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Introduction
• At first inspection, most real-world networks look as if 

they are spun randomly.

• To model such networks that are truly random, the 
principle behind “Random Graph Theory” is:
– Place the links randomly between nodes to reproduce the  

complexity and apparent randomness of real-world systems.

• Two definitions of random networks
– G(N, L) model: N labeled nodes are connected with L randomly 

placed links

– G(N, p) model: Each pair of N labeled nodes are connected with 
a probability p.

• Though the average degree for a node is simply 2L/N in 
a G(N, L) model, the other key network characteristics 
are easier to calculate in the G(N, p) model.
– The construction of the G(N, p) model is closer to the way real 

systems develop. The total number of links in a network is rarely 
fixed.



Constructing a G(N, p) Network

• Step 1: Start with N 
isolated nodes

• Step 2: For a particular 
node pair (u, v), generate 
a random number r. If r ≤
p, then, add the link (u, v) 
to the network.

• Repeat Step 2 for each of 
the N(N-1)/2 node pairs.

• Each random network we 
generate with the same 
parameters (N, p) will 
look slightly different.
– The number of links L is 

likely to be different.

N = 12 nodes, p = 1/6

L = 8                    L = 10                      L = 7

N = 100 nodes, p = 1/6

Source: Figure 3.3a: Barabasi



Review of Binomial Distribution
• Let there be N independent experiments with two possible outcomes (in 

each experiment: success or failure): with the probability of one 
outcome (say success) is p and of the other is 1-p.

• The binomial distribution provides the probability px that we obtain 
exactly x successes in a sequence of N experiments.

is the different combinations of the results of the N experiments in 

which there will be X successes and N-X failures.
C(N, x) = 



Binomial Distribution: Tossing a Coin
• Prob[Head] = Prob[Tail] = ½.

• Probability of getting exactly X Heads in a sequence of N tossing of a 
coin is:

• C(5,0) = 1; C(5,1) = 5; C(5,2) = 10; C(5,3) = 10; C(5,4) = 5; C(5,5) = 1

• P0 = 1*[1/2]5; p1 = 5*[1/2]5; p2 = 10*[1/2]5; p3 = 10*[1/2]5; p4 = 5*[1/2]5; 
p5 = 1*[1/2]5.

• Avg. # Heads: 



# Links in a G(N, p) Network
• Let L be the number of links arising out of a random 

network generated according to the G(N, p) model.

• To determine the Average Number of Links <L>, we 
need to model the probability that there will be exactly L 
links among the total number of node pairs N(N-1)/2 
considered to have a link; each node pair has a probability 
of p to form a link. Let Lmax = N(N-1)/2.

Average Degree of a Node <k>



Degree Distribution
• For a random network of N nodes, each node can have potentially N-1 

links.

• The probability pk that a node has exactly k links is given by the 
binomial distribution:

• Using the above binomial distribution to find the average node degree 
for a random network, we obtain <k> = p*(N-1) and the standard 
deviation for the node degree is σk = [p*(1-p)*(N-1)]1/2.

• For sparse networks (for which <k> << N), the probability of finding a 
node with k neighbors is given by the Poisson distribution:

• Using the above Poisson distribution to find the average node degree 
for a random network, we obtain <k> = k and the standard deviation for 
the node degree is σk = (k)1/2.



Degree Distribution
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Real Networks do not have a Poisson 
degree distribution 

• Let us assume that the world’s social network (typically, N = 
109 nodes and average node degree <k> = 1000) follows a 
random network model.

• Using the results obtained for random networks, the above 
values for the global social network corresponds to:
– Dispersion (std. dev.) = <k>1/2 = 31.62.

• The above results indicate that in the global social network, 
the degree of most nodes is in the vicinity of <k>.
– However, we have people with number of contacts significantly 

larger than 1000 and significantly lower than 1000 too.

• The random network cannot be used to model a network 
with few extremely popular individuals (hubs) and networks 
with large differences in node degrees.



Degree Distribution of Real Networks

The Poisson distribution underestimates the presence of nodes with larger degrees.

For example, the maximum degree for a node in the Internet (according to the random

model) is expected to be 20; there are nodes with degrees close to 1000. Likewise, the

dispersion predicted under the random model is 2.52 (much smaller than the measured

value of 14.44).

Source: Figure 3.5: Barabasi



Phase Transitions in Random Networks

• If p ≥ 1/n2, the network has some links 

(avg. deg. 1/n)

• If p ≥ 1/n3/2, the network has a component 
with at least three links (avg. deg. 1/n1/2)

• If p ≥ 1/n, the network has a cycle; the 

network has a unique giant component: a 

component with at least na nodes (for 

some fixed a < 1); (avg. deg. 1)

• If p ≥ log(n)/n, then the network is 

connected; (avg. deg. log(n))



Phase Transitions in Random Networks
p = 0.01; 50 nodes (1)



Phase Transitions in Random Networks
p = 0.03; 50 nodes (2)

p = 0.02 for the emergence of a cycle and a giant component



Phase Transitions in Random Networks
p = 0.1; 50 nodes (3)



Evolution of a Random Network
• Giant component is the largest cluster within the network.

• The size of the giant component (NG) varies with the 
average degree <k>.
– For p = 0, we have <k> = 0. Hence, we observe only isolated nodes. 

Hence, NG = 1 and NG/N � 0 for large N.

– For p = 1, we have <k> = N-1. Hence, the network is a complete 
graph and all nodes belong to a single cluster. Hence, NG = N and 
NG/N = 1.

• One would expect that the giant component will grow 
gradually from NG = 1 to NG = N if we increase <k> from 0 
to N-1.
– However, as observed from theoretical analysis studies, NG/N

remains 0 for small <k>. Once <k> exceeds a critical value (1), NG/N
increases rapidly signaling the emergence of a giant component. 

• We have a giant component if and only if when each node has on 
average more than one link.



Evolution of a Random Network
• We know that <k> = p(N-1). 
• For the critical value of <k> = 1 when the giant 

component emerges, pc(N-1) = 1.
– pc = 1/(N-1) ≈ 1/N.

– This indicates: Larger the network, the smaller the value 
of p for the emergence of a giant component.

Source: Figure 3.6a
Barabasi

where S = NG/N



Evolution: Topological Transitions

• Subcritical regime:
– 0 < <k> < 1  and p < 1/N

– The largest cluster is expected to be a tree with lnN nodes. Hence, 
NG/N = lnN/ N � 0 in the N � ∞ limit, indicating that the largest 
component is tiny compared to the size of the network.

– Components have comparable sizes, lacking a clear winner to be 
designated as a giant component.

Consider creating a random network according to the G(N, L) model



Evolution: Topological Transitions

• Critical Point:

– <k> = 1  and p = 1/N

– The largest cluster is expected to be of size N2/3 and 
contain loops, while the smaller clusters are typically 

trees. 

– The largest cluster is still tiny compared to the network 

size. NG/N = N(-1/3) � 0 as N � ∞.



Evolution: Topological Transitions

p ≥ (ln N)/N

p > 1/N

(NG / N) ~ (p – pc)



Prediction of Random Network Theory: 

Real Networks are Supercritical

• The theoretical thresholds uncovered for random networks 
are:
– For <k> > 1, a giant component emerges that contains a finite 

fraction of all nodes.

– For <k> > lnN, all components are absorbed by the giant 
component, resulting in a single connected network.

Source: 

Table 3.1
Barabasi

<k>

-------

ln N

0.52

0.31

0.80

2.35

0.38

ln N

---------

ln <k>

6.59

8.67

4.81

3.65

7.15



Prediction of Random Network Theory: 

Real Networks are Supercritical
• Just based on the N and L values for the real networks, we could

predict (according to the principles of Random Network Theory) that:
– All real networks should have a giant component (since their <k> exceeds 

1)

– For most real networks (except the actor network), the giant component 
does not absorb all the nodes (components) as their <k> value is less than 
lnN. Hence, most real networks according to Random Network theory are in 
the supercritical topology regime.

Source: 

Figure 3.8

Barabasi

1 10 <k>



Giant Components: Intuitive Idea

If your friend starts getting connected

to someone other than yourself,

then you are more likely to belong to 

a larger component.

The emergence of the giant component sets in when each node has 

degree of at least 1. Any new edge added to the network is more likely

to merge two disconnected groups. Hence, the giant component is very

likely to emerge if the average degree of a node exceeds 1.

As the network evolves, there cannot be two giant components.

The addition of new edges is likely to merge two giant components

and evolve them as one single giant component.

Try this applet: http://ccl.northwestern.edu/netlogo/models/run.cgi?GiantComponent.884.534



Small World Property

• Distance between two randomly chosen nodes in a 

network is surprisingly short.

• Consider a random network with average degree <k>. A 

node in this network has on average:

– <k> nodes at distance one (d = 1).

– <k>2 nodes at distance two (d = 2).

– <k>3 nodes at distance three (d = 3).

– ….

– <k>d nodes at distance d.

• The expected number of nodes up to distance d from the 

starting node is:

<k>d+1 - 1   

– N(d) = 1 + <k> + <k>2 + … + <k>d = ------------------

<k> - 1



Small World Property
• Let dmax denote the maximum distance (the network 

diameter) at which N(d) reaches N.  That is, N(dmax) = N.

• Assuming that <k> >> 1, 
– <k>

dmax
≈ N.

– dmax = ln N / ln <k>

• As seen from the results for real networks, lnN/ln<k> 
approximates more better for the average distance between 
two randomly chosen nodes.
– This is because dmax is often dominated by a few extreme paths, 

while <d> is averaged over all node pairs, a process that diminishes 
the fluctuations.

• Thus, the average distances <d> in a random network are 
proportional to lnN, rather than N.

• The 1/(ln<k>) term implies that denser the network, the 
smaller is the distance between the nodes.



Small World Property

Source: Table 3.2: Barabasi



Small World Property: Facebook

For Facebook,

N = 7*109 users

<k> = 1000

Based on the actual 

Facebook connections,

<d> = 4.74



Clustering Coefficient
• The local clustering coefficient Ci captures the 

density of links in node i’s immediate 
neighborhood.
– Ci = 0 implies there are no links between i’s neighbors

– Ci = 1 implies that each of node i’s neighbors link to each 
other.

• Let ki be the degree of node i.
• Max. number of possible links between the ki

neighbors of node i are ki(ki – 1)/2.
• If p is the probability that any two nodes in a 

network are connected, then the number of links 
between the ki neighbors of node i is: 

• Local clustering coefficient of node i: 



Clustering Coefficient
• Observations based on Random Network 

Theory

• For fixed <k>, the larger the network, the 
smaller is a node’s clustering coefficient.

– Thus, the network’s average clustering 
coefficient <C> is expected to decrease as 1/N.

• The local clustering coefficient of a node is 

independent of the node’s degree



Clustering Coefficients for 
Real Networks

Each circle corresponds to a real

network. 

Directed networks were made

undirected to calculate C.

For random networks, the average

clustering coefficient decreases as

1/N. In contrast, for real networks,

<C> has only a weak dependence

on N.

Real networks have a much higher

Clustering coefficient than expected

for a random network of similar N 

and L.



Clustering for Real Networks

C(k) is measured by averaging the local clustering coefficient of all nodes

with the same degree k. 

According to the Random Network theory model, C(k) is independent of the 

individual node degrees. However, we find that C(k) decreases as k increases.

Nodes with fewer neighbors have larger local clustering coefficients and vice-versa



Clustering Coeff. Real Networks
• Networks Actual  Random, G(n, p)

– Prison 

Friendships 0.31 0.0134

Co-authorships

Math 0.15 0.00002

Biology 0.09 0.00001

Economy 0.19 0.00002

WWW

Web links 0.11 0.002



Real Networks are not Random
• Degree distribution: 

– Random networks – binomial distribution, in general, and 
Poisson distribution for k << N. 

• Highly connected nodes (hubs) are effectively forbidden.

– Real networks: More highly connected nodes, compared to that 
predicted with random model.

• Connectedness:
– Random networks: One single giant component exists only if <k> 

> ln N.

– Real networks: One single giant component exists for several  
networks with <k> < ln N.

• Average Path Length (small world property):
– For both random and real networks, the average path length 

scales as log N / log <k>.

• Clustering coefficient:
– Random model: Local clustering coefficient is independent of the

node’s degree and <C> depends on the system size as 1/N.

– Real networks: C decreases with node degrees and is largely 
independent of the system size.



Real Networks are not Random
• Except for the small world property, the properties 

observed for real-world networks are not matching with 
that observed for random networks.

• Then why study random graph theory?

• If a certain property is observed for real-world networks, 
we can refer to the random graph theory and analyze 
whether the property is observed by chance (like the 
small world property). 

• If the property observed does not coincide with that of 
the random networks (like the local clustering 
coefficient), we need to further analyze the real-world 
network for the existence of the property because it did 
not just happen by chance.

• Establish useful benchmarks (e.g., for component 
structure, diameter, degree distribution, clustering, etc)



Simulating a Random Network
ER Model

• Let S be the set of all node pairs

• Until S gets empty

– Pick a node u randomly in the network.

• If this node has at least one node in the set S that it is 
not yet considered for a possible edge, then randomly 

select a node v among these candidate nodes.

– Generate a random number r 

– If the value of r <= p, the probability for an edge, then 

connect the two nodes u-v.

– Else do not connect them

• Either way, remove the node pair u-v from set S



Realistic Variations of the Random 
Network Model

• Introduction Model: A node has higher chances of 
establishing a link with a neighbor of its neighbor (e.g., with 
the friend of a friend) rather than with an arbitrarily selected
node.
– Operate with a probability, p-intro, the probability that a node prefers 

to connect to the neighbor of a neighbor node.

• Visit: http://www.ladamic.com/netlearn/nw/RandomGraphs.html

• Key Observations: 

– Smaller Giant Component Size for smaller p; 

– Larger average shortest path length; 

– Uneven node degree distribution; 



Simulating a Random Network
Introduction Model

• Let S be the set of all node pairs

• Until S gets empty
– Pick a node u randomly in the network.

• If this node has at least one node in the set S that it is not yet 
considered for a possible edge

– Generate a random number r-intro. 

– If r-intro <= p-intro, the set of candidate nodes that are chosen for 
connection are the unconnected neighbors of neighbor nodes.

– Else, the set of candidate nodes are all the unconnected nodes in 
the network.

– Among the chosen candidate nodes, the node connects to a 
randomly chosen node v with a probability p.

» Generate a random number r 

» If the value of r <= p, the probability for an edge, then 
connect the two nodes u-v.

» Else do not connect them

– Either way, remove the node pair u-v from set S



ER Model

Num Nodes = 100; p = 0.03; p-intro = 0

GC Size – 94; Avg. Degree = 3; Avg. Shortest Path Length = 4



Introduction Model

Num Nodes = 100; p = 0.03; p-intro = 0.80

GC Size – 69; Avg. Degree = 2.96; Avg. Shortest Path Length = 5



Problem Example 1
• Consider a random network generated according 

to the G(N, p) model where the total number of 
nodes is 12 and the probability that there are 
links between any two nodes is 0.20.  Determine 
the following:

– The probability that there are exactly 60 links in the 
network

– The average number of links in the network

– The average node degree

– The standard deviation of the node degree

– The average path length (distance between any two 
nodes in the network)

– The average local clustering coefficient for any node in 
the network.

– The local clustering coefficient for a node that has 
exactly 5 neighbors.



Problem Example 1: Solution (1)
• There are N = 12 nodes

• Prob[link between any two nodes] = p = 0.2

Max. possible number of links between any two nodes is 

(N)(N-1)/2 = (12*11/2) = 66

(1) Prob[there are exactly 60 links in the network] 

= C(66, 60) * p60 * (1-p)(66-60)

C(66, 60) = 66! / (60! * 6!)

= 60! *61*62*63*64*65*66 / (60!*1*2*3*4*5*6)

= 90858768

Prob[there are exactly 60 links in the network]

= 90858768 * (0.2)60 * (0.8)6

= 2.75 * 10-35



Problem Example 1: Solution (2)
• There are N = 12 nodes

• Prob[link between any two nodes] = p = 0.2

Max. possible number of links between any two nodes is (N)(N-1)/2 = 

(12*11/2) = 66

(2) The average number of links in the network = p * N(N-1)/2

= 0.2 * 66 = 13.2

(3) Average node degree = p*(N-1) = 0.2 * 11 = 2.2

(4) Standard deviation of node degree =

=  sqrt(0.2*0.8*11) = 1.33

(5) Average path length = ln N / ln <k> = ln(12) / ln(2.2) = 3.15

(6) Avg. Local clustering coefficient for any node in the network = p = 0.2.

(7) The local clustering coefficient for a node in a random network is 

independent of its number of neighbors. Hence, the answer is 0.2

)1(*)1( −− Npp



Problem Example 2
• Consider the evolution of a random network 

according to the G(N, p) model, where the total 
number of nodes is 100 and p = 0.03. Consider 
adding (randomly) one link at a time to the 
network. The total number of links added is 
sufficiently large enough to create one single 
connected component of the entire network 
Determine the following:

– The critical value of the probability (of the number of 
links) that a giant component emerges for the above 
network and the average size of the giant component 
at that value?

– The minimum value of the average degree per node in 
the giant component of the fully connected regime.

– The maximum value for the average path length 
between any two nodes in the giant component that 
encompasses all the nodes in the network..



Problem Example 2: Solution (1)
• There are N = 100 nodes

– The critical value of the probability (of the number of 
links) that a larger cluster for the above network?

– In the fully connected regime, the average node 
degree has to be at least lnN. That is, <k> ≥ lnN.

– Min <k> = lnN = ln(100) = 4.61

– The average path length is given by: lnN / ln<k> 

– Using the minimum value of ln<k> in the above 

expression, we obtain the max. average path length to 

be: ln(100)/ln(4.61) = 3.01.

pc = 1/N = 1/100 = 0.01

Supercritical regime NG = (p- pc) * N = (0.05- 0.01) * 100 = 4


