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Degree Distribution of the WWW
• The degree distribution of the WWW is best modeled according to 

the Power Law
– pk ~ k –γ

– log(pk) ~ (-γ)*(logk)

– The slope values for γ are: γin = 2.1 and γout = 2.45.

• A random network model fit (Poisson distribution) for the WWW 
based on a <kin> = <kout> = 4.6 is also shown below. 

Both the in- and out- degree distributions are 

best approximated with a power law.



Power Law Distribution



Power Law vs. Poisson Distribution

Power Law: About 0.15% of the nodes in the network have a degree of 10.

(power-law distribution have a long tail).

Poisson: Only about 0.00097% of the nodes in the network have a degree of

10.



Power Law vs. Poisson Distribution



Power Law vs. Poisson Distribution

• For small k, the power law is above the Poisson function, 
hence a scale-free network has a large number of small 
degree nodes that are virtually absent in a random 
network.

• For the k in the vicinity of <k>, the Poisson distribution is 
above the Power Law, indicating that in a random 
network, most nodes have degree k ≈ <k>.

• For large k, the power law curve is again above the 
Poisson curve, indicating the Probability of observing a 
high-degree node is several orders of magnitudes higher 
in a scale-free than in a random network.



Random Network vs. Scale-Free Network

A random network with <k> = 3 and N = 50 nodes, illustrates that most nodes

have comparable degree k = <k>.

A scale-free network with <k> = 3, illustrating that numerous small-degree 

nodes coexist with a few highly connected hubs.

Source: Figure 4.4 Barabasi



Power Law in Reality

• Economy: 
– In Italy, a 19th century economist (Pareto) noticed that a few 

wealthy individuals earned most of the money, while the 
remaining population earned small amounts.

• About 80% of the money is earned by only 20% of the population.

– In US, during the 2009 economic crisis, the Occupy Wall Street 
movement highlighted the fact that 1% of the population earned 
a disproportionate 15% of the income.

• Management: 80% of the decisions taken in a meeting 
are made only during 20% of the working time.

• Networks: 
– 80% of the web point to only 15% of the web pages

– 80% of the citations belong to only 38% of the scientists



Scale-Free Networks
• Networks whose degree 

distribution follows a 
Power Law are said to be 

scale-free networks.

• The power law degree 

distribution can be 

defined in both discrete 
and continuous 

formalisms.

– The scale-free property is 

independent of the 

formalism used to describe 

the degree distribution. 

Discrete Formalism

ζ(γ) = ∑
∞

=

−

1k

k
γ ζ(γ) is called the

Riemann-Zeta

Function

Note that pk (as defined above) diverges for k = 0 (isolated nodes). For such

nodes, we need to specify p0.



Continuum Formalism
Kmin is the smallest degree for which

the power law for the discrete 

formalism holds.

Note that pk encountered in the

discrete formalism provides the 

probability that a randomly chosen

node has degree k. In contrast, 

only the integral of p(k) encountered

in the continuum formalism has a

physical interpretation.

probability that a 

randomly chosen node has degree

between k1 and k2.



Hubs: Exponential Distribution
• Assume the distribution of node degree follows 

an exponential distribution pk = Ce –λk. Let kmin
indicate the minimum node degree. Then, as per 

the normalization condition:

• yielding, C = λeλkmin.

• To calculate kmax (the maximum degree of a node), an 
upper bound for the degree of a hub node, we assume 

that in a network of N nodes, there is at most one node 

in the (kmax, ∞) regime. In other words, the probability to 

observe a node whose degree is kmax or above is 1/N.

Solving this integral for kmax,

We obtain:



Exponential Distribution

K ����

p(k) ~ e-(k-2)

λ = 1

Kmin = 2



Hubs: Exponential Distribution



Hubs: 
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Distribution
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Hubs: Exponential vs. Scale-Free Networks

• Note that lnN is a slow function of the system size, N.

• The above equation tells us that the maximum degree will not be 
very different from kmin.

• For a Poisson distribution (the calculation is a bit more involved), 
kmax (as a function of N) grows even slower than the logarithmic 
dependence on N as shown above for the exponential distribution.

• For a scale-free network, the value of kmax is related to kmin and N 
as shown above, illustrating that the larger a network, the larger is 
the degree of its biggest hub.

• The polynomial dependence of kmax on N for a scale-free network 
implies that in a large-scale network, there can be orders of 
magnitude differences in size between the smallest node (kmin) and 
the biggest hub (kmax).



Hubs are Large in Scale-free Networks

<k> = 3 and γ = 2.5

The above figure illustrates that hubs in a scale-free network are several

orders of magnitude larger than hubs in a random network of similar N and <k>.

Source: Figure 4.5 Barabasi



Hubs in WWW: Exponential vs. Scale-free
• Consider a WWW sample of N = 3 * 105 nodes. With a 

kmin = 1, λ = 1, and γ = 2.1,
– If the degree distribution were to be exponential, kmax ≈ 13.

– If the degree distribution is scale-free, kmax = 95,000.

Source: Figure 4.1 Barabasi

In a random network – hubs are forbidden (most nodes have comparable 

degrees); In a scale-free network, hubs occur naturally (are expected to occur).



Road Network vs. Air-traffic Network

there are no major cities with hundreds of highways; but, certain cities are airport hubs

Source: Figure 4.6 Barabasi



Scale-free 
networks lack an 

intrinsic scale

• For any bounded distribution (e.g. a Poisson or

• a Gaussian distribution) the degree of a randomly 
chosen node will be in the vicinity of <k>. Hence <k>
serves as the network’s scale.

• In a scale-free network the second moment diverges, 
hence the degree of a randomly chosen node can be 
arbitrarily different from <k>. Thus, a scale-free network 
lacks an intrinsic scale (and hence gets its name).

Source: Figure 4.7 Barabasi



Scale-free nature of real networks

Source: Table 4.1 Barabasi



Large Standard 

Deviation for 

Real Networks

Source: Figure 4.8 Barabasi



Many real networks are scale-free

The dotted line shows the Poisson distribution with the same <k> as that of

the real network. Source: Figure 4.9b Barabasi



Requirement for a Scale-free 
network to emerge

• For the scale-free property to emerge, the 

nodes need to have the capacity to link to 

an arbitrary number of other nodes.

• In general, the scale-free property is 

absent in systems that have a limitation in 

the number of links a node can have, as 

such limitations limit the size of the hubs.



Average Distance: Power-Law
Anomalous regime: Hub and

spoke configuration; average 

distance independent of N.

Ultra small world regime

Hubs still reduce the path length

the lnN dependence on N (as

in random networks) starts

Small world property: Hubs are

not sufficiently large and numerous

to have impact on path length

The scale-free property shrinks the average path lengths as well as changes

the dependence of <d> on the system size. The smaller γ, the shorter are the

distances between the nodes.



Distances in

Scale-free

networks

Source: 

Figure 4.12 Barabasi



The Role of the Degree Exponent
• Anomalous Regime (γ ≤ 2): For values of γ < 2, the value 

of 1/(γ-1) is greater than 1.
– This implies that the largest hub 

should have a degree greater than N. 
• For this, the hub should have self-loops and/or multiple links 

between the hub and the other nodes.

• Neither of these are common in real-networks. Hence, it is very rare 
to find real networks whose degree distribution fit to a power law 
with γ < 2.

• Scale-Free Regime (2 < γ < 3): The first moment <k> is 
finite; whereas the second and higher moments diverge 
as N �∞.
– Kmax grows with the size of the network with exponent 1/(γ-1) of 

value less than 1.

• Random Network Regime (γ > 3): The first and second 
moments are finite. 
– For large γ, the degree distribution pk decays sufficiently fast to 

make the hubs smaller and less numerous (characteristic of 
random networks): uncharacteristic of real-networks.



Source: Figure 4.14 Barabasi



Real Networks: Scale-Free.. Why?

• Growth: While the random network model 
assumes that the number of nodes is fixed (time 
invariant), real networks are the result of a 

growth process that continuously increases the 
number of nodes.

• Preferential Attachment: While nodes in a 
random network randomly chose their 
interaction partner, in real networks new nodes 
prefer to link to the more connected nodes. 



Barabasi Albert (BA) Model
• BA model is a model for generating networks 

with power-law degree distribution.
• The model is defined as follows:

– We start with m0 nodes, the links between which are 
chosen arbitrarily, as long as each node has at least 
one link.

– The network develops as per the following growth and 
preferential attachment properties:

• Growth: At each time step, we add a new node with m (≤ m0) 
links that connect the new node to m nodes already in the 
network.

• Preferential Attachment: The probability π(k) that one of the 
links of the new node connects to node i depends on the 
degree ki of node i as:

a node with larger degree has 

good chances of getting connected 

to even more nodes.



BA Model
Example 
(m = 2)

Source: Figure 5.4
Barabasi



Time Dependent Degree of a Node
• In the BA model, a node has a chance to increase its 

degree each time a new node enters the network.
– A new node enters with m links. Hence, node i has m chances to 

be chosen.

– Let N be the number of nodes at time t, the instant of adding a 
new node. N = N(t) = N(t-1) + 1.  

• Let ki be a time-dependent continuous real variable (ki is 
the degree of node i that enters the network at time ti), 
the rate at which node i acquires links follows the 
equation: The sum in the denominator goes over

all nodes in the network, except the

newly added node. A total of (mt) links
are added by time t. The factor 2 is

because a link is accounted twice, once

for each of its end nodes.



Time Dependent Degree of a Node

• For larger t, the term (-1) can be neglected in the 
denominator, obtaining:

• Integrating the above equation with the fact that 
ki(ti) = m, meaning that node i joins the network 
at time ti with m links, we obtain:

For any of the existing node i at time t,

where β = ½ is called the network’s dynamical exponent.

Observations:

1) The degree of each node increases following the above power law.

2) Each new node has more nodes to link than the previous nodes. In other

words, with time, each node competes for links with an increasing pool of nodes.



Time Dependent Degree of a Node
• The earlier node i was added, the higher is its degree 

ki(t). 
– Hence, hubs are large not because they grow faster, but 

because they arrived earlier.

– The growth in the degrees is sub linear (β < 1).

• The rate at which node i acquires new links is given by 
the derivative:

• Indicating that older nodes acquire more links in a unit 
time (as they have smaller ti), as well as that the rate at 
which a node acquires links decreases with time as t-1/2. 
Hence, less and less links go to a node with time.

• Thus, the BA model offers a dynamical description of a 
network’s evolution: in real networks, nodes arrive one 
after the other, connecting to the earlier nodes.
– This sets up a competition for links during which the older nodes 

have an advantage over the younger nodes, eventually turning 
into hubs.



Degree Dynamics
We plot here the time dependence of the degrees of nodes added at time t

= 1, 10, 102, 103, 104, 105. The degree of each of these nodes increases

according to the tβ law (analytical prediction plotted in dotted lines for node 

added at time 1.

Source: Figure 5.6; Barabasi



Degree Dynamics

Degree distribution of a network after the addition of N = 102, 104 and 106 

nodes according to the power law at time t = 102, 104 and 106. 

The larger the network, the more obvious is the power-law nature of the

degree distribution.

Source: Figure 5.6; Barabasi



Bianconi-Barabasi (BB) Model
Motivation

• The Barabasi-Albert model leads to a scenario where the 
late nodes can never turn into the largest hubs.

• In reality, a node’s growth does not depend on the 
node’s age only.
– Instead web pages, companies or actors have intrinsic qualities 

that influence the rate at which they acquire links.

• Some show up late and nevertheless grab most links within a short 
timeframe.

• Example: Though, Facebook came later than Google, Facebook is 
the most linked node in the Internet.

• The goal of this model is to understand how the 
differences in the node’s ability to acquire links, and 
other processes not captured by the Barabasi-Albert 
model, like node and link deletion or aging, affect the 
network topology. 



Bianconi-Barabasi (BB) Model 
• Fitness – the intrinsic property of a node that propels 

more nodes towards it.

• The Barabasi-Albert model assumed that a node’s 
growth rate is determined solely by its degree.

• The BB model incorporates the role of fitness and 
assumes that preferential attachment is driven by the 
product of a node’s fitness, η, and its degree k.

• Growth: In each timestep, a new node j with m links and 
fitness ηj is added to the system, where ηj is a random 
number chosen from a distribution ρ(η) [for example: 
uniform distribution].
– Once assigned, a node’s fitness does not change.

• Preferential Attachment: The probability that a link of a 
new node connects to a pre-existing node i is 
proportional to the product of node i’s degree ki and its 
fitness ηi.



BA Model vs. BB Model

BB Model

where β(ηi) is a fitness-dependent 

dynamic exponent of node i.

A node with a 

higher fitness will 

increase its 

degree faster.



Where does the Power-Law 
distribution start for real networks?

• If P(x) = C X–α, then Xmin needs to be certainly greater 
than 0, because X–α is infinite at X = 0. 

• Some real-world distributions exhibit power-law only 
from a minimum value (xmin).

Source:MEJ �Newman, 

Power laws, Pareto distributions and 
Zipf’s law, Contemporary Physics 46, 
323–351 (2005) 



Some Power-Law Exponents of 
Real-World Data



Not every network is power law 
distributed

• There is a limit to how many relationships 
a node can maintain

• Frequent email communication
– Taking into consideration whether there is a 

sequence of email exchanges between 
people

• Thesaurus – a word is not the synonym for 
every other word out there.

• Network of directors – A person cannot be 
in several director boards with every other 
person out there.


