
1

CSC 435/524 Computer Networks

Instructor: Dr. Natarajan Meghanathan

Spring 2014

Term Project - Choice # 2: Use of IPTables in a Virtual Machine Environment

Due: April 25, 2014 Max. Points: 100

This project is for educational and awareness purposes only. We are not responsible for anyone using this

project for any malicious intent. The objective of this project is to educate students how to configure the

different tables of IPtables in a virtual machine environment and use the various options to control
incoming and outgoing communication from the Ubuntu virtual machine (VM) running on a Windows

host machine. This project description includes a detailed tutorial on the configuration of IPtables

covering different scenarios. You are then required to execute tasks to answer all the questions (including

Question Q0) following the tutorial. You are strongly encouraged to go through the tutorial before
attempting the questions.

You will need to download VMware Player which is the virtualization software that will be used for this
project. You will also need a total of four virtual machines (one Ubuntu VM, one CentOS VM and two

Backtrack VMs) running on the host Windows machine to complete this project. If you do not have

sufficient resources to this project on your personal computer, you are advised to do it in the Computer

Networks and Systems Security Lab in campus.

Submission Requirements

Hard copy: Include your answers for the questions Q0 through Q9 and the appropriate screenshots

to justify each of your answers.

Video Recording: Record your explanation for each question Q0 through Q9 and demonstrate the steps

you take to accomplish the tasks asked for in each of those questions. Try to record your responses

together for all the questions in one single video file. If needed, you can record in multiple video files (but
try to minimize the number of video files). Upload your video(s) through Dropbox or Google Drive and

share them with me: natarajan.meghanathan@jsums.edu

Project Description Index

Installations Page 2
IP Tables Tutorial Page 5

IP Tables Exercises Q0 - Q8 Page 19

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

2

Installations

Installing VMWare Player
Download the latest version (v.5 or v.6) of VMware Player for your Operating System from

https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_player/5_0

Installing Ubuntu OS

1. Download Ubuntu OS http://www.ubuntu.com/download/desktop and save it somewhere on your

computer

2. Open up VMWare Player
3. Click on Create a New Virtual Machine

4. Select Installer disc image file (iso): browse for your Ubuntu .iso file and click Next

5. Type in your full name in the space provided. Use your J-number as Username (with a lowercase j). In

my case, I use natarajan as the username. For your password, Select a password of your choice (easy to
remember; but, difficult to find out by others). Click Next after entering the information.

6. Next, type in a name for your virtual machine (use your J-number again). Click Next.

7. On the next page, select Store virtual disk as a single file, and click Next.

8. Click Finish on the next page and wait for the OS to be installed.

9. Next, log into Ubuntu OS with your password and press Enter.

10. Click the Player menu, and go to Manage then Virtual Machine settings.

11. When the settings come up, make sure that the Network Adapter is set to NAT, and click OK.

12. Launch a terminal by clicking the Dash Home (indicated in the picture below) and typing terminal in
the box provided. Then click the Terminal icon.

Installing CentOS

1. Download CentOS (CentOS-6.4-i386-LiveCD.iso) http://centos.icyboards.com/6.4/isos/i386/ and save

it somewhere on your computer
2. Open up VMWare Player

3. Click on Create a New Virtual Machine

4. Select Installer disc image file (iso): browse for your CentOS .iso file and click Next
5. For Guest Operating System, choose Linux --> CentOS (do not choose CentOS 64-bit): we are using

x86 version. Click Next. Give the VM - the name you want.

5. On the next page, select Store virtual disk as a single file, and click Next.

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

3

6. Click Finish on the next page.
7. Now Select CentOS from the VM Player menu and click Play Virtual Machine. Go through the OS

installation process.

8. You can setup automatic login without requiring a password. If you wish to setup a password, you

could also do so. You should be now logged into the CentOS system.

9. Click the Player menu, and go to Manage then Virtual Machine settings.

10. When the settings come up, make sure that the Network Adapter is set to NAT, and click OK.

11. Launch a terminal from the Applications --> System --> Terminal menu.

Installing Backtrack 5

1. Download Backtrack 5 (not Backtrack 5 R1, R2, or R3) from

http://www.backtrack-linux.org/downloads/

Download the GNOME 32-bit version .iso file, directly to a location in your physical host.

Then create a virtual machine instance of the Backtrack system on the VMWare Player. Choose the Guest

Operating System to be Linux - Version: Other Linux 2.6.x kernel. Name the VM as Backtrack-5. You

could set up the RAM to 512 MB or higher, as feasible for your host machine. The rest of the installation
steps should be similar to that you went through for the CentOS VM.

2. When the VM starts, press enter in a black screen where is says boot: and press enter again to boot in
text mode (the first option) when the Backtrack boot menu appears. If you are not already logged in as

root, type in root for username and toor for password.

Note: You may need to press Ctrl+Alt when you need to bring your mouse pointer out of the Backtrack 5

virtual machine.

3. Type startx to launch the graphical interface.

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

4

4. You could launch a terminal by clicking the top > terminal icon.

6. Click the Player menu, and go to Manage then Virtual Machine settings.

7. When the settings come up, make sure that the Network Adapter is set to NAT, and click OK.

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

5

IPtables Tutorial

IPtables is a packet filter-based implementation of the Linux kernel firewall (netfilter). It defines tables

that contain a chain of rules that specify how packets should be treated. The hierarchy is iptables -->

tables --> chains --> rules. There may be built-in tables and chains as well as user-defined ones.

There are three independent tables (the presence of a table depends on the kernel configuration options):

filter, nat and mangle. We specify the table to be used through the -t option.

- The filter table is the default table (if no -t option is used) and it has three built-in chains:
 INPUT (for packets destined for the local sockets);

 FORWARD (for packets being routed through a machine) and

 OUTPUT (packets originating from local sockets).
- The nat table is used when a packet encountered by the router/firewall has to go through network

address translation. The nat table consists of three built-in chains:

 PRE-ROUTING - used to change the destination IP address of the incoming packets

 POST-ROUTING - used to change the source IP address of the outgoing packets
 OUTPUT - used to alter and send out the locally generated packets

Figure 1: NAT Table

Figure 2: Tables and Chains of IPTables

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

6

- The mangle table is used to do some special alterations to the headers of packets that need some quality
of service. Like the nat table, the mangle table has the pre-routing, post-routing and output chains (that

have functionalities similar to those in the nat table) as well as input and forward chains (that have

functionalities similar to those in the filter table).

A rule in a chain comprises of criteria and a target action.

Scenarios and IPTables commands

To change the contents or access the IPtables, one needs to have root access. Hence, I would suggest you

login as root user. Otherwise, if you want to change/access the contents of IPtables as a regular user, you

would have to prefix sudo upfront of every command as well as may be asked to enter the root password

every time a command is run.

Assumption: Unless otherwise specified, for every scenario in this tutorial, all the chains are assumed to

operate under a default-accept policy.

Validation Process: An incoming (or outgoing or transiting) packet is processed by the appropriate chain

in the appropriate table (the filter table, by default). If a packet matches to the criteria in the chain, then

the packet is subjected to the corresponding target action; otherwise, the packet is validated against the
subsequent rules in the chain. If the packet cannot be matched with any of the criteria in the list, the

packet is accepted (yes - the default policy for all chains of IPtables is to accept a packet, unless it

matches to a criteria because of which the packet needs to be dropped).

S1: To list the contents of the mangle table of IPtables

Command: iptables -t mangle -L

As we see in the screenshot, the contents of the chains are empty and the default policy is ACCEPT. We
will later see how to change this to DROP using the -P option (note it is uppercase 'P' for Policies and

lowercase 'p' for ports).

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

7

S2: To list the contents of the filter table of IPtables

We do not need to use the -t option when we want to access the filter table. If we run an iptables

command without the -t option, the filter table will be processed by default. Command: iptables -L

S3: To prevent a user on the local machine from visiting the Jackson State University web server
whose IP address is 143.132.8.23.

Command: iptables -A OUTPUT -d 143.132.8.23 -j DROP

We could open a web browser (in your virtual machine) and try to visit www.google.com; we could visit
without any problem. On the other hand, try to visit www.jsums.edu; you will only see a message on the

browser telling "connecting to...," but it could not connect eventually.

S4: To delete all the entries in the IP tables/chains.

Command: iptables -F

This command will delete/flush all the entries in the filter iptable. If you want to delete all the entries in

the nat table, you need to then run iptables -t nat -F.

IMPORTANT NOTE: Note that the flush operation does not reset the default-accept or drop policy of a

chain. One has to manually change the default policy of a chain to the intended policy.

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

8

S5: Allow only SSH communications as incoming connection

If the objective is to allow only SSH communications as incoming connections, we could set the firewall

to do this through two ways: In the first way, with the default policy being ACCEPT, the two rules are

listed in this order: (i) Accept all incoming TCP packets coming to destination port 22 and (ii) Drop all

other incoming packets (OR) In the second way, with the default policy changed to DROP, one can just
setup a rule to accept all incoming TCP packets to destination port 22.

Method 1:

Commands (run in this order): Under a default-accept/allow policy, Once you have specified the rules

to accept incoming an packet, it is better to specify a default rule to drop any incoming packets. Since

rules are executed in numerical order, one after the other, starting from the first rule, the default rule to
drop any incoming packets should be the last rule.

iptables -A INPUT -i eth0 -p tcp --dport 22 -j ACCEPT

iptables -A INPUT -i eth0 -j DROP

One can test the rules from another virtual machine (as shown below) running on the same network.

Method 2:

Commands (run in either order should be fine): Note that the uppercase 'P' denotes policy. We are

changing the default input policy to DROP. That is, if an incoming packet does not match to any criteria
corresponding to the rules in the INPUT chain, the packet will be dropped. This is the default-deny

policy.

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

9

iptables -P INPUT DROP
iptables -A INPUT -i eth0 -p tcp --dport 22 -j ACCEPT

S6: Lets continue from Method 2 of Scenario 5, where we set the default policy for the INPUT chain

to be DROP and configured the firewall to accept only incoming SSH connection requests. Lets first

add a rule that would allow only hosts from a particular network (with prefix say 192.168.159.0/24)
to send web traffic to the Linux host; all other traffic should be dropped. After configuring the

above rule, lets delete the first rule to allow SSH packets.

S7: Flush the contents of the iptables resulting at the end of Scenario 6. Configure the INPUT chain to
default-accept policy (note that this has to be done manually; the flush operation wouldn't do this for us).

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

10

Lets say, by mistake, I then configured the firewall with a rule not to accept any incoming traffic.

However, I realized later that I want to insert a rule that allowed the firewall to accept any incoming
traffic to port 443 (https) and port 22 (ssh).

Commands (in this order): Note that everything following # is considered a comment.

iptables -F
iptables -P INPUT ACCEPT

iptables -A INPUT -j DROP

iptables -L # not needed if you do not want to see the contents of the iptables until now.
iptables -I INPUT 1 -p tcp --dport 443 -j ACCEPT

iptables -I INPUT 2 -p tcp --dport 22 -j ACCEPT

S8: With the configurations setup in Scenario 7, one can notice that we cannot still visit any website,

because we need a domain name resolution to find the IP address of the web server whose domain

name/website address is entered in the browser and we do not allow DNS traffic (port 53). Also, websites
that use HTTPS need to be setup access for both ports 80 and 443. Websites that use only port 80 cannot

be visited either as this port is not setup for ACCEPT in Scenario 7. In Scenario 8, we will basically do an

enhanced implementation of Scenario 7 permitting packets from any website and drop all other incoming
packets, including SSH, which we can test.

When it comes to permitting web traffic, we do not know what other protocols/ports and the
corresponding packets need to be let in. So, it is better to insert a rule that lets packets that are related

and/or as part of established sessions need to be permitted in. This could be done using the -m option.

Note that -m option could be used in three contexts: to limit the number of times the rule has to match;

multiport option (both of which we will see later) and the state of new, existing or related connections.
We will the -m option for this scenario in the last context. The syntax to use the -m option in this context

is -m state --state ESTABLISHED,RELATED. Note that there should not be blank space between

words RELATED and ESTABLISHED.

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

11

Commands (the rule with the -m option can be either the first one or after the two tcp rules):

iptables -A INPUT -m state - -state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -p tcp - -dport 80 -j ACCEPT

iptables -A INPUT -p tcp - -dport 443 -j ACCEPT

iptables -A INPUT -j DROP

As we can now see, SSH connection to the Ubuntu host (192.168.159.131) is not accepted.

S9: We will configure the firewall to allow SSH, HTTP and HTTPS traffic and block any other protocol

incoming traffic. We will do this using the multiport option.

The syntax is to use -m multiport - -dports 22,80,443 along with the rest of the parameters for the rule as

indicated in the screenshot. Note that there should not be any blank space in between the port numbers.

Now, SSH traffic is also allowed in.

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

12

S10: We want to limit the number of active connections to the web server running on port 80 to 3.

We will use the xt_connlimit module to limit the number of connections. To do so, we first add the

xt_connlimit module to the Linux kernel using the modprobe program (a built-in program in Linux). We

can then run the iptables command as follows:

iptables -A INPUT -p tcp --syn --dport 80 -m connlimit --connlimit-above 2 -j DROP

where - -syn indicates that we block the SYN request packets for a web connection
-m connlimit indicates we are using -m option for limiting the number of connections

--connlimit-above is an option to indicate when to take action; in this case, if the number of active

connections is more than 2.

It is very important to limit the number of active connections for the servers running on a host/network;

this would help to avoid a Denial of Service attack.

S11: We want to set the nat tables to forward a packet on a multi-hop (two-hop route).

We will use three VMs and datagram sender and receiver Java programs. The Ubuntu VM will serve as
the destination and run the datagram receiver program; the Backtrack VM will serve as the source and run

the datagram sender program; the CentOS VM will serve as the intermediate host and just forward the

UDP datagram received from the Backtrack VM to the Ubuntu VM. The destination program at the
Ubuntu VM runs on port 1234.

IP addresses Machines Role
192.168.159.131 Ubuntu VM Destination

192.168.159.132 CentOS Intermediate Forwarding Host

192.168.159.133 Backtrack VM Source

Configuring the POSTROUTING chain at the sending host (Backtrack VM)

iptables -t nat -A POSTROUTING -p udp -d 192.168.159.131 --dport 1234 -j SNAT --to

192.168.159.132

Configuring the PREROUTING chain at the intermediate forwarding host (CentOS VM)

iptables -t nat -A PREROUTING -p udp -d 192.168.159.131 --dport 1234 -j DNAT --to

192.168.159.131:1234

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

13

Note:
You need to find out the ip addresses for your VMs by running the ifconfig command and use them
accordingly.

We can see the contents of the nat tables by running the iptables -t nat -L command on the VMs.

You could install Java on the Ubuntu VM by running the sudo apt-get install openjdk-6-jdk command.

Rule of thumb: Use the POSTROUTING chain to configure forwarding at the source host as well as

every intermediate host (except the intermediate host prior to the destination host, a.k.a. penultimate host)

Use the PREROUTING chain to configure forwarding at the intermediate host prior to the destination
host (i.e., at the penultimate host)

There is no need to configure anything to receive at the destination host.

Receiver Java Program (start it first, run it on the destination - Ubuntu VM)
import java.net.*;

import java.io.*;

class datagramReceiver{

public static void main(String[] args){

 try{

 int MAX_LEN = 40;

 DatagramSocket mySocket = new DatagramSocket(Integer.parseInt(args[0]));
 byte[] buffer = new byte[MAX_LEN];

 DatagramPacket packet = new DatagramPacket(buffer, MAX_LEN);

 mySocket.receive(packet); // receiver is blocked here until it gets the message

 String message = new String(buffer);

 System.out.println(message);

 mySocket.close();

 }

catch(Exception e){e.printStackTrace();}

 }

}

Sender Java Program (start it later, run it on the source - Backtrack VM)
import java.net.*;

import java.io.*;

class datagramSender{

 public static void main(String[] args){

 try{

 InetAddress receiverHost = InetAddress.getByName(args[0]);

 int receiverPort = Integer.parseInt(args[1]);

 String message = args[2];

 DatagramSocket mySocket = new DatagramSocket();

 byte[] buffer = message.getBytes();

 DatagramPacket packet = new DatagramPacket(buffer, buffer.length, receiverHost, receiverPort);

 mySocket.send(packet);

 mySocket.close();

 System.out.println("sent packet...");

 }
 catch(Exception e){e.printStackTrace();}

 }

 }

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

14

S12: We want to set the nat tables to load balance incoming traffic to different ports.

We can emulate a sequential server as a multi-threaded server by running multiple instances of the

sequential server at different ports and let the iptables to forward the incoming client requests (addressed

to a common port) to various ports (at which the server instances run), one port at a time, and balance the

load. The iptables firewall can be configured to fairly do this in a round-robin fashion so that the number
of client requests assigned to the server instances does not differ more than 1. Note that there is still some

non-determinism possible as the kernel may not schedule to run the different instances of the server

process in a round-robin fashion. In other words, even though the iptables program would fairly forward
the incoming packets to the different server instances, the server instances may not be run in a round-

robin fashion by the kernel.

We will illustrate this scenario and the appropriate iptables command options using an example of a

multiline client-server program wherein the client sends an integer representing the number of lines to be

sent by the server and the server responds with that many lines, each identified by a monotonically

increasing line number.

iptables commands

root@ubuntu:/home/natarajan# iptables -t nat -A PREROUTING -p tcp --dport 2000 -m state --state

NEW -m statistic --mode nth --every 3 --packet 0 -j DNAT --to-destination 192.168.159.131:2001

root@ubuntu:/home/natarajan# iptables -t nat -A PREROUTING -p tcp --dport 2000 -m state --state

NEW -m statistic --mode nth --every 3 --packet 1 -j DNAT --to-destination 192.168.159.131:2002

root@ubuntu:/home/natarajan# iptables -t nat -A PREROUTING -p tcp --dport 2000 -m state --state
NEW -m statistic --mode nth --every 3 --packet 2 -j DNAT --to-destination 192.168.159.131:2003

root@ubuntu:/home/natarajan# iptables -t nat -L
Chain PREROUTING (policy ACCEPT)

target prot opt source destination

DNAT tcp -- anywhere anywhere tcp dpt:cisco-sccp state NEW statistic mode nth

every 3 to:192.168.159.131:2001
DNAT tcp -- anywhere anywhere tcp dpt:cisco-sccp state NEW statistic mode nth

every 3 packet 1 to:192.168.159.131:2002

DNAT tcp -- anywhere anywhere tcp dpt:cisco-sccp state NEW statistic mode nth
every 3 packet 2 to:192.168.159.131:2003

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

Multiline Client and Server Programs: We will run three instances of the multiline server program at

ports 2001, 2002 and 2003 on the Ubuntu VM (in my case, its IP address is 192.168.159.131). We will
run three instances of the client program from the other VMs and the physical host machine, all trying to

connect to the Ubuntu VM (192.168.159.131) at port 2000. The premise is the iptables firewall would

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

15

forward every incoming packet to the Ubuntu VM to one of the three ports 2001, 2002 and 2003 in a

round-robin fashion.

Multiline server program
import java.io.*;

import java.net.*;

class multilineServer{

 public static void main(String[] args){

 try{

 int serverPort = Integer.parseInt(args[0]);

 ServerSocket lineServer = new ServerSocket(serverPort);

 while (true){

 Socket clientSocket = lineServer.accept();

 BufferedReader br = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));

 int count = Integer.parseInt(br.readLine());

 PrintStream ps = new PrintStream(clientSocket.getOutputStream());

 for (int ctr = 1; ctr <= count; ctr++){

 ps.println("Message # "+ctr);

 ps.flush();

 Thread.sleep(200);

 }

 clientSocket.close();

 }

 }

 catch(Exception e){e.printStackTrace();}

 }

}

Multiline client program
import java.io.*;

import java.net.*;

class multilineClient{

 public static void main(String[] args){

 try{

 InetAddress serverHost = InetAddress.getByName(args[0]);

 int serverPort = Integer.parseInt(args[1]);

 long startTime = System.currentTimeMillis();

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

16

 Socket clientSocket = new Socket(serverHost, serverPort);

 int count = Integer.parseInt(args[2]);

 PrintStream ps = new PrintStream(clientSocket.getOutputStream());
 ps.println(count);

 BufferedReader br = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));

 String line = null;

 while ((line = br.readLine()) != null){

 System.out.println(line);

 }

 long endTime = System.currentTimeMillis();

 System.out.println(" Time to receive feedback from the server: "+(endTime-startTime)+" milliseconds");
 clientSocket.close();

 }

 catch(Exception e){e.printStackTrace();}

 }

}

To transfer the program: You may type the client and server program at the Ubuntu VM (in my case, its
IP address is 192.168.159.131 and the name of the user account is natarajan), and assuming that you

already running the SSH server on the Ubuntu VM, you can run the scp command to transfer a file from

the Ubuntu VM to another Linux VM; you can transfer to the Windows host machine using the SSH
Secure Shell Client application.

scp natarajan@192.168.159.131:multilineClientIterative.java .

Screenshots

Ubuntu VM - server instances All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

17

Client side

where multilineClient is the name of the Java class file

192.168.159.131 is the IP address at which the multilineServer program is running
2000 is the common port to which the incoming client requests go and then diverted to the different ports

at which the server instances run

50 is the number of lines the client is requesting the server to send

S13: Setup iptables in such a way that we block ping testing from outside (i.e., remote machines cannot
run a ping test on our machine) and at the same time we are able to ping remote machines.

We will setup our Ubuntu VM (192.168.159.131) to block ping test from other VMs (including our

Backtrack VM, 192.168.159.130). To block a remote machine from doing a ping test on our machine, we
should block the ICMP Echo-Request messages. Accordingly, we run the iptables command as follows:

root@ubuntu:/home/natarajan# iptables -A INPUT -p icmp --icmp-type echo-request -j DROP
root@ubuntu:/home/natarajan# iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination
DROP icmp -- anywhere anywhere icmp echo-request

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination
root@ubuntu:/home/natarajan#

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

18

By explicitly specifying for the echo-request message to be dropped, we are permitting the echo-reply
message by default (assuming the INPUT chain is configured by default to accept messages).

You can test the above setting by trying ping 192.168.159.131 from your Backtrack VM to ping to the

Ubuntu VM (of IP address 192.168.159.131). You will not be able to see any feedback. On the other
hand, you could ping the Backtrack VM (192.168.159.130) from the Ubuntu VM by running ping

192.168.159.130.

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

19

IP Tables Project Exercises (all questions are with respect to the filter table, and are to be

executed independent of the other questions, unless otherwise noted. So, remember to flush the iptables

after executing each question, unless you are asked to follow up from a previous question):

Run the iptables -L command after setting up the configuration rules for each question.

Include screenshots of configuring the iptables firewall for every question.

Q0) Before you proceed with the questions on iptables, you need to install SSH on the Ubuntu VM in

which you will be configuring the iptables. If you have already installed SSH on the VM, you could skip

this question. Otherwise, complete the steps indicated in this question. You need to have the SSH server
running on your Ubuntu VM to execute the steps in some of the questions in this project.

i) You need to setup root access in the Ubuntu VM. To setup root access, run the command sudo

passwd root on the terminal. Enter the password you setup to login to the Ubuntu VM as a regular
user (in my case, the username of the regular user is natarajan). Then, setup a password for the root

level access and confirm it. The screenshot is shown below.

ii) Login as root using the command su root.

iii) Install the OpenSSH server application on the Ubuntu VM (run the command: sudo apt-get

install openssh-server). After the installation is complete, run the netstat –ntlp command to
show that the SSH daemon (sshd) is one of the programs actively running on a tcp port listening

for incoming connection requests. Identify the port number on which the sshd daemon is running.

Include appropriate screenshot(s).

Q1) Set the default policy for the INPUT chain to DROP. The firewall should only allow incoming

packets from the network prefix 143.132.0.0/16. The default policy for the OUTPUT chain is ACCEPT.
So, the user working on the machine could visit any website like www.google.com. Given the above

policy for incoming packets, can the web pages visited by the user be displayed in the browser? Explain.

Q2) Set the default policy for the INPUT chain be DROP and the default policy for the OUTPUT chain
be ACCEPT. Configure the INPUT chain to accept all incoming web traffic to port 80 and drop any other

incoming traffic. Can you visit the website: www.hotmail.com? Why or why not? If you cannot visit the

website, what aspect of this website is preventing you from visiting it, given that your default OUTPUT
policy is ACCEPT and the firewall has been configured to accept traffic coming to port 80? Also, if you

cannot visit the website, configure the firewall to let you be able to visit websites of such type. What

changes/deletions/additions to the rules had to be done to facilitate this?

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

20

Q3) The previous question permitted only incoming packets related to web traffic. Do an insertion to the

rules in the INPUT chain to permit SSH traffic. Show that you can connect to the SSH server running on
the Ubuntu VM by connecting to it from another VM (centos or anything) or from the physical host

machine (Windows). Include appropriate screenshots. You can get the IP address of a Linux machine by

running the ifconfig command in the terminal. Refer to the screenshots (for example, under scenarios S5,

S8) in the tutorial to see how you could SSH to a machine under a particular username.

Q4) Configure your IPtables filter table on your Ubuntu VM such that sessions/packet exchange

originating from the Ubuntu VM (as the source) are successful; on the other hand, sessions/packet
exchange originating from a remote machine to the Ubuntu VM (as the destination) are not successful.

You need to implement this scenario with the minimal number of rules and policy changes, if any. Also,

explain why your set of rules and policies implementing the stated scenario will work.

Q5) Configure your IPtables filter table to limit the number of active SSH connections to the Ubuntu VM

(hosting the SSH server) is 2. Test the working of this rule by attempting to open three SSH connections,

each in separate terminals, from another VM (like a CentOS VM) or from the host machine itself. Show
appropriate screenshots.

Q6) Extend the two-hop packet routing scenario (scenario S11) to a three-hop scenario such that the
packet gets routed through two intermediate hosts. You need to create and/or start the following four VMs

on your physical host (Use VMware Player). Let the receiver runs port 1234. As can be seen below, you

need to create two Backtrack VMs (easiest to create among the different VMs):

UbuntuVM - destination host Run the receiver datagram Java program @ port 1234

Backtrack VM-1 - source host Run the sender datagram Java program

CentOS VM - intermediate host 1
Backtrack VM-2 - intermediate host 2 (a.k.a. penultimate host)

The connectivity between the VMs is as follows:

Backtrack VM -1 ---------> Cent OS VM ----------> Backtrack VM-2 --------> Ubuntu VM

(source host) (intermediate host 1) (intermediate host 2) (destination host)

(a) Clearly show the IP addresses of the four VMs involved.

(b) Show screenshots of the source and destination hosts running the Java programs, sending and

receiving packet.
(c) Show screenshots of the commands to configure the iptables and the results of the iptables -L

command at each of the VMs, as applicable.

(d) Run the Wireshark application on the penultimate host and show the source and destination IP
addresses and the source and destination port numbers as seen in the IP header and UDP header.

To launch Wireshark on Backtrack-VM, just type wireshark at the root prompt of the Backtrack terminal

and press enter.

78) Consider the sequential (iterative) versions of the Summation Client and Server Java programs given

below. Using IPtables, simulate a scenario wherein incoming client requests (to sum from 1, 2, up to a

count value) are handled by one of three instances of the summation server program in a round-robin
fashion. The clients requests to port 1234 and the IPtables is configured to forward the request coming to

port 1234 to three different ports, 2234, 2235 and 2236, on each of which we run an instance of the

summation server program. The Ubuntu VM, hosting the three instances of the summation server
program, is configured with the required IPtables command to do load balancing. The summation client

instances could run on the Backtrack VMs and the host machine.

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

21

Iterative Summation Server Program
import java.io.*;

import java.net.*;

class summationServer{

 public static void main(String[] args){

 try{

 int serverPort = Integer.parseInt(args[0]);

 ServerSocket calcServer = new ServerSocket(serverPort);

 while (true){

 Socket clientSocket = calcServer.accept();

 BufferedReader br = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));

 int count = Integer.parseInt(br.readLine());

 int sum = 0;

 for (int ctr = 1; ctr <= count; ctr++){

 sum += ctr;

 Thread.sleep(200);

 }

 PrintStream ps = new PrintStream(clientSocket.getOutputStream());
 ps.println(sum);

 ps.flush();

 clientSocket.close();

 }

 }

 catch(Exception e){e.printStackTrace();}

 }
}

Iterative Summation Client Program
import java.io.*;

import java.net.*;

class summationClient{

 public static void main(String[] args){

 try{

 InetAddress serverHost = InetAddress.getByName(args[0]);

 int serverPort = Integer.parseInt(args[1]);

 long startTime = System.currentTimeMillis();

 Socket clientSocket = new Socket(serverHost, serverPort);

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

22

 int count = Integer.parseInt(args[2]);

 PrintStream ps = new PrintStream(clientSocket.getOutputStream());

 ps.println(count);

 BufferedReader br = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));

 int sum = Integer.parseInt(br.readLine());

 System.out.println(" sum = "+sum);

 long endTime = System.currentTimeMillis();

 System.out.println(" Time to receive feedback from the server: "+(endTime-startTime)+" milliseconds");

 clientSocket.close();

 }

 catch(Exception e){e.printStackTrace();}

 }

}

Q8) Set the default policy of the INPUT and OUTPUT chains of your filter table of iptables is to DROP
using an appropriate command (show a screenshot executing the command and the output of the iptables -

L command). You could use the Ubuntu VM and Backtrack VM in your virtual environment to

implement this scenario. Now configure your iptables on the Ubuntu VM to (do parts a and b
independently):

(a) Only allow remote machines to ping the local machine and block the local machine from pinging

others.

(b) Only allow the local machine to ping the remote machines and block the remote machines from
pinging the local machine.

(c) Allow ping communication in both directions (from the local machine to remote machine and vice-

versa).

Note that you have to use the --icmp-type echo-request and --icmp-type echo-reply options

appropriately.

Show appropriate screenshots executing the iptables commands to realize the above for (a), (b) and (c)

and the structure of the iptables. Also, capture the successful or unsuccessful execution of the ping

command from the local machine and remote machine (in either direction) for each of the three cases (a),
(b), (c).

All C
op

yri
gh

ts

Nata
raj

an
 M

eg
ha

na
tha

n

