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Small-World Networks

• A small-world network is a type of graph in which most 

nodes are not neighbors of one another, but most nodes 

can be reached from every other by a small number of hops.

• Specifically, a small-world network is defined to be a 

network where the typical distance L (the number of hops) 

between two randomly chosen nodes grows proportionally 

to the logarithm of the number of nodes in the network. 

• Examples of Small-World Networks:

– Road maps, food chains, electric power grids, metabolite processing 

networks, networks of brain neurons, voter networks, telephone call 

graphs, gene regulatory networks.



Small Worlds
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• Two major properties of small world networks
– High average clustering coefficient

• The neighbors of a node are connected to each other

• Nodes’ contacts in a social network tend to know each other.

– Short average shortest path length
• Shorter paths between any two nodes in the network



Small Worlds
• Note that for the same number of nodes and edges, we 

could create:
– Random graphs (with edges arbitrarily inserted between any two 

nodes) and 

– Regular graphs (with some specific pattern of how edges are 
inserted between nodes)

• Regular graphs tend to have relatively high average 
clustering coefficient

• Random graphs tend to have relatively low average shortest 
path length

• We could bring the best of the two graphs by generating a 
small world network as follows:
– Remove a small fraction of the edges in a regular graph and re-insert 

them between any two randomly chosen nodes. This will not 
appreciably affect the average clustering coefficient of the nodes; but 
would significantly lower the average lengths of the shortest paths.



Small-World Experiment
• Stanley Miligram (1960s) performed an experimental study 

to examine the average path length for social networks of 
people in the US.

• Miligram asked randomly chosen “starter” individuals to 
forward a letter  to a designated “target” person in a suburb 
of Boston.
– He provided the target’s name, address, occupation and some 

personal info.
• If the participant directly knew the target, they could mail it to them.

• Otherwise, the participant should forward the letter to an acquaintance 
whom he knew and will be geographically more closer and likely to know 
the target. This is repeated until the letter reached the target.

• Roughly a third of the letters eventually arrived at the target.
– The median path length took by these letters is SIX.

• The experiment demonstrated that several shorter paths 
exist in social networks and that people (without any sort of 
global map of the network) are effective at collectively 
finding the shorter paths, just based on their local 
connections and the geographic information on the target.



Lessons Learnt: Small-world Experiment

• Social networks tend to have very short paths between 
essentially arbitrary pairs of people.
– The existence of these short paths has substantial consequences for 

the potential speed with which information, diseases, and other kinds 
of contagion can spread through society, as well as for the potential 
access that the social network provides to opportunities and to 
people with very different characteristics from one’s own.

• Caveats: 
– The experiment does not clearly establish a statement quite as bold 

as “six degrees of separation between us and everyone else on this 
planet” – the paths were just to a single, fairly affluent target; many 
letters never got there; and attempts to recreate the experiment for 
people of lower status did not give desired results.

– If we think of each person in the shorter path chain as the center of 
their own social world, then “six short steps” becomes “six worlds 
apart” – a change in perspective that makes six sound like a much 
larger number.



Triadic Closure and Growth Rate of New 
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Modeling Small World Networks
• The ER model for random graphs provided shorter 

paths between any two nodes in the network. 
However, the ER graphs have a low clustering 
coefficient and triadic closures. 

– ER graphs have a constant, random and independent 

probability of two nodes being connected.

• The Watts and Strogatz model (WS model) 
accounts for clustering while retaining the short 
average path lengths of the ER model.

• The WS model interpolates between an ER graph 
and a regular ring lattice.



WS Model • Watts and Strogatz (WS) Model: 
The WS model interpolates 
between an ER graph and a 
regular ring lattice.
– Let N be the number of nodes and 

K (assumed to be even) be the 
mean degree.

– Assume N >> K >> ln(N) >> 1.

– There is a rewiring parameter β (0 
≤ β ≤ 1).

– Initially, let there be a regular ring 
lattice of N nodes, with K neighbors 
(K/2 neighbors on each side).

– For every node ni = n0, n1, …, nN-1, 
rewire the edge (ni, nj), where i < j, 
with probability β. Rewiring is done 
by replacing (ni, nj) with (ni, nk) 
where nk is chosen uniform-
randomly among all possible nodes 
that avoid self-looping and link 
duplication.

β = 0 ���� Regular ring lattice
β = 1 ���� Random network



Small-World Network: WS Model
• The underlying lattice structure of the model produces a 

locally clustered network, and the random links dramatically 
reduce the average path lengths 

• The algorithm introduces about (βNK/2) non-lattice edges.

• Average Path Length (β):
– Ring lattice L(0) = (N/2K) >> 1

– Random graph L(1) = (ln N / ln K)

– For 0 < β < 1, the average path length reduces significantly even for 
smaller values of β. 

• Clustering Coefficient (β):

– For 0 < β < 1, the clustering coefficient remains close to that of the 
regular lattice for low and moderate values of β and falls only at 
relatively high β.

• For low-moderate values of β, we thus capture the small-world 
phenomenon where the average path length falls rapidly, while the 
clustering coefficient remains fairly high.
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Limitations of the WS Model
• The WS model introduced the notion of random edges to infuse shorter 

path lengths amidst larger clustering coefficient. 

• However, the long-range edges span between any two nodes in the 
network and do not mimic the edges of different lengths seen in real-
world networks (like in the US road map as in Milgram’s experiment or 
airline map).
– Path lengths could not be as small as they are in real networks.

– Need some edges to nodes that are few hops away, rather than edges to 
some arbitrarily chosen nodes.

– Cannot generate hubs as in scale-free networks.

Source: Figure 20.4: Easley and Kleinberg



Enhancement to the WS Model
• In addition to the re-wiring parameter β, another parameter 

called the clustering exponent (q) is introduced.

• An (u, v) edge is selected for re-wiring with a probability β. 
After being selected, we do not randomly re-wire u with a 
node w. Instead, we pick a pair (u, w) for re-wiring with a 
probability of [d(u, w)-q] / 2logn, where 
– For optimal results, q must be the dimensionality of the network 

modeled. For a ring lattice, q = 1.

– n is the number of nodes in the network.

– d(u, w) is the minimum number of hops between u and w in the 
original network layout (before enhancement)

• The ring lattice is a single-dimension network

• A grid is a two-dimensional network. 

– To implement this enhancement in simulations, we generate a 
random number between 0 to 1; the (u, w) pair whose [d(u, w)-dim] / 
2logn value is closest and above the random number generated is 
chosen for re-wiring.

• With this re-wiring model, if routed optimally, (on average) 
the # hops in the path to the target is expected to reduce by 
a factor of 2 with every additional hop in the path [logn hops] 



Myopic Search

Myopic Search: The source node forwards the packet to the neighbor node

that is geographically closer to the target (under the underlying ring lattice). 

The source node does not know the long-range contacts of the subsequent nodes. 

This could lead to sub optimal paths; but still fewer hops than in a ring lattice.
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WS Model for Grid Lattice (2-dim)

We have a nxn two-dimensional grid.

The nodes are identified with lattice points

i.e., a node v is identified with the 

lattice point (i, j) with i, j = {1, 2, …, n}

Distance between two nodes at (i, j) and 

(k, l) is: | i – k | + | j – l |

For every node u, we remove one of 

its associated edges to the neighbor 

nodes with a probability β and connect

the node to a randomly chosen node

v, as long as there is no self-loops

and link duplication.



Enhanced WS Model: Grid Lattice 

Probability of a long-range edge (u, v)
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Easley and Kleinberg



Rank-based Long-range Weak Ties

• For non-uniform networks in which distances 
between nodes do not follow a uniform distribution
– For every node v: we rank the nodes based on their 

distance from v. 

– We replace the [distance(v, w)]-q with rank-1 in the 
probability for the two nodes (v, w) to have a long-range 
weak tie.

Source: Figure 20.9
Easley and Kleinberg



Total # nodes: 20

K-neighbors per node (ring): K = 4

Probability of re-wiring p = 0.7

Avg. Node degree: 2.0

Network diameter: 9.0

Avg. clustering coeff: 0

# Communities: 4 (modularity score: 0.54)

Avg. Path Length = 3.963
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CINET: SW Model 

Example 1



Total # nodes: 20

K-neighbors per node (ring): K = 4

Probability of re-wiring p = 0.2

Avg. Node degree: 4.0

Network diameter: 4.0

Avg. clustering coeff: 0.435

# Communities: 4 (modularity score: 0.44)

Avg. Path Length = 2.526
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CINET: SW Model 

Example 2


