)
– In case of a tie (between two or more pairs of clusters), choose the

pair with the minimum value for the total pair-wise distance / sum of
the two pair sizes

• Remove the entries from P, for the two vertices (clusters)
merged, and add an entry corresponding to the merged
vertex (cluster).
– Update this entry with the longest distance between any vertex in the

merged cluster with the vertices in the other clusters in P.

• Repeat the above step of merging and removing/adding
entries to P until there is only one cluster.

1

2

3

4

5

6

1 2 3 4 5 6
1 0 1 1 2 2 3

2 0 1 1 2 2

3 0 2 1 2

4 0 2 1

5 0 1

6 0

1 2 63 45

1,2

Complete Linkage
Clustering (Example 1)

1,2 3 4 5 6

1,2 0 1 2 2 3

3 0 2 1 2

4 0 2 1

5 0 1

6 0

1,2,

3

1,2,3 4 5 6

1,2,3 0 2 2 3

4 0 2 1

5 0 1

6 0

4,6

1,2,3 4,6 5

1,2,3 0 3 2 (5)

4,6 0 2 (3)

5 0

4,5,

6
Break the tie by choosing the

Pair with the minimum total

Pair-wise distance / Pair size

(1,2,3) and (5): 5/4 = 1.25

(4,6) and (5): 3/3 = 1.0

1

2

3

4

5

6

Complete Linkage
Clustering

1 2 63 45

1,2

1,2,

3

4,6

4,5,

6

1…6

Complete Linkage
Clustering

1

2

3

4

5

6

2

3 2

2

3 2

Total Modularity = 2.641

1 2 63 45

1,2

1,2,

3

4,6

4,5,

6

1…6

Modularity(1,2,3)

Mod(1,2) = 1 – (2*3)/(2*7) = 0.571

Mod(1,3) = 1 – (2*3)/(2*7) = 0.571

Mod(2,3) = 1 – (3*3)/(2*7) = 0.357

Modularity(4,5,6)

Mod(4,5) = 0 – (2*2)/(2*7) = -0.286

Mod(4,6) = 1 – (2*2)/(2*7) = 0.714

Mod(5,6) = 1 – (2*2)/(2*7) = 0.714

Complete Linkage
Clustering

1

2

3

4

5

6

2

3 2

2

3 2

Total Modularity = 1.285

1 2 63 45

1,2

1,2,

3

4,6

4,5,

6

1…6

Mod(1,2) = 1 – (2*3)/(2*7) = 0.571

Mod(3) = 0

Mod(5) = 0

Mod(4,6) = 1 – (2*2)/(2*7) = 0.714

1

2

3

4

5

6

Final

Partition

Total Modularity = 2.641

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
1 0 1 1 1 2 2 3 3

2 0 1 2 2 1 2 2

3 0 1 1 2 2 3

4 0 1 1 2 2

5 0 1 1 1

6 0 1 1

7 0 1

8 0

1 2 3 4 5 6 7 8

1,2

1,2 3 4 5 6 7 8

1,2 0 1 2 2 2 3 3

3 0 1 1 2 2 3

4 0 1 1 2 2

5 0 1 1 1

6 0 1 1

7 0 1

8 0

1,2,

3

Complete Linkage
Clustering (Example 2)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1,2

1,2,

3

1,2,3 4 5 6 7 8
1,2,3 0 2 2 2 3 3

4 0 1 1 2 2

5 0 1 1 1

6 0 1 1

7 0 1

8 0

4,5

1,2,3 4,5 6 7 8

1,2,3 0 2 2 3 3

4,5 0 1 2 2

6 0 1 1

7 0 1

8 0
4,5,6

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1,2

1,2,

3

4,5

4,5,6

1,2,3 4,5,6 7 8
1,2,3 0 2 3 3

4,5,6 0 2 2

7 0 1

8 0

7,8

1,2,3 4,5,6 7,8

1,2,3 0 2 (14) 3

4,5,6 0 2 (8)
7,8 0

Break the tie by choosing the

Pair with the minimum total

Pair-wise distance / Sum of pair size

(1,2,3) and (4,5,6): 14/6 = 2.33

(4,5,6) and (7,8): 8/5 = 1.6

4,5,6,

7,8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1,2

1,2,

3

4,5

4,5,6

7,8

4,5,6,

7,8

1..8

1 2 3 4 5 6 7 8

1,2

1,2,

3

4,5

4,5,6

7,8

4,5,6,

7,8

1..8

Modularity(4,5,6,7,8)
Mod(4,5) = 1 – (4*5)/(2*15) = 0.33
Mod(4,6) = 1 – (4*5)/(2*15) = 0.33
Mod(4,7) = 0 – (3*4)/(2*15) = -0.4

Mod(4,8) = 0 – (3*4)/(2*15) = -0.4
Mod(5,6) = 1 – (5*5)/(2*15) = 0.17
Mod(5,7) = 1 – (3*5)/(2*15) = 0.50
Mod(5,8) = 1 – (3*5)/(2*15) = 0.50
Mod(6,7) = 1 – (3*5)/(2*15) = 0.50

Mod(6,8) = 1 – (3*5)/(2*15) = 0.50
Mod(7,8) = 1 – (3*3)/(2*15) = 0.70

1

2

3

4

5

6

7

8

3

3

453

3 5

4

Modularity(1,2,3)
Mod(1,2) = 1 – (3*3)/(2*15) = 0.70

Mod(1,3) = 1 – (3*4)/(2*15) = 0.60
Mod(2,3) = 1 – (3*4)/(2*15) = 0.60

Total Modularity

4.63

Final

Partition

Total Modularity = 4.63

1

2

3

4

5

6

7

8

Complete Linkage Clustering

From the previous slides,

We know that the optimal

Partitioning of the graph is:

1

2

3

4

5

6

7

8

Modularity (1, 2, 3, 4) +

Modularity (5, 6, 7, 8) = 5.54

Thus, complete linkage clustering need not always give the optimal solution.

Hierarchical Clustering

Edge Betweenness

Top-Down Approach

(Divisional)

Edge Betweenness as Flow along the Edge
• Here, we model edge betweenness as a measure of the total amount of

flow (proportional to the number of shortest paths the edge is part of) it
carries, counting flow between all pairs of nodes using this edge.

• Note that in this graph below, there is only one shortest path between
any two nodes. Hence, the total amount of flow through an edge is the #
shortest paths through that edge

Edge 7-8 in the graph

here carries flow

from each of the 7

nodes on the left

(incl. node 7) and the

7 nodes on the right

(incl. node 8)

shortest paths through

Edge 7-8 is 7*7 = 49

Example 1

Edge Betweenness: Motivating Example

Shortest Paths through edge 3 – 7 is: 3 * 11 = 33

Similarly, the # Shortest Paths through edges 6 – 7, 8 – 9 and 8 – 12 are 33 each.

Shortest Paths through edge 1 – 3 is 12. Similarly, the # Shortest Paths through

edges 2 – 3, 4 – 6, 5 – 6, 9 – 10, 9 – 11, 12 – 13 and 12 – 14 are 12 each.

Shortest Paths through edge 1 – 2, 4 – 5, 10 – 11 and 13 – 14 are 1 each.

Edge Betweenness: Motivating Example 1

Step 2

Shortest Paths

3 – 7: 3*4 = 12

6 – 7: 3*4 = 12

1 – 2: 1

4 – 5: 1

1 – 3: 5

5 – 6: 5

2 – 3: 5

4 – 6: 5

1, 2, 3, …, 14

1, 2, 3, 4, 5, 6, 7 8, 9, 10, …, 14

1, 2, 3 7 4, 5, 6 9, 10, 11 8 12, 13, 147

1 2 3 77
4 5 6 9 10 11 8 12 13 14

Partition Tree

1, 2, 3, …, 14

1, 2, 3, 4, 5, 6, 7 8, 9, 10, …, 14

Modularity (1, 2, 3,4 ,5 6, 7)

Mod (1, 2) = 1 – (2*2)/(2*17) = 0.882

Mod (1, 3) = 1 – (2*3)/(2*17) = 0.824

Mod (1, 4) = 0 – (2*2)/(2*17) = -0.118

Mod (1, 5) = 0 – (2*2)/(2*17) = -0.118

Mod (1, 6) = 0 – (2*3)/(2*17) = -0.176

Mod (1, 7) = 0 – (2*3)/(2*17) = -0.176

Mod (2, 3) = 1 – (2*3)/(2*17) = 0.824

Mod (2, 4) = 0 – (2*2)/(2*17) = -0.118

Mod (2, 5) = 0 – (2*2)/(2*17) = -0.118

Mod (2, 6) = 0 – (2*3)/(2*17) = -0.176

Mod (2, 7) = 0 – (2*3)/(2*17) = -0.176

Mod (3, 4) = 0 – (2*3)/(2*17) = -0.176

Mod (3, 5) = 0 – (2*3)/(2*17) = -0.176

Mod (3, 6) = 0 – (3*3)/(2*17) = -0.265

Mod (3, 7) = 1 – (3*3)/(2*17) = 0.735

Mod (4, 5) = 1 – (2*2)/(2*17) = 0.882

Mod (4, 6) = 1 – (2*3)/(2*17) = 0.824

Mod (4, 7) = 0 – (2*3)/(2*17) = -0.176

Mod (5, 6) = 1 – (2*3)/(2*17) = 0.824

Mod (5, 7) = 0 – (2*3)/(2*17) = -0.176

Mod (6, 7) = 1 – (3*3)/(2*17) = 0.735

Modularity(1, 2, 3, 4, 5 , 6, 7) = 4.385

Modularity(8, 9, 10, …, 14) = 4.385

Total Modularity = 8.77

1, 2, 3, …, 14

1, 2, 3, 4, 5, 6, 7 8, 9, 10, …, 14

1, 2, 3 7 4, 5, 6 9, 10, 11 8 12, 13, 147

Modularity (1, 2, 3)

Mod (1, 2) = 1 – (2*2)/(2*17) = 0.882

Mod (1, 3) = 1 – (2*3)/(2*17) = 0.824

Mod (2, 3) = 1 – (2*3)/(2*17) = 0.824

Mod (1, 2, 3) = 2.53

Due to symmetry,

Modularity (4, 5, 6) = 2.53

Modularity (9, 10, 11) = 2.53

Modularity (12, 13, 14) = 2.53

Total Modularity = 10.12

Final Partitioning into Communities

Example 1

Example 2

Shortest Paths through edge 5 – 7 is: 5 * 5 = 25

Shortest Paths through edge 5 – 6 (from 1, 2, .., 5 to 6) and 6 – 7 is only 5 each

Shortest Paths through edge 2 – 5 is: 7 (from 2 to 5..11) + 3.5 (from 1 to 5…11) = 10.5

Similarly, # Shortest Paths through edge 3 – 5, 7 – 9 , 7 – 10 are 10.5 each.

Shortest Paths through 4 – 5 (4 to 5, 6, …, 11) and 7 – 8 are 7 each

Shortest Paths through 2 – 4, 3 – 4, 8 – 9 and 8 – 10 are only 1 each

Shortest Paths through 2 – 3 and 9 – 10 are only 1 each

Shortest Paths through 1 – 2 is 1 + 4.0 (1/2 for each of 4, 5, …, 11) = 5.0

Shortest Paths through 1 – 3, 9 – 11, 10 – 11 are also 5 each.

Note: For an edge like 2 – 5, it could be part of

shortest paths from 1 to 5, 6, 7, …, 11. But, there

are also shortest paths from 1 to 5, 6, , …, 11 through

edge 3 – 5. Hence, the net # shortest paths on 2 – 5

from 1 to the seven vertices 5, 6, 7, …, 11 is 7/2 = 3.5

Note that after Step 1, the # shortest paths through edge 5 – 6 becomes: 5 * 6 = 30

Likewise, the # shortest paths through edge 6 – 7 becomes: 5 * 6 = 30

After Step 2, the # shortest paths through edge 1 – 2 is: 1 (1 to 2) + 1 (1/2 from 1 to 4

and 5) = 2.0. Similarly, the # Shortest paths through edge 1 – 3 is 2.0

The # shortest paths through edge 2 – 4 is 1 + ½ (from 1 to 4) = 1.5

Hence, edges 1 – 2 and 1 – 3 have high betweenness (2 each) than

edges 2 – 4 and 3 – 4 (1.5 each)

Partition Tree

1, 2, 3, …., 11

61, 2, 3, 4, 5 7, 8, 9, 10, 11

6
1 2, 3, 4, 5 7, 8, 9, 10 11

1, 2, 3, …., 11

61, 2, 3, 4, 5 7, 8, 9, 10, 11

6
1 2, 3, 4, 5 7, 8, 9, 10 11

Modularity(1, 2, 3, 4, 5)

Mod (1, 2) = 1 – (2*4)/(2*19) = 0.789

Mod (1, 3) = 1 – (2*4)/(2*19) = 0.789

Mod (1, 4) = 0 – (2*3)/(2*19) = -0.158

Mod (1, 5) = 0 – (2*5)/(2*19) = -0.263

Mod (2, 3) = 1 – (4*4)/(2*19) = 0.579

Mod (2, 4) = 1 – (4*3)/(2*19) = 0.684

Mod (2, 5) = 1 – (4*5)/(2*19) = 0.474

Mod (3, 4) = 1 – (3*4)/(2*19) = 0.684

Mod (3, 5) = 1 – (4*5)/(2*19) = 0.474

Mod (4, 5) = 1 – (3*5)/(2*19) = 0.605

Modularity(1, 2, 3, 4, 5) = 4.657

Similarly, Modularity(7, 8, 9, 10, 11) = 4.657

Total Modularity (Level 1) = 9.314

Modularity (2, 3, 4, 5) = 3.5

Modularity (7, 8, 9, 10) = 3.5

Total Modularity (Level 2) = 7.0

Level 1

Level 2`

Total Modularity (Level 1) > Total Modularity

(Level 2)

Hence, we will go with Level 1 partitioning

Final Partitioning

Finding the # Shortest Paths through an Edge
• For graphs in which there is more than one paths between one or more

pair of vertices, the total flow through an edge is not equal to the total #
shortest paths through the edge.

• We will now see an algorithm proposed by Girvan and Newman to
determine the total flow through an edge.

• Repeat the following for every vertex
– Perform a Breadth First Search (BFS) of the graph, starting from the first

vertex, say A.

– Determine the # shortest paths from A to each other node using the BFS
levels of the nodes

– Based on the above numbers of shortest paths, determine the amount of flow
from A to all the other vertices that uses each edge.

• The total flow through an edge is the sum (for directed graph) or half of
the sum (for undirected graph) of the flows determined through that edge
when BFS is run from every vertex in the graph.
– For undirected graph, we divide by the total sum of the flows by 2 because an

edge is counted twice on the shortest path between any two vertices.

– For example A – B – C; the edge A – B is counted twice (once on the
shortest path from A to C and once on the shortest path from C to A

A

E

B

F

GC

D

BFS run on A

A

E

B

F

GC

D

0

1

1

2

2

3

A

B E

G F

D

1 1

1
2

3

Node Levels

Shortest Paths from
Node A to every other Node

A

B E

G F

D

1 1

1 2

3

0.67
0.33

1.33
0.835

0.835

3.165 1.835

Flow on each edge

Computing the Flow Values

We assume one unit of flow originates at each node. We start
with the node at the bottom most level. Let 1 unit of flow start
from node D. Node D gets 2 of its Shortest paths to node A
through F and 1 through G. So, node A sends 2/3 of the flow to
F and 1/3 of the flow to G. Node F adds 2/3 flow received to 1

unit of flow originating at itself and splits the resulting 1.67
equally and sends 0.835 to each of B and E. G merely adds the
0.33 flow units to the 1 units of flow originating at itself and sends
1.33 to B.

A

E

B

F

GC

D

BFS run on B

A

E

B

F

GC

D

1

2

0

1

1

2

Node Levels

Shortest Paths from

Node B to every other Node
Flow on each edge

B

A
F

G

E D

1
1

1

2 2

B

A
F

G

E D

1

1
1

2 2

0.50.50.50.5

1.5
2.0

1.5

A

E

B

F

GC

D

BFS run on G

Node Levels

Shortest Paths from

Node G to every other Node Flow on each edge

A

E

B

F

GC

D

012

123

G

B D

A F

E

1 1

1
2

3

G

B D

A F

E

1 1

1
2

3

0.67
0.33

1.33

0.835

0.835

3.165 1.835

A

E

B

F

GC

D

BFS run on E

Node Levels

Shortest Paths from

Node E to every other Node Flow on each edge

E

A F

B D

G

1 1

3

A

E

B

F

GC

D

0

1

1

2

2

3

2 1

E

A F

B D

G

1 1

3

2
1

0.33

0.67

1.330.835
0.835

3.1651.835

A

E

B

F

GC

D

BFS run on F

Node Levels

Shortest Paths from

Node F to every other Node Flow on each edge

A

E

B

F

GC

D

0

1

1 1

2 2
F

E
B

D

A G

1
1

1

2 2

F

E
B

D

A G

1
1

1

2 2

0.5

0.5

1.5

0.5

0.5

2.0
1.5

A

E

B

F

GC

D

BFS run on D

Node Levels

Shortest Paths from

Node D to every other Node Flow on each edge

A

E

B

F

GC

D

0

1

1

2

2

3
D

F G

E B

A

1 1

1
2

3

D

F G

E B

A

1 1

1
2

3

0.67
0.33

0.835

0.8351.33

3.165 1.835

A

E

B

F

GC

D

A

B E

G F

D

1 1

1 2

3

0.67
0.33

1.33
0.835

0.835

3.165 1.835

B

A
F

G

E D

1

1
1

2 2

0.50.50.50.5

1.5
2.0

1.5

F

E
B

D

A G

1
1

1

2 2

0.5

0.5

1.5

0.5

0.5

2.0
1.5

G

B D

A F

E

1 1

1
2

3

0.67
0.33

1.33

0.835

0.835

3.165 1.835

E

A F

B D

G

1 1

3

2
1

0.33

0.67

1.330.835
0.835

3.1651.835

D

F G

E B

A

1 1

1 2

3

0.67
0.33

0.835

0.8351.33

3.165 1.835

8/2

5.33/

2

8/2

7.34/2 5.33/2

8/2 8/2

Analysis of: Girvan and Newman Algorithm

• After we get the total flow through each edge (betweenness of the
edges), we remove the edge with the largest betweenness.

• We re-run BFS on each vertex and find the betweenness of every edge
and remove the edge with the largest betweenness henceforth.

• We repeat this process until we divide the graph into individual vertices.

• We keep track of the communities that get generated with each edge
removal and then decide on the level of partition (to stop the edge
removal process) by evaluating the modularity scores of the community
scores formed at different levels.

• The Girvan and Newman algorithm, though effective in delineating
communities with high modularity scores, is very inefficient as it requires
BFS (of time complexity Θ(E+V)) to be run on each vertex for every edge
removal.
– For a graph with E edges and V vertices, the overall time complexity will be
Θ(EV(E+V))

Neighborhood Overlap based

Approach

Principle of Triadic Closure
• If two people in a social network have a friend in common, then

there is an increased likelihood that they will become friends
themselves at some point in the future.

• If we observe snapshots of a social network at two distinct points
in time, then in the later snapshot, we generally find a significant
number of new edges that have formed through this triangle-
closing operation, between two people who had a common
neighbor in the earlier snapshot.

G

F

B

A

C

E D

G

F

B

A

C

E D

Before New

Edges Form

After New

Edges Form

Neighborhood Overlap: Strong/Weak Tie

Neighborhood

Overlap
=

For every edge, determine its neighborhood overlap. If it is above a threshold,

then the edge could be classified to be of “strong tie”, otherwise, we say weak tie.

C

A B

D

E

F

G

H

I

Edge Neighborhood Tie

Overlap

A – B 0 Weak

B – G 1/(2+1) = 0.33 Weak

B – D 1/(2+1) = 0.33 Weak

G – D 2/(2+1) = 0.66 Strong

D – H 1/(1+1) = 0.5 Strong

A – I 1/(4) = 0.25 Weak

A – E 3/(4) = 0.75 Strong

E – I 1/3 = 0.33 Weak

E – F 2/4 = 0.5 Strong

F – C 2/2 = 1.0 Strong

A – F 2/4 = 0.5 Strong

Note that one should not count neither A nor B as part of the neighbors in

the denominator

Let threshold = 0.5

Weak Ties for Community Detection
• Weak ties serve to link together different tightly-knit communities that

each contain a large number of stronger ties.

• Remove the Weak ties in the increasing order of their neighborhood
overlap value.
– The graph will get decomposed into several components (communities).

Edge Neighborhood Tie

Overlap

A – B 0 Weak

B – G 1/(2+1) = 0.33 Weak

B – D 1/(2+1) = 0.33 Weak

G – D 2/(2+1) = 0.66 Strong

D – H 1/(1+1) = 0.5 Strong

A – I 1/(4) = 0.25 Weak

A – E 3/(4) = 0.75 Strong

E – I 1/3 = 0.33 Weak

E – F 2/4 = 0.5 Strong

F – C 2/2 = 1.0 Strong

A – F 2/4 = 0.5 Strong

C

A B

D

E

F

G

H

I

C

A B

D

E

F

G

H

I

Strength of an Edge and Strong
Triadic Closure Property

• We classify edges to be either a strong tie (more frequent,
trusted, incentive, opportunity) or a weak tie (not much
frequent interaction, less known)

• In the context of social networks,
– Strong tie � Friend

– Weak tie � Acquaintance

• Strong Triadic Closure Property: If a node A has strong ties
to two neighbor nodes B and C, then there should be an
edge between B and C (at least a weak tie).
– A node is said to violate the strong triadic closure property if there is

no edge between any two of its neighbor nodes with which it has
strong ties.

Example: Strong Triadic Closure

Real World Networks: Strong/Weak
Ties and Neighborhood Overlap

• Onnela et al. studied the who-
talks-to-whom network maintained
by a cell-phone provider that
covered roughly 20% of a national
population.

• Nodes – cell phone users

• Edges – If two nodes made a
phone call to each other over a
18-week observation period

• Assigned edge weights that
indicate the total number of
minutes spent on phone calls
between the two ends of the
edge.

• The edges are sorted by the
weights (indicating tie strength)
and the neighborhood overlap of
these edges in the network are
also measured. We can notice a
positive correlation in the plot.

Percentile of the sorted order of

the edges based on their strength

Strength of Weak Ties: Motivating Study

• Granovetter Interviews

– 54 people who found their jobs via social tie:

• 16.7% via strong tie (at least two interactions/ week)

• 55.7% via medium tie (at least one interaction/ year)

• 27.6% via a weak tie (less than one interaction/ year)

– Weak ties are like bridges, used to transfer less
redundant (but more useful) information.

Clustering
Coefficient

• A measure used to capture the prevalence
of triadic closure in networks

• The clustering coefficient of a node is the
probability that two randomly selected
neighbors of the node are directly
connected to each other.

• The clustering coefficient of a node ranges
from 0 (none of the neighbors are
connected to each other) to 1 (all of the
neighbors are connected to each other).

• The more strongly triadic closure is
operating in the neighborhood of a node,
the higher will tend to be its clustering
coefficient.

• In the figure, the clustering coefficient of
node A has increased from 1/6 to ½ after
certain triadic closures.

G

F

B

A

C

E D

G

F

B

A

C

E D

Before New

Edges Form

After New Edges Form

Social Affiliation Network

• Social Affiliation Network: A
network that connects two
people, and people with their
foci (groups, activities, etc)
they are associated with.

• As the network evolves,
– Two people are likely to be

linked to each other if they are
affiliated to one or more
common foci or common
people.

– A person is likely to be linked to
a foci, because of one or more
common neighbors who are
already linked to the foci.

Robert

Peter

Joseph

Org. A

Org. B

Org. C

Org. D

Closing of Triangle in Social Affiliation
Networks

B C

A

Person Person

Person

Triadic

Closure

B C

A

Person Person

Focus

Focal

Closure

B C

A

Person

Person

Membership
Closure

Focus

Closing of Triangle in

Social Affiliation Networks:

Example

B

C A

D

Org. K

Org. L

Before triangle Closing
B

C A

D

Org. K

Org. L

After triangle Closing

Triangle Closure: Probabilistic Analysis
• For any two nodes, the larger the number of common

neighbors, the larger is the probability of a link to be formed
between the two.

• Let p be the probability that a common neighbor node could
trigger the formation of a link between two particular nodes.

• If there are k such common neighbors,
– the probability that a link is still not formed is given by: (1-p)k

– the probability that a link will be formed (due to triangle closure) is:
1 – (1-p)k

– As k increases, the probability that a link will be formed due to
triangle closure increases.

• On real-time data, to measure the probability that a link is
formed due to triangle closure,
– we take snapshots of the network at an earlier time (before triangle

closure sets in) and at a later time.

– For each possible value of the number of common neighbors (k), we
measure the fraction of the new links added due to triangle closure

Triadic Closure on Real-time Data

1 –
(1-p)k

Source (Easley and Kleinberg): Figure 4.9: E-mail Dataset

Focal Closure on Real-time Data

1 –
(1-p)k

Source (Easley and Kleinberg): Figure 4.10: E-mail Dataset

Membership Closure on Real-time Data

1 –
(1-p)k

Source (Easley and Kleinberg): Figure 4.11: Membership to a LiveJournal Community

Edge and Node Embeddedness
• The “embeddedness of an edge” is the number of common neighbors

the two endpoints have.

• The “embeddedness of a node” is the average of the embeddedness of
its associated edges.

• A network could be partitioned into communities around nodes with
lower embeddedness

• The “embeddedness of a community” is the average of the
embeddedness of the edges forming the community.

• Structural Hole: The node with lower embeddedness is said to constitute
a structural hole, especially when it connects two or more communities
with larger embeddedness.

• A split typically occurs along a weak interface between two densely
connected regions.

Edge and Node Embeddedness

A

F

C

J

E

B

N G

H I

M L

D K

A – B 2

A – E 3

A – C 3

A – F 3

A – J 3

B – E 1

E – F 2

C – F 3

C – J 2

F – J 2

B – J 1

B – N 0

B – D 0

C – E 2

H – I 2

H – N 2

N – G 2

I – G 2

H – G 2

N – I 2

D – K 2

D – M 2

M – L 2

K – L 2

D – L 2

M – K 2

A 2.8

B 0.8

C 2.5

D 1.5

E 2.0

F 2.5

G 2.0

H 2.0

I 2.0

J 2.0

K 2.0

L 2.0

M 2.0

N 1.5

B 0.8

D 1.5

N 1.5

Community (A, B, C, E, F, J) 1.93

Community (D, K, L, M) 2.0

Community (H, I, N, G) 2.0

Nodes B, D and N are structural holes in the above

network.

CINET: Bridge Edges
• CINET can identify the bridge edges in a network graph

(removing the bridge edges disconnects the graph).

12 1

Karate Network: One component Karate Network: Two components
(after the removal of bridge edge 1-12)

12 1

Homophily: Networks and

their Surrounding Contexts

Homophily
• Homophily refers to the notion that we tend to be similar to our friends.

• Typically, our friends are not like a random sample of the underlying
population; rather, when viewed collectively, our friends are generally
similar to us along
– some immutable characteristics (things that cannot be changed) such as race

and ethnicity

– some mutable characteristics (things the could change over time) such as
places we live, we work, beliefs, interests, etc.

• Homophily can produce a division of a network into densely connected
homogeneous parts that are weakly connected to each other.

Nodes are colored according to their race

Nodes are students in middle school and

high schools of a particular region.

The left and right regions of the network

represent communities of nodes

belonging to the same race.

The top and bottom regions of the

network represent communities of

nodes in the middle school and high

school respectively.
Figure 4.1
Easley and Kleinberg

Homophily Examples (1)
• National Sample: only 8% of people have any

people of another race that they ``discuss important
matters’’ with (Marsden 87)

• Interracial marriages U.S.: 1% of white marriages,
5% of black marriages, 14% of Asian marriages
(Fryer 07)

• In middle school, less than 10% of ``expected’’
cross-race friendships exist (Shrum et al 88)

• Closest friend: 10% of men name a woman, 32% of
women name a man (Verbrugge 77)
– Far less than 50% if the connections were random

Friendship among

Students in High
School in US

(Currarini, Jackson, Pin;
2009, 2010)

Homophily
Examples (2)

Smaller groups tend to have

different characteristics than

larger groups.

Segregation is more dominant

as and when we impose more

stringent definition on friendships

Measuring Homophily
• We will see a technique to find out whether a network exhibits homophily

according to a particular characteristic of interest (like race or age).

• If p and q are the fraction of nodes of two particular types (say, male and
female), then on average, the probability that a cross-community link is
randomly formed between two nodes of different types is 2pq
(considering bi-directionality).

• If the fraction of cross-community links in the network is significantly less
than 2pq, then the network exhibits homophily.
– That is, a majority of the links are between people belonging to the same

type.

– The definition for “significantly less” is subjective, say 25% of 2pq

• If the fraction of cross-community links is in the vicinity of 2pq, then there
is no homophily [the links are more random, not based on node types].

• If the fraction of cross-community links in the network is far greater than
2pq, then the network exhibits inverse homophily
– A network of romantic relationships

• We can also extend the analysis to finding homophily involving nodes of
more than two types. We have to just estimate the fraction of cross-
community links that could be formed involving any two different node
types.

Example: Measuring Homophily
Consider a network of classmates

4 – female and 6 – male students

Fraction of male students = 0.6

Fraction of female students = 0.4

Expected fraction of cross-gender

links = 2 * 0.4 * 0.6 = 0.48

A total of 20 links are in the network

Of these, 6 are cross-gender links

Fraction of cross-gender links is 6/20

= 0.3.

If the threshold for cross-community links is 100%, then 0.3 < 0.48

The network is said to exhibit homophily.

Removing all the cross-community links would lead us to identify the

nodes forming the different communities

If the threshold for cross-community links is 25%, then 0.3 > (25%)(0.48)

The network does not exhibit homophily.

Eigen vectors based approach

Using Eigenvectors to Identify Components

• Compute the Eigenvalues and Eigenvectors of the
Adjacency matrix A

• The principal Eigenvector is the one that corresponds to the
largest Eigenvalue.

• If all the entries in the “principal Eigenvector” are positive,
then it implies that all the nodes are in one component.
– Else, the vertices with the positive entries are in one component and

those with the negative entries are in another component. (Note: 0 is
considered positive).

• We apply the above interpretation to all the subsequent
Eigenvectors (in the decreasing order of the corresponding
Eigenvalues) and identify the smaller communities within the
larger components.

Example: Eigenvectors to Identify
Communities (1)

1

2

3 4

5

6

0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

A =

The Eigenvalues in the decreasing order and their corresponding Eigenvectors are:

Eigenvalue Eigenvector

2.4142 [1; 1; 1.4142; 1.4142; 1; 1]

1.7321 [-1; -1; -0.7321; 0.7321; 1; 1]

-0.4142 [1; 1; -1.4142; -1.4142; 1; 1]

-1 [-1; 1; 0; 0; 0; 0]

-1 [0; 0; 0; 0; -1; 1]

-1.7321 [-1; -1; 2.7321; -2.7321; 1; 1]

All entries are +ve; hence all vertices

are in one single component

Vertices 1, 2, 3 form one community

Vertices 4, 5, 6 form another comm.

Within 1-2-3; 3 is in one comm.

Within 4-5-6; 4 is in one comm.

Example: Eigenvectors to Identify
Communities (2)

1

2

3 4

5

6

1

2

3 4

5

6

1

2

3 4

5

6

2.4142 [1; 1; 1.4142; 1.4142; 1; 1] 1.7321 [-1; -1; -0.7321; 0.7321; 1; 1]

