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Following the Crowd
• When people are connected by a network, it becomes 

possible for them to influence each other’s behavior and 
decisions.

• There are many settings in which it may appear to be 
rational for an individual to imitate the choices of others 
even if the individual’s own information suggests an 
alternative choice.

• Example: You want to choose a restaurant in an unfamiliar 
town. You read the reviews and choose restaurant A. You 
go there and you do not find anyone eating; however, there 
are a lot of people eating in a nearby restaurant B.
– It would appear to make more sense to join the people in restaurant 

B instead of on the basis of your private info.

– This is called herding or information cascade.



Following the Crowd
• Information cascade has the potential to occur 

when people make decisions sequentially, with 
later people watching the actions of earlier people, 
and from these actions inferring something about 
what earlier people know.
– A cascade then develops when people abandon their 

own information in favor of inferences based on earlier 
people’s actions.

– Example: Each potential diner (who are yet to choose a 
restaurant) do not get to see the reviews read by the 
earlier diners; but, get to see the choice of the restaurant 
they made.

– Information cascade contributes to imitation in social 
settings (fashions, voting for the popular candidate, 
success of books placed highly on best-seller lists, etc).



A Simple Herding Experiment (1)

• Before delving into the mathematical models for information 
cascades, we start with a simple herding experiment 
(created by Anderson and Holt) to illustrate how these 
models work.

• The experiment is designed to capture situations that 
involve the following basic ingredients of the models:
– There is a decision to be made (like to adopt a new technology, wear 

a new style of clothing, etc)

– People make the decision sequentially, and each person can 
observe the choices made by those earlier.

– Each person has some private information that helps guide their 
decision.

– A person cannot directly observe the private information that other 
people know; but, he or she can make inferences about this private 
information from what they do.



A Simple Herding Experiment (2)
• The experiment takes place in a classroom with a large 

group of student participants.

• The experimenter puts an urn in front of the room, with three 
balls in the urn, which could be either red or blue
– “Majority-red” urn: if two of the three balls are red

– “Majority-blue” urn: if two of the three balls are blue

• Each student draws a ball from the urn; sees the color to 
himself (does not publicly display or tell it); guesses whether 
it would be a “majority-red” or “majority-blue” urn and then 
publicly announces his/her guess.

• We will assume that all students reason correctly about 
what to do when it is their turn to guess, using everything 
they have heard so far.



A Simple Herding Experiment (3)
• First Student: The first student decides based on what s/he sees.

– If the student draws a “blue” marble, he could think the majority of them 
could be blue and publicly announce “majority-blue” and vice-versa

– We will justify it mathematically later

• Second Student: For the second student, the first student’s 
announcement is like already a draw made and appears a perfect 
information of what s/he saw. 
– So, if the second student also draws a ball of the same color announced by 

the first student, then, the second student also declares the urn to be of 
majority the same color.

– If the second student draws a color that is different from that of the first 
student, the second student prefers to stick on to his/her drawn color and 
announces the urn to be of majority of that color

– Either way, the second student’s announcement looks like a perfect 
information of what s/he saw.

• Things do not get interesting if the absolute difference between the 
“number of majority-blues” and the “number of majority-reds” is less than 
2. The participants tend to announce their inferences based on just the 
colors drawn. 
– If the first and second participants announce different colors, for the third 

participant, it is like again starting from fresh (no inferences could be drawn 
from previous draws).



A Simple Herding Experiment (4)
• Information Cascade starts to happen, only if the absolute 

difference between the number of “majority-blues”
announced and the number of “majority-reds” announced is 
2 or more. 
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From here on, all 

subsequent inferences 

will be majority-blue 

irrespective of the color

the participants see



A Simple Herding Experiment (5)
• Assume the first two students announce the same color (lets say,

“majority-blue”). Remember, we have decided that the first two 
announcements convey perfect info.

• Third Student: Even if the third student draws “red,” the student thinks it 
is the only ball in red color and the other two balls (as announced by the 
previous two people) are in blue color. Hence, the third student
announces “majority-blue,” ignoring his/her private info.
– The rest of the class only gets to hear the announcement of the third student 

and not see the actual color s/he draws.

– An information cascade has started.

• Fourth Student and Onward: Given that the first two students are 
considered to have told what they see (in this case, “blue” color balls), 
the announcement of the third student is irrelevant (conveys no 
information) for the fourth student, because in this case, – the third 
student simply decided based on what the first two students said
(irrespective of what s/he saw). 
– Hence, the fourth student simply also decides like the third student and 

announces “majority-blue” irrespective of what s/he saw. 

– This is followed suit by the other students in the class as everyone tends to 
rely only on the limited genuine info available (the first two students).

– If the first two students announce “majority-blue,” everyone else will also 
guess “blue”



Lessons Learnt from the Experiment

• Given the right structural conditions (like the first two 
students announcing “majority-blue”), each of a large group 
of students make exactly the same guess, even when all the 
decision-makers are completely rational.

• Information cascade can sometimes lead to non-optimal 
outcomes.
– Example: Consider the urn is “majority-red”. There is a 1/3 chance 

that the first ball drawn is blue and there is another 1/3 chance that 
the second ball drawn is also blue (the color of the balls drawn are 
independent events). There is only a (1/3*1/3) 1/9 chance that the 
first two guess will be blue; but, if that happens, all the subsequent 
guesses will be blue – and they all will be wrong, since the urn is 
“majority-red”.

– There is a 1/9 chance of a population-wide error being not 
ameliorated by having many people participate.



Lessons Learnt from the Experiment

• Though information cascades has the potential to 
produce long runs of conformity, it can be 
fundamentally fragile.

– Example: Suppose the first two students told “blue” and 
every subsequent student (3, 4, …) guesses blue. Lets 
say, students 50 and 51 turn notorious and show to 
everyone what they got. Lets say, they both show “red”
color, student 52 now has four pieces of genuine 
information (two blue and two red colors). So, student 52 
can essentially break the tie by announcing based on 
what s/he sees. We are simply back to the beginning. 

– This is the fragility of information cascades. Even after 
they have persisted for a long time, they can be 
overturned with little effort.



Bayes’ Rule: A Model of Decision-
Making under Uncertainty

• In order to build a mathematical model for how information cascades 
occur, we need a way to determine probabilities of events, given
information that is observed.

• Given any event A, we will denote its probability of occurring by Pr[A].

• Whether an event occurs or not is the result of certain random 
outcomes. Imagine a large sample space consisting of a particular 
realization for each of these random outcomes (like in the rectangle 
shown below) whose area is 1.

Probability of an event corresponds to the 

area of the region represented with the event

Pr [A | B] should be referred to as the

Probability of event A happening given

that event B happened.

So, Pr [A | B] is the fraction of the area

of event B and occupied by both 

events A and B.
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Pr[A] is simply the probability of 

Event A happening irrespective of

whether event B happened or not.

Pr[A] is hence the prior probability

of A.

Pr[A | B] is the probability that event A happened given that event B happened.

Hence, Pr[A | B] is the posterior probability of A (given B happened).

Bayes’ rule captures change from the prior probability of A to the 

posterior probability



Example (1): Bayes’ Rule
• Lets say a city has 80% of taxi cabs in black color 

and the remaining 20% in yellow.

• A hit-and-run accident has happened involving a 
taxi and a witness states that he saw a yellow taxi 
(report).

• Assume that if a taxi is yellow, then a witness will 
claim it to be yellow after the fact 80% of the time; 
and if it is black, they will claim it is black 80% of 
the time.

• We are interested in finding out the probability that 
the taxi he saw is indeed yellow (actual).



Example (1): Bayes’ Rule (Solution)
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Hence, even though there are only 20% taxi cabs in Yellow, given that the witness

reported that the cab involved in the accident is yellow, the probability that 

the cab involved in the accident is indeed yellow is 0.5 (50%). 



Example (2): Bayes’ Rule
• Bayes’ rule plays a crucial conceptual ingredient in 

the design of e-mail spam filters to automatically 
filter unwanted e-mail out of a user’s incoming e-
mail stream.

• Suppose you receive an e-mail that contains a 
subject “check this out”. We are interested in 
finding out the probability that the e-mail would be a 
spam.

• Assume 40% of your e-mails are spam; 1% of all 
spam e-mails contain the word “check this out”; and 
0.4% of all non-spam e-mails contain the word 
“check this out”



Example (2): Bayes’ Rule: Solution

We could use several such signals (like “checkthisout”) to find the probability that an

Email is spam (given that it has the signal).

The overall probability that an email (containing one or more of this signals is spam)

is the weighted average of all the individual probabilities. The spam filter program

could simply generate a random number and if it is less than the weighted average,

then the e-mail is classified as “spam”.



Bayes’ Rule: Herding Experiment (1)
• The urn is equally likely to be either “majority-blue”

or “majority-red”
– Pr[majority-blue] = Pr[majority-red] = ½

• Based on the compositions of the two urns, if the 
urn is a “majority-blue” one, the probability that a 
ball picked is blue is 2/3; likewise, if the urn is a 
“majority-red” one, the probability that a ball picked 
is red is 2/3.
– Pr[blue | majority-blue] = 2/3

– Pr[red | majority-red] = 2/3

• We are interested in finding the probability that the 
urn is indeed majority-blue if what we hear and see 
is “blue” (from the first two students)



Bayes’ Rule: Herding Experiment (2)

This gives the basis for each of the first two students to tell the urn is “majority-blue”

if they indeed see blue color.



Bayes’ Rule: Herding Experiment (3)
• Lets compute the probability that the urn will be still 

considered to be “majority blue” by the third student, who 
has heard from the first two students (for sure that the ball 
they saw is blue) and the third student sees a “red”.

• Thus, we are interested in finding
– Pr [ “majority-blue” | heard blue, blue, sees red]



Bayes’ Rule: Herding Experiment (4)
• Thus, even if the third student sees a red color, given that 

the first two students indeed saw blue, gives a 2/3 chance 
(greater than 0.5) that the urn is indeed “majority-blue”. 
Thus, the third student makes a guess that the urn would be 
majority-blue and announces the same.

• The above analysis holds good for all the subsequent 
students. They hear the actual colors seen by the first two 
students and irrespective of whether they see red or blue, 
the probability that the urn would be majority-blue is > ½

• Hence, it makes sense for every subsequent student (3, 4, 
…) to guess the urn would be majority-blue and move on. 



Information Cascades:-Multiple Signals
• Consider a modified scenario of the urn-majority color 

problem, where every user has the same hypothesis (i.e., 
say urn is majority-blue).

• Each user goes to the table and picks a ball. If the user sees 
the ball to be of the same color as his hypothesis, he 
presses a “high” signal button; on the other hand, if the user 
sees the ball to be of a different color as his hypothesis, he 
presses a “low” signal button.

• Let there be N users. The Nth user gets to see the 
sequence of high and low signals pressed by the users 
1…N-1.
– Let there be ‘a’ high signals and ‘b’ low signals seen by the Nth user.

– The actual ordering of the high and low signals does not matter. It is 
the count of the high signals and low signals that matters for the Nth 
user.



Information Cascades:-Multiple Signals (2)

• Let q be the probability that a user picks a ball of the same 
color as that of the “actual” majority color of the urn:
– A user picking “blue” color ball, while his hypothesis majority-blue is 

indeed actually true (i.e., the urn is actually majority-blue)

– A user picking “red” color ball, while his hypothesis majority-blue is 
indeed actually false (i.e., the urn is actually majority-red)

• Then, (1-q) is the probability that a user picks a ball of a 
different color (compared to his hypothesis being actually 
true or false):
– A user picking “red” color ball, while his hypothesis majority-blue is 

indeed true (i.e., the urn is actually majority-blue)

– A user picking “blue” color ball, while his hypothesis majority-blue is 
indeed false (i.e., the urn is actually majority-red)

• Remember, each of the 1, …, N-1 users (have the 
hypothesis: the urn is majority-blue) and press a “high”
signal if they the color of the ball they pick is “blue” and 
press a “low” signal if they pick a “red” color ball.



Information Cascades:-Multiple Signals (3)

• Remember, like the Nth user, each of the 1, …, N-1 users
(have the hypothesis: the urn is majority-blue) and press 
a “high” signal if they the color of the ball they pick is “blue”
and press a “low” signal if they pick a “red” color ball.

• High signals
– P[see blue | hypothesis is actually true (urn is majority-blue)] = q

– P[see blue | hypothesis is actually false (urn is majority-red)] = 1-q

• Low signals
– P[see red | hypothesis is actually true (urn is majority-blue)] = 1-q

– P[see red | hypothesis is actually false (urn is majority-red)] = q

• We know that if an urn is indeed actually majority-blue, the 
probability of seeing a blue color ball is > ½. 

• Likewise, if an urn is indeed actually majority-red, the 
probability of seeing a red color ball is > ½. 

• Hence, for both high and low signal scenarios, q > ½. 
Hence, (1-q)  < ½. 



Information Cascades:-Multiple Signals (4)
• The Nth user has initially a probability of ‘p’ for his hypothesis (urn is majority-

blue) to be true.

• Now that he has seen a sequence of S signals (‘a’ high and ‘b’ low signals) by 
the 1…N-1 users, we are interested in finding out : 

P[urn is majority-blue | S]

• Remember, the probability of a signal pressed by each user is independent of 
that pressed by another user.

• From Bayes’ theorem:

P[urn is majority-blue | S] = P[urn is majority-blue] x 

P[S | urn is actually majority-blue] / P[S]

P[S] = P[urn is majority-blue] * P[S | urn is actually majority-blue] +

P[urn is majority-red] * P[S | urn is actually majority-red]

P[S | urn is actually majority-blue] = P[high signal | urn is actually majority-blue]a x         

P[low signal | urn is actually majority-blue]b.

P[S | urn is actually majority-blue] = (q)a (1-q)b.

P[S | urn is actually majority-red] = P[high signal | urn is actually majority-red]a x         

P[low signal | urn is actually majority-red]b.

P[S | urn is actually majority-red] = (1-q)a (q)b.



Information Cascades:-Multiple Signals (5)

P[S] = P[urn is majority-blue] * P[S | urn is actually majority-blue] + 

P[urn is majority-red] * P[S | urn is actually majority-red]

P[S] = p* (q)a (1-q)b + (1-p)* (1-q)a (q)b.

P[urn is majority-blue | S] 

= P[urn is majority-blue] * P[S | urn is actually majority-blue] / P[S]

That is,

We want to find for what values of ‘a’ and ‘b’ would Pr [ H = true | S] > p, where p 

is the initial (prior) probability that the hypothesis is true. 



Information Cascades:-Multiple Signals (6)

• In Summary,

• Let there be a sequence S of ‘a’ high signals and ‘b’ low 
signals (in some order) for a hypothesis H.

We want to find for what values of ‘a’ and ‘b’ would Pr [ H = true | S] > p, where p 

is the initial (prior) probability that the hypothesis is true. 



Information Cascades:-Multiple Signals (7)

• Let us see what happens if we replace the second term in 
the denominator with (1-p)qa(1-q)b. 

Case 1: If ‘a’ > ‘b’: 

The denominator will become: pqa(1-q)b + (1-p)qa(1-q)b = qa(1-q)b.

As a result, the whole ratio will become p. 

Since q > ½, 1-q < ½. 

(1-p)qb(1-q)a < (1-p)qa(1-q)b. Hence, the replacement will increase the value

of the denominator. That is,
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Pr [ H = true | S] > p
Thus, if the sequence of signals is such that the number of high signals is greater

than the number of low signals, the probability for the Hypothesis H to be true is 

greater than the prior probability (ACCEPT THE HYPOTHESIS)



Information Cascades:-Multiple Signals (8)

• Let us see what happens if we replace the second term in 
the denominator with (1-p)qa(1-q)b. 

Case 2: If ‘a’ < ‘b’: 

The denominator will become: pqa(1-q)b + (1-p)qa(1-q)b = qa(1-q)b.

As a result, the whole ratio will become p. 

Since q > ½, 1-q < ½. 

(1-p)qb(1-q)a > (1-p)qa(1-q)b. Hence, the replacement will decrease the value

of the denominator. That is,

Pr [ H = true | S] < p
Thus, if the sequence of signals is such that the number of high signals is lower

than the number of low signals, the probability for the Hypothesis H to be true is 

lower than the prior probability (REJECT THE HYPOTHESIS).
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Information Cascades:-Multiple Signals (9)

• Let us see what happens if we replace the second term in 
the denominator with (1-p)qa(1-q)b. 

Case 3: If ‘a’ = ‘b’: 

The denominator will become: pqa(1-q)b + (1-p)qa(1-q)b = qa(1-q)a, canceling

with the numerator.

Pr [ H = true | S] = p

Thus, if the sequence of signals is such that the number of high signals is equal to

the number of low signals, the probability for the Hypothesis H to be true is 

equal to the prior probability (an indication that more signals need to be observed).



Sequential Decision Making and Cascades

• Consider a person N.

• If the number of acceptances and rejections of the 
hypothesis (say, “majority-blue”) are equal, then person N 
uses his own signal as the tie breaker and decides 
accordingly.

• If the number of acceptances differs (absolute difference) 
from the number of rejections by 1, then the person N still 
decides based on his private (own) signal. 
– If the person’s private signal reinforces the current state of the 

hypothesis being true or false (prior to N), then accordingly the 
absolute difference between the number of acceptances and number
of rejections becomes 2. An information cascade will begun from the 
next person.

– If the person’s private signal contradicts the current state of the 
hypothesis being true or false (prior to N), then the number of 
acceptances will be equal to the number of rejections.  



Sequential Decision Making and Cascades (2)

• If the absolute difference between the number of 
acceptances and rejections is greater than 2, 
– we observe that the posterior probability of the 

hypothesis being true (or false) is greater than the prior 
probability of the hypothesis being true (or false). 

• Hence, private signals are ignored. 

• The person publicly accepts (or rejects) the 
hypothesis, depending on the majority signal �
accordingly, the number of acceptances (or 
rejection) gets incremented, and will continue to be 
incremented.
– An information cascade has begun.



Concluding Observations
• The general conclusion is:

– When people can see what others do but not what they know, there
is an initial period when people rely on their own private information, 
but as time goes on, the population can tip into a situation where 
people – still behaving fully rationally – begin ignoring their own 
information and follow the crowd.

• Marketing Strategy:
– Make an initial set of customers buy your product (but not reveal 

their experiences with the product!)

– The general public is likely to be swayed by the observation that 
several people had already bought the product.

• Decision making in meetings:
– If all people have access to the same information, then an 

information cascade could happen, if the participants are asked to 
convey the decision in a sequence.

– To avoid information cascade in such public settings, the participants 
could be asked to privately vote and a majority decision can be then 
taken.



Concluding Observations (2)

• Cascades can be wrong:
– If the hypothesis is supposed to be false; but, if the first two people 

happen to get high signals, a cascade of acceptances will start 
immediately, even though it is the wrong choice for the population.

• Cascades can be based on very little information:
– Since people ignore their private info once a cascade starts, only the 

pre-cascade info influences the behavior of the population.

– If the cascade starts relatively quickly in a large population, the 
private signals of the individuals are ignored.

• Cascades are fragile: 
– Cascades are easy to stop too. 

– People receiving the private signals of few of those who earlier took 
part in the experiment can overturn a long-lived cascade.



Diffusion in Networks
• So far, we focused on mechanism where an individual’s 

choices is based on the knowledge that the individual has 
about everyone else.

• Many of our interactions with the rest of the world happen at 
a local, rather than a global level

• We often do not care as much about the full population’s 
decisions as about the decisions made by friends and 
colleagues.
– In a work setting, we may choose technology to be compatible with 

the people we directly collaborate with, rather than the universally 
most popular technology

– We may adopt political views that are aligned with those of our 
friends, even of they are nationally in minority.

• We will now focus on taking decisions based on the direct 
benefits that we get in the interaction with our neighbors.
– People tend to align their behaviors with those of their network

neighbors if it could give better payoffs (benefits)



The Diffusion of Innovations
• We will consider how  new practices, opinions, technologies, etc, spread 

from person to person through a network, as people influence their 
neighbor nodes (friends and colleagues) to adopt new ideas.

• Research has shown that though people get to hear about an innovation 
much earlier, they are less likely to adopt it until they see some of their 
neighbors adopting the invention and they see a direct benefit of 
adopting the same as their neighbor.
– Example: One tends to adopt a technology that a majority of his/her friends 

have adopted to communicate. 

• The benefits of adopting a new behavior or innovation increases as 
more and more neighbors adopt it.
– It makes sense to adopt a new behavior once sufficient proportion of 

neighbors have done so.

• Homophily could sometimes appear to be a barrier to diffusion of 
innovations as the latter tends to come from “outside” the system; while, 
Homophily is a measure of people aligning with those who are like 
themselves.



Modeling Diffusion through a Network
• Assume each node has a choice between two possible 

behaviors (innovations, etc), labeled A and B.

• For two nodes v and w linked by an edge:
– If both adopt A, they each get a payoff ‘a’ > 0

– If both adopt B, they each get a payoff ‘b’ > 0

– If they adopt opposite behaviors, they each get a payoff of 0.

• The strategy to be adopted by a node v depends on the 
choice(s) of its neighbors.

• Assume a node v has fraction ‘p’ of ‘d’ neighbors who adopt 
A and fraction (1-p) of d neighbors who adopt B. 
– If the node adopts A, it gets a payoff of pda

– If the node adopts B, it gets a payoff of (1-p)db

– Hence, A is the better choice if pda ≥ (1-p)db

– Rearranging the terms, we get: 
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Hence, if at least b/(a+b)

of the neighbors adopt A,

the node should adopt A.
Initially, except the initial adopters,

We will assume all other nodes 

have adopted B



Diffusion Modeling: Example 1
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Example 2: Opinion Diffusion
a (Red) = 1; b (Blue) = 1; q = 1/2

Iteration 1
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Iteration 2
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Exercises: 

(1) Try this example, with only node 5

being initially Red and others Blue. 

You could observe that diffusion couldn’t happen

at all.

(2) Try this example, with only node 2 being

initially Red and others Blue. 

Does diffusion happen completely or stops

after awhile?



Modeling Diffusion: Nutshell, Issues

• In a nutshell:
– An initial set of nodes adopt A while everyone else adopt B

– Time runs forward in unit steps; in each step, each node uses the 
threshold rule to decide whether to switch from B to A.

– The process stops either when every node has switched to A, or 
when we reached a step when no one wants to switch, at which point 
we say that the network has stabilized for A and B to coexist.

• Note that
– The number of neighbors of a node that adopt A only increases with 

time. Hence, no node switches back to B after adopting A.

• Issues:
– When does every node in the network eventually switches from B to 

A? If so, we say that a “complete cascade” has happened.

– If this does not happen, what causes the spread of A to stop?
• The answer to the above depends on the network structure, the value of 

the threshold q, and the choice of the initial adopters.



Bridges
• An edge joining two nodes A and B in a graph is a bridge if 

deleting the edge would cause A and B to lie in two 
different components.
– The edge is the only route between its endpoints, the nodes A and 

B.

• Bridges provide nodes with access to parts of the network 
that are unreachable by other means.

bridge



Local Bridge
• We say that an edge joining two nodes A and B in a graph 

is a local bridge if A and B have no common neighbors, and
– Deleting the A – B edge would increase the distance between the 

two nodes to more than 2 hops.

– However, deleting the A – B edge would not put A and B in two 
different components

• The span of a local bridge is the number of hops it takes to 
connect the two end nodes of the local bridge if the edge is 
removed from the graph.

• An edge could be a local bridge only if it does not form a 
side of any triangle in the graph.
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A local bridge provides its endpoints access

to parts of the network (and hence sources)

of information, that they would otherwise be

away from.

The closely-knit groups to which the endpoints

belong to roughly know the same things that

the two nodes do (and hence individually may

may not be any new source of information)



Cascade and Clusters
Motivating Example

Nodes 7 and 8 are the initial

adopters

Source: Figure 19.5 : Easley and Kleinberg



Cascade and Clusters: Motivating Example (2)

The process ends after three steps

Source: Figure 19.5 : Easley and Kleinberg

Diffusion happened easily within the 

cluster of the initial adopters. However,

it could not easily penetrate to the other

clusters, through the local bridges that

were connecting these clusters to the 

cluster of the initial adopters.

Strategies: Distribute the initial adopters across

clusters, raise the quality of A (equivalent to

lowering the threshold for adoption)



Cascade and Clusters: Motivating Example (3)

Choice of initial adopters

If we choose nodes 12 or 13 to adopt

A, then a cascade would happen in 

the lower cluster. However, if we even 

let both nodes 11 and 14 to adopt A,

the cascade would not happen in the cluster.

Source: Figure 19.5 : Easley and Kleinberg



What makes Diffusion to Stop?
• The answer is Homophily.

– The spread of a new behavior could stop when it tries to break into a 
tightly-knit community. Thus, innovations are hard to arrive from 
outside densely connected communities.

• A “densely connected community” has the property that 
when you pick up a node within the community, its 
neighbors are also more likely to belong to that community 
as well.

• We say that a cluster is of density p if every node in the 
cluster has at least a p fraction of its neighbor nodes within 
the cluster.  

Source: Figure 19.6 : Easley and Kleinberg

A Collection of 4-node Clusters, each of density 2/3



Theorems: What makes Diffusion Stop?
• Let S be the set of initial adopters.

• Let the remaining network refer to the portion of the network 
consisting of all nodes other than the initial adopters.

• Consider a set S of initial adopters of behavior (or 
innovation) A, with a threshold of q for nodes in the 
remaining network to adopt A.

• Theorem 1: If the remaining network contains a cluster of 
density greater than 1-q, then the set of initial adopters will 
not cause a complete cascade.

• Theorem 2: Whenever a set of initial adopters does not 
cause a complete cascade with threshold q, then the 
remaining network must contain a cluster of density greater 
than 1-q.

• Conclusion: A set of initial adopters can cause a 
complete cascade at threshold q if and only if the 
remaining network contains no cluster of density 
greater than 1-q.



Illustrative Example: Cluster Density

Source: Figure 19.5 : Easley and Kleinberg

Both the circled clusters are of 

density 2/3 each.

For a threshold q = 2/5,

1 – q = 3/5 and both the circled

clusters have a density 2/3 greater 

than 3/5.



1: Clusters are Obstacles to Cascades
• Given that q is the threshold fraction of neighbors (that have already 

adopted the desired behavior, say A) a node should have to adopt A, if 
there is a cluster in the remaining network of density greater than 1-q, 
then A cannot penetrate into the cluster.

• We will prove this by contradiction.

• Consider a node u to be the first node of the cluster (of density greater 
than 1-q) to adopt A and that no other node in the cluster has yet 
adopted A.

• All of node u’s neighbors that contributed for the threshold q should have 
come from outside the cluster. Hence, the fraction of neighbors of node 
u that are inside the cluster could be at most 1-q. 

• But, since the cluster is of density greater than 1-q, each node in the 
cluster should have the fraction of neighbor nodes within the cluster to 
be greater than 1-q. This contradicts that the cluster is of density greater 
than 1-q. 

• Hence, for a node u in the cluster to adopt A, it could only have a 
fraction of neighbors less than q outside the cluster, which makes it not 
qualified to adopt A.



2: Clusters are the only Obstacles to Cascades

• Let R be the set of nodes in the remaining network that have 
not yet adopted the desired behavior A.

• Let us assume that diffusion has stopped without creating a 
complete cascade, leaving a set R of nodes that stayed with 
the alternate (original) behavior B itself.

• For every node u in this set R, the fraction of neighbors who 
adopted A is less than q (otherwise, u would have adopted 
A). Hence, the fraction of neighbors who stayed with B (and 
hence lie in the set R) is greater than 1-q.

• The above observation holds good for every node in R.  
Hence, R is a cluster of density larger than 1-q.

• Conclusion: A set of initial adopters can cause a 
complete cascade at threshold q if and only if the 
remaining network contains no cluster of density 
greater than 1-q.



Bridges and Local Bridges: Tradeoff

Source: Figure 19.11: Easley and Kleinberg

• Bridges, local bridges and structural holes are 
powerful ways to convey awareness of new things 
that the nodes in a cluster would not get from other 
edges.

• But, they are weak in transmitting behaviors where 
one needs to see a higher threshold of neighbors 
doing it before a node does it as well.

• Nodes u and v (learn from w) 

and have strong 

informational advantages 

over other members of their 

respective tightly-knit 

communities – but for 

behaviors with higher 

thresholds they will still 

want to align themselves 

with others in their own community.

u

v

w

x



Cascades, Clusters and Local Bridges

• Cascades and clusters truly are natural opposites: If a 
network has clusters connected with weak ties and the initial 
adopters are not adequately spread across the different 
clusters, clusters block the spread of cascades.

• A world-spanning system of weak ties in a global network is 
able to spread awareness of information with remarkable 
speed, political mobilization moves more sluggishly, needing 
to gain momentum within neighborhoods and small 
communities.
– Thresholds provide a possible reason: social movements tend to be 

inherently risky undertakings, and hence individuals tend to have 
higher thresholds for participating; under such conditions, local 
bridges that connect very different parts of the network are less 
useful.



Cascade Capacity of a Network
• The cascade capacity of a network is the maximum 

threshold value (for every node in the network) at which any 
“small” finite set of initial adopters can cause a complete 
cascade.

• We will analyze cascade capacity using the notion of infinite 
networks, where there is an infinite set of nodes; but, each 
individual node is only connected to a finite number of other 
nodes.

x v u w

For threshold values q ≤ ½, the above infinite network can run into a complete 

cascade, starting with the initial adopters (even one initial adopter would be sufficient)

as shown above. 

In the first round, u and v accept A; in the second round, x and w accept behavior A, 

and so on. For q > ½, the network would not run into a complete cascade.

Hence, the cascade capacity of the above network is ½. 



Example (2)
Consider an infinite grid

Where each node is 

Connected to 8 of its 

Nearest neighbors.

The black nodes are the

Initial adopters.

The nodes c, h, n, i adopt

A in the first round.

Nodes b, d, f, j, m, o, g, k

adopt A in round 2.

Nodes a, e, l, p adopt A in

round 3.

This spreads to the next

square ring of nodes.

The Cascade Capacity
of the grid network is 3/8.

i.e., threshold q ≤ 3/8
leads to a complete

cascade.



Extensions of the Basic Cascade 
Model: Heterogeneous Thresholds

• Each node v in the network has its own (a different) value 
for the threshold qv. 
– The payoff values for a node v are av and bv for associating with 

behaviors A and B respectively.

• A node v adopts behavior A only if the fraction of neighbor 
nodes in the network

vv

v

ba

b
p

+

≥

vv

v
v

ba

b
q

+

=

To effectively realize complete cascade, it is important to not only identify

influential nodes (nodes with larger degrees) as potential initial adopters, 

it is also imperative to identify influential nodes that have access to easily

influenceable people.

A blocking cluster in a network is a set of nodes such that for every node v in this

Set, there exists more than 1-q
v

fraction of neighbor nodes that are also in this set.

For a given set of initial adopters and node thresholds, complete cascade is 

possible only if the remaining network does not contain any blocking cluster.

Threshold for node v to adopt
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