Module 5: Buffer Overflow
Attacks

Dr. Natarajan Meghanathan
Associate Professor of Computer Science
Jackson State University, Jackson MS 39217
E-mail: natarajan.meghanathan@jsums.edu

Buffer Overflow Attacks

Buffer overflow (Buffer overrun) is a condition at an interface under
which more input can be placed into a buffer (data holding area) than
the capacity allocated, overwriting other information.

Attackers exploit such a condition to crash a system or to insert
specifically crafted code that allows them to gain control of the system.

A very common attack mechanism (due to programming errors).
— Morris Worm (1988): fingerd
— Code Red Worm (2001): Microsoft IS 5.0
— Slammer Worm (2003): Microsoft SQL Server 2000

— Sasser Worm (2004): Microsoft Windows 2000/XP LSASS (Local Security
Authority Subsystem Service)

Prevention techniques known

Still of major concern:

— Legacy of buggy code in widely deployed operating systems and
applications

— Continued careless programming practices by programmers.

Overview of Buffer Overflow Attacks

A buffer overflow can occur when a process (as a result of
programming error) attempts to store data beyond the
limits of a fixed-size buffer and consequently overwrites
adjacent memory locations.

— The locations could hold other program variables or parameters or
program control flow data (like return addresses and pointers to
stack frames).

— The buffer could be located on the stack, in the heap, or in the
data section of the process.

— The consequences of this error include corruption of data used by
the program, unexpected transfer of control in the program,
possible memory access violations, and very likely eventual
program termination

 If the overflow is done deliberately (an attack on the
system), the transfer of control could be to the code of the
attacker’s choosing, and the arbitrary code will be
executed with the privileges of the attacked process.

Note on Processor Architectures

 Big endian: The Most Significant Bit (or
Byte) is stored in the low memory end.

Big Endian Architecture LSbit LSByte
O D> 0w ¥ B = “DATA\0” /
N MO OO OO “< AN N ©
Al ©O ~ O O O v~ LN Al <& A o©
ololo|olo|ololol1(ololol1]1]00|DlAlT|AlVW
Low Memory A =140 High Memory
Address Address

E.g. Motorola convention: 6800 and 68k series of processors

Note on Processor Architectures

» Little endian: The Least Significant Bit (or
Byte) is stored in the low memory end.

Little Endian Architecture

LSbit <+ LSByte
/ w o 2SS 3R / B = “DATA\Q
Al << AN O ~—~ O O O ~ O
O‘ O|1(1]0[0|0|1|0|O0O|O0O[O0O(O0O|O0O|O0O|O0|\O|A|T|A|D
Low Memory A =140 High Memory
Address Address

E.g. Intel convention: x86 processors

Logical Memory Layout of a Process

High Memory Address

Used to store information about the active Sub-routines

Available memory

Used for dynamic memory allocation

Uninitialized Contains all the static and global variables uninitialized
Data Segment (some initialized to zero) in the code

Initialized Data Contains the values of all initialized static and global
Segment variables initialized to a non-zero value in the code

Text Segment Contains all the executable code (read-only)

Low Memory Address

cfafbfce

cfafbfc8

cfafbfcd

cfafbfcl
cfafbfbc

cfafbfb8

cfafbfb4

cfafbfb0
cfafbfac

cfafbfa8

cfafbfad

cfafbfal

Stack Layout of a Process

High Memory Address

Stack Frame
for B()

Low Memory Address

Stack
Pointer

B

Program Segment

Stack Layout: Terminologies

Stack Frame: The activation record for a sub routine comprising of
(in the order facing towards the low memory end): parameters,
return address, old frame pointer, local variables.

Return address: The memory address to which the execution
control should return once the execution of a stack frame is
completed.

Stack Pointer Register: Stores the memory address to which the
stack pointer (the current top of the stack: pointing towards the low
memory end) is pointing to.

The stack pointer dynamically moves as contents are pushed and

popped out of the stack frame.

Frame Pointer Register: Stores the memory address to which the
frame pointer (the reference pointer for a stack frame with respect to
which the different memory locations can be accessed using relative
addressing) is pointing to.

The frame pointer typically points to an address (a fixed address),
after the address (facing the low memory end) where the old frame
pointer is stored.

Stack Layout of a Process Frame Pointer o

High Memory Address

cfafbfd0

Parameters of main():
argv[n-1].... argv[0], argc

cfafbfcc

Return address to the OS

cfafbfc8
cfafbfc4

Old address of the Frame
Pointer (typically NULL)

cfafbfcO

Locals for main(): int x

Low Memory Address

Register
Stack Pointer
Reqi cfafbfcO
egister
Bt w){
mt u=73;
Frame
Pointer
| ointe 3
Sta_ck Alint vi{
Pointer mt z=5;
Biz);
x 8002508
}
main (int arge, char *argv[|)}{
mtx=2;
A(x);
x 80C03008
}

Program Segment

Stack Layout of a Process (continued)

High Memory Address

cfafbfd0

cfafbfcc

cfafbfc8
cfafbfc4

Frame Pointer

Parameters of main():
argv[n-1].... argv[0], argc

Return address to the OS

Old address of the Frame
Pointer (typically NULL)

cfafbfcO
cfafbfbc

cfa
cfafbfb4
cfafbfb0

Locals for main(): int x

Parameters for A(): inty

Return address to main()
\x 80C03008

8 Address of Frame Pointer

™ for main(): cfafbfc4

Locals of A(): int z

Low Memory Address

Register cfafbfb4
Stack Pointer
Register cfafbfbO
Biint w){
mtn=3;
)
Afint v){
mt z=15;
Frame Biz);
Pointer 'x S0C02508
D)
Stack main (int arge, char *argv([]){
Alx);
'x 80C03008

} Program Segment

Stack Layout of @ Process pegmer " [clafbfad

Memory Address

cfa%fdo P t f main()- Stack Pointer
arameters of main(): Register

fafbf argv[n-1].... argv[0], argc o
clatbiee Return address to the OS Bent wi

cfafbfa0

mt u=73;
cfafbic8" 514 address of the Frame
cfafbfc4 Plc_)intelr (fincons:equ.e.ntial)]
ofdibfcolLocals for main(): int x Agntv){
cidibfoc, Parameters for A(): int y "“I: 5
Return address to main() B(a):

\x 80C03008 \x $0C02508
cfafbf\b\S Address of Frame Pointer)
cfafbfh4 for main(): cfafbfc4

Locals of A(): int z

main (int arge, char *argv([]){

Parameters for B(): int w ntx=1;
Return address to A()
\x 80C02508 E - Alx);
Address of Frame Pointer | ' 'aMme x50C03003
cfafofaal__Tor A(): ctafbfbd Pointer }
cfafbfa0 Locals of B(): int u Sta}ck Program Segment
Pointer

Low Memory Address

Example of a Vulnerable C Program

int main(int argc, char *argv[]) {
int valid = FALSE;
char strl[8];
char str2[8]:;

gets (str2) ; «——
if (strmcocmp(strl, str2, 8) == 0)
valid = TRUE:;:

next tag(strl); gets(string)- C routine vulnerable for buffer overflow

printf ("bufferl: strl(%s), str2(%s), valid(sd)\n", strl, str2, valid);

$ cc -g -o bufferl bufferl.c Proper Input

bufferl: strl (BADINPUT), str2 (BADINPUTBADINPUT), wvalid(l)

$./bufferl Correct Output

START ‘ Mischievous Input

bufferl: stril (START), str2(START), valid(l) for-buffer overflow:

S ./bufferl

EVILINPUTVALUE No Impact L

bufferl: strl(TVALUE), str2(EVILINPUTVALUE), valid(0) Mischievous Inp;
$./bufferl for buffer overflo
BADINPUTBADINPUT

Vulnerability

Ut
w:

exploited

Source: Figure 10.1: W. Stallings: Computer Security: Principles and Practice: 2" Ed.

Stack for the C Program
(Buffer Overflow Exploited)

LEEffbf4d
LEfffbfO
bff ffbec
bff ffbel
bffffbed
bEffffbel
Lffffbdc
Lffffbds
bff ffhbd4d

LEEffbdO

Source; Figure 10.2: W.

-

3dfct bt
4

0LO000000

c6ld0340
- - @

OB8fcf fbf

Q0000000

20640140
- T

54001540
T id

53544152
S T A R

00850408

20561540
O v . @

34fcffthf
2 &

01000000

celAd03240
- 'a.

O8fcffbf

01000000

B ADI

4=505554
N P U T

42414449
BADTIT

Stallings: Computer Security: Prirjciples and Practice: 2" B

Assume Big Endian

System

d.

High memory end

argw
argc

return addr
old base ptr

walid

strl[4-T7]
strl1[0-3]
str2[4-7]

stxr2[0-3]

Low memory end

Buffer Overflow Vulnerability

* To exploit buffer overflow, an attacker needs to:

— ldentify a buffer overflow vulnerability in some program
that can be triggered using externally sourced data
under the attacker’s control

— Understand how that buffer will be stored in the
process’ memory, and hence the potential for
corrupting memory locations and potentially altering
the execution flow of the program.

* Vulnerable programs may be identified through:
(1) Inspection of program source; 2) Tracing the
execution of programs as they process oversized
input or (3) Using automated tools (like fuzzing)

Programming Language History

« At the machine level, data manipulated by machine
instructions executed by the computer processor are
stored in either the processor’s registers or in memory.

It is the responsibility of the assembly language
programmer to ensure that correct interpretation is
placed on any saved data value.

— Some machine language instructions will treat the bytes to
represent integer values; others as addresses of data or
instructions, and others as arrays of characters.

« Assembly language programs get the greatest access to the
resources of the computer system, but at a high risk (cost); it is the
responsibility of the programmer to code without any vulnerability for
buffer overflow (data being written to a buffer more than its allocated
space).

Programming Language History

 Modern high-level programming languages like Java,
ADA, Python, etc are strongly typed and clearly define
what constitutes permissible operations on variables.

— They do not suffer from buffer overflow

— The higher levels of abstraction and safe usage features allow
programmers to focus more on solving the problem at hand and
less on managing details of interactions with variables.

— The tradeoff is at both compile time and run time, additional
checks have be made to make sure there are no violations (like
on buffer limits).

— Also, access to some instructions and hardware resources is
also lost, limiting the usefulness of these languages in writing
low-level code (like device drivers) that must interact with the
hardware resources.

Programming Language History

* In between the two extremes (assembly languages and
high-level languages like Java), we have the C
lanquage and its derivatives that have many modern
high-level control structures and data type abstractions
as well as provide the ability to directly access and
manipulate memory data.

— The UNIX operating system and its derivative operating systems
I(i:ke Linux as well as many of their applications are developed in

 Facilitated portability to a wide range of processor architectures
(unlike OS written in assembly language)
— Ability to access low-level machine resources: memory is viewed
as just a sequence of bytes
« Burden on the programmer to take care of buffer overflow when
directly manipulating data (buffer) in the memory through program
variables/inputs.
— There is a large body of legacy code with unsafe functions (like
input and string processing routines) in UNIX/C that are
potentially vulnerable for buffer overflows.

Example: Stack Smashing Attack

#include <stdio.h>

Name of the program is

CannotExecute(){ demo.c
printf("This function cannot execute\n");

}
GetInput(){

buffer[8];
gets(buffer);

puts(buffer); Assume Little Endian
System

}
main(){
GetInput();

B;

Sequence of Steps

1 Compile with the following options

mplanet@ubuntu:~$ gcc -fno-stack-protector -ggdb -mpreferred-stack-boundary=2 -o demo demo.c
/tmp/ccmmHHC4.0: In function GetInput':

/home/vmplanet/demo.c:10: warning: the gets' function is dangerous and should not be used.
mplanet@ubuntu:~$ |

2 Start gdb and use the list command to find the line
numbers of the different key statements/function calls
so that the execution can be more closely observed at
these points.

Use list 1,50 (where 50 is some arbitrarily chosen large
number that is at least guaranteed to be the number of
lines in the program).

In our sample program, we have only 23 lines. So, |
could have used list 1, 23 itself.

vmplanet@ubuntu:~¢ gdb demo

GNU gdb (GDB) 7.1-ubuntu

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "1486-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/=...

Reading-symbole-from /home/vmplanet/demo...done.

(gdb) list 1, 58

#lncluae <stdio.h>

CannotExecute(){
printf("This function cannot execute\n");

}

GetInput(){

1
2
3
4
5
6
7
8

char buffer[&];
gets(buffer);
puts(buffer);

}
main(){
GetInput();

return 8;

3 Issue breakpoints at lines 17 and 10 to temporarily stop execution

(gdb) break 17
Breakpoint 1 at 8x8848449: file demo.c, line 17.

(gdb) break 18

Breakpoint 2 at 0x804842e: file demo.c, line 10.

4 Run the disas command on the CannotExecute and main functions
to respectively find the starting memory address and return address
after the return from Getlnput().

Address to return to
after executing the
Getlnput() function

0x0804844e

Starting memory
address for the
CannotExecute()
Function

0x08048414

(gdb) disas main

Dump oT assembler code for function main:

QxE08048446 <+0=:
x08048447 <+1=>:

ARV T <+13>:
BxB8048454 =+14=:
End of-zscembler-dump.

(gdb)

Dump o

Bx08048414 r0>:

SFARLs1 <+]1=:
Ox08048417 =+3=:
Ox0804841la =+0=:
Bx0804842]1 =+13=>:
Bx08048426 <+18>:
Bx08048427 =+19=:
End of assembler dump.

%ebp

%esp,%ebp

0x8048428 <=GetInput=
$0x0 ,%eax

%Zebp

push
mow
call
mow

pop
ret

disas CannotExecute
embler code fTor funmction CannotExecute:

%ebp

%esp,%ebp

$0x4 ,%esp
$0x8048520, (%esp)
Bx804834c <puts@plt=

push
mow
sub
mow L
call
leave
ret

5 Start the execution of the program using the run command
The execution will halt before line # 17, the first breakpoint.
That is, before the call to the Getlnput() function.

6 Check and see the value on the top of the stack to use it as a
reference later to identify the return address to overwrite. The
command/option used is x/8xw $esp to obtain the 8 words
(ﬁz-bits l?ach) starting from the current location on the top of
the stack.

7 Continue execution by pressing s at the gdb prompt. Now the
Getlnput() function is called. The processor would allocate 8
bytes, for the buffer array. So the stack pointer would be
moved by 8 bytes towards the low memory end.

8 Use the x/8xw $esp command to obtain the 8 words (32-bits
each) starting from the current location pointed to by the Stack
Pointer. We could see the Stack Pointer has moved by 16
bytes (from the reference value of Step 6) towards the low
memory end. You could continue executing by pressing s at
the gdb prompt. You may even pass a valid input after gets()

IS executed and see what puts() prints.

x—

9 Quit from gdb using the ‘quit’ command at the (gdb) prompit.

Value of the
Value at the memory address on Frame Pointer

the top of the stack before the call 8 bvtes of the buffer .
to the Getlnput() function arrggt/ — for main()

(gdb) run
Starting program: /fhqme/vmplanet/demo

Breakpoint 1, main ()\at demo.c:17
17 GetInput();
(gdb) x/8xw $esp
6x00144bd6 6x00000001 oxpffffafs

Bxb 4tc @xb7fff858 @xbffff4be xf fffffff

Breakpoint 2, GetInput () at demo.c:10
18 gets(buffer);
(gdb) x/8xw $esp

0x0811e8ch 0x0804847hb 0x002831T4 @xbffff448
OxuE04844e \ CEGEREELL[E Bxo0boeee1

Value on the top of the stack Value that was previously pointed
after the call to the Getlnput() function to by the Stack Pointer

Corresponds to the Return address in main(): 0x0804844e. See
the screenshot for Step 4. This is the address that needs to be
overwritten with the starting address for the CannotExecute() function

Oxbffff458 —

Oxbffff454
Oxbffff450

Oxbffff44c

Oxbffff448
SP

e

Stack Layout

High memory end

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Low memory end

Oxbffff458
Oxbffff454
Oxbffff450

Oxbffff44c
Oxbffff448

Oxbffff444

Oxbffff440

Oxbffff43c

Oxbffff434 SP

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Return address to
main (0x0804844e)

Frame pointer for
Main (0xbffff448)

y

Buffer
(8 bytes)

0x0011e0c0

(gdb) s Running the Program

Breakpoint 2, GetInput () at demo.g:10 .
10 gets(buffer); for Valid Input
(gdb) x/8xw $esp
Bxbffff434: BxoB1ledcE 0x0804847b 0x00283714 Oxbffff448
Passing a BxbffTf444: Bxp804844e Oxbffff4c8 0x00144bd6 BxpEopEael
valid
input
P puts(buffer);
(gdb) x/8xw $esp dcb a \0gfe
Bxbffff434: Oxbffff438 Bxb4636261 BxBBE676665 Oxbffff448
BxbffTf444: Bxp804844e Oxbffff4c8 0x00144bd6 BxpEopEael
Desired
output
. vmplanet@ubuntu:~$./demo
E|the_r way of abcdefg
pas:smg Inputs abcdefg
is fine when we vmplanet@ubuntu:~$ printf "abcdefg" | ./demo
pass just printable abcdefg
Regular characters vmplanet@ubuntu:~$ |

When we want to pass non-printable characters or memory addresses, we need
to use the printf option (need to pass them as hexadecimal values)

Oxbffff458 —

Oxbffff454
Oxbffff450

Oxbffff44c

Oxbffff448
SP

e

High memory end

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Low memory end

Oxbffff458
Oxbffff454
Oxbffff450

Oxbffff44c
Oxbffff448

Oxbffff444

Oxbffff440

Oxbffff43c
Oxbffff438

Oxbffff434 SP

Stack Layout: Valid Input

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Return address to
main (0x0804844e)

Frame pointer for
Main (0xbffff448)

00 67 66 65

64 63 62 61

A\ 4

Oxbffff438

Running the Program for an Input
that will Overflow: No Side Effects

Breakpoint 1, main () at demo.c:17

17 GetInput();

(gdb) x/8xw $esp

Bxbffff448: Oxbffff4cs Bx00144bdé
Bxbffff458: Bxbffffdfc Bxb7fff858
(gdb) s

Breakpoint 2, GetInput () at demo.c:1@

18 gets(buffer);

(gdb) x/8xw %esp

Oxbffff434: Ox081llebch Ox0884847b
OxbTffT444: Ox0804844e @xbffff4c8
(gdb) s

abcdefgh

11 puts(buffer);

(gdb) x/8xw %esp

Oxbffff434: @xbffff438 Ox64636261
Bxbffff444.: Bx0804844e Oxbffff4cs
(gdb) s

BxBeeeepel
@xbffff4be

Ox082831T4
Ox08144bdé

BxbE8676665
0x00144bd6

xbffff4f4
Oxffffffff

Oxbffff448
Bxboeeepel

abcdefgh The LSB of the memory address pointed to by the frame pointer is
13 } | overwritten. However, since this corresponds to the inconsequential
(gdb) |} frame pointer value for the main(), there are no side effects.

Exploiting the Buffer Overflow
Attack

* We need to pass the starting memory address of
the CannotExecute() function: 0x08048414 as
part of the user input to overwrite the correct
return address of the Getlnput() function.

— We need to pass 16 bytes of character input (8 bytes
for the buffer array, 4 bytes for the Frame Pointer for
main(); the last 4 bytes corresponding the starting
memory address of CannotExecute()).

* Note that the processor architecture on which
the example is run is a Little-endian one.

* Hence, the least significant value of the memory
address (\x14) should be passed first as part of
the sub string input along with the characters.

. fdemo

:~% printf "abcdefg" |

:~% printf "abcdefghijkl\x14\x84\x04\x88" |

printf has to
be used to pass

his function cannot execute
Segmentation fault

vmplanet@ubuntu:~% ./demo
Segmentation fault because from the Oxbffff458
CannotExecute() function, there is Oxbffff454
no way for the control to return to
the main() function and go through Oxbffft450
a graceful termination.
Oxbffff44c

Starting memory address for
the CannotExecute() function

Oxbffff448

mplanet@ubuntu:~% ./demo

thEfghlJ l'l.-l.."'l.E]'-':. 14M0x84\0x04\0x08

. fdemo

Memory addresses as inputs

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Return address to
main (0x08048414

bcdefghijkl\0x14\0x84'0x04\0x08 Oxbfftf440 Frame pointer Main
Gegmentation fault b
mplanet@ubuntu:~% ./demo Oxbffff43c 72 71 70 69
bedefghijkl\x14\x84\x04\x08 68 67 66 65
Egmentat__mn fault Oxbffff434 SP >

mplanet@ubuntu:~$ | Oxbffff438

Seizing Control of Execution: NOP Sledding

« To be able to successfully launch a buffer- .
overflow attack, an attacker has to: (i) guess the .
location of the return address with respect to the
buffer and (ii) determine the address to use for
overwriting the return address so that execution is
passed to the attacker’s code.

* In real-world, it is difficult to determine the
distance (# bytes) between the return address
and the beginning of the buffer — because, we
may not have access to the source code.

« So, we have to guess the distance. We do this by
having a sequence of NOP instructions before the
shell code (evil code) and insert a return address
(hopefully to where a NOP is inserted) several

times after the shell code. return
« If the actual return address gets overwritten by address
the return address that we inserted, then control pointer

passes to that particular address of the NOP-
region. We then sled through the NOP
instructions until we come across the evil code.

 NOP (a.k.a. No-op) is a CPU instruction that does
nOt aCtua”y dO anything except te” the processor Source: Figure 11.7 from M. Stamp,
to proceed to the next instruction. Information Security: Principles and
Practice, 2nd Edition, May 2011

Common Unsafe C Standard

Library Routines

gets (char |Read line from standard input into str
*str)

sprintt (char |Create siraccording to supplied format
*str, char and variables

*format)

strcat Append contents of string src to string
(char *dest, dest

char *src)

strcpy Copy contents of string src to string dest
(char *dest,

char *src)

Source: Table 10.2: W. Stallings: Computer Security: Principles and Practice: 2" Ed.

Shellcode-based Stack Smashing

« Code supplied by attacker
— Machine code: specific to processor and OS
— Often saved in buffer being overflowed

— Traditionally transferred control to a user command-line
interpreter (shell)

— Shellcode functions
 Launch a remote shell when connected to
» Flush firewall rules that currently block other attacks

« Break out of a chroot (restricted execution) environment, giving
full access to the system.

— Target program can be:
A trusted system utility
* Network Service daemon
« Commonly used library code

Defending against Buffer Overflows

 Two broad categories of defenses:

— Compile-time defenses: Aim to harden new programs
to resist attacks

— Run-time defenses: Aim to detect and abort attacks in
existing programs.

« Compile-time defenses:

— Harden new programs when they are compiled
— Strategies:

« Choose a high-level language that does not permit buffer
overflows

« Encourage safe coding standards
« Use safe standard libraries

* Include additional code to detect corruption of the stack frame.

Safe Coding Techniques

With C, the ability to manipulate pointer addresses and directly access
memory comes at a cost.

The designers of C placed more emphasis on space efficiency and
performance considerations than on type safety.

— ltis the job of the programmers to take care to write proper code and
ensure the safe use of all data structures and variables.

There exists a large legacy body of potentially unsafe code in the
Linux, UNIX and Windows OS and applications, some of which are
potentially vulnerable to buffer overflows.

In order to harden the existing systems, the programmer needs to
inspect the code and rewrite any unsafe coding constructs in a safe
manner.

OpenBSD Project: The objective is to produce a free, multi-platform
4.4BSD-based UNIX-line OS.

— Programmers have undertaken an audit of the existing code base,
including the OS, standard libraries and common utilities.

— As aresult, OpenBSD is widely considered as one of the safest OS.

Language Extensions/ Safe Libraries

« Handling dynamically allocated memory is more
problematic because the size information is not

available at compile time

* requires an extension to the semantic of a pointer to include
bounds information and the use of safe library routines

« programs and libraries need to be recompiled
» Feasible for new OS and its associated utilities
« likely to have problems with legacy and third-party applications

« Concern with C is use of unsafe standard library

routines: one approach has been to replace these

with safer variants

 Libsafe is an example

 Library is implemented as a dynamic library arranged to load
before the existing standard libraries that are typically
accessed through the Libsafe libraries.

Sample exploit program

Buffer (80 bytes) fp ra

Attack code g & void foo(char * input_string)
a b { char buffer[80];
* g 11: —— strcpy(buffer,input_string);
g e | — return;
e r }
I I /*input_string =
attack code+garbage+&buffer

total length = 88 bytes */
A vulnerable program running without Libsafe

Sample exploit program(cont.)

LIBSAFE WARNING i void foo(char * input_string)
& OVBEurIEL%Tig;fgsegg,sggzyéafailable Size=E0 { C h a r b u ffe r [8 o] ;
Command Line:"Z:shuochenidetourstshunDebugh overflow, exe” o Strc pY(b u ffe r, i n p u t_stri ng);
Es:;l;\]a:nla:shunchen retu rn;
gx;gﬁggga }/*len(lnput_stl‘lng)=88 byteS*/
|:|§4E|1349
. Dr7es02a6 . % I
|< (Call Stack is completely dumped.) C h a r I I bsafEStrC pY(
Retry Ianore Cha r * dESt,

const char * src)
—— if (src is longer than max_size)
— report the event;
else
return strcpy(dest,src);
bs

A vulnerable program running with Libsafe

Stack Protection Mechanisms
(Compiler Extensions)

 Insert additional function entry and exit code at compile-
time (GCC extension)

 Stackquard

— The function entry code writes a canary value below the old
frame pointer address (before the allocation of space for local
variables).

— The added function exit code checks that the canary value has
not changed before continuing with the usual function exit
operations of restoring the old frame pointer and transferring
control back to the return address.

— Any attempt at a classic stack buffer overflow would have to alter
the canary value in order to change the old frame pointer and
return addresses, and hence would be detected, resulting in the
program being aborted.

— The canary value should be unpredictable (typically a random
value chosen at the time of process creation and saved as part
of the process state) and should be different on different
systems.

StackGuard vs. Return Address
Defender (RAD)

- Drawbacks of StackGuard
— All programs needing protection need to be recompiled.

— Since the structure of the stack frame has changed, it can cause
problems with programs, such as debuggers that analyze stack
frames.

« Return Address Defender (RAD)

— While RAD is also a compile-time solution (a GCC extension) -
requiring the programs to be recompiled, this extension does not
alter the structure of the stack frame (so, compatible with
unmodified debuggers).

— On function entry, the added code writes a copy of the return
address to a safe region of memory that would be very difficult to
corrupt. On function exit, the added code checks the return
address in the stack frame against the saved value, and if any
change is found, the program is aborted.

Executable Address Space Protection

« Many of the stack overflow attacks involved copying the
machine code into the targeted buffer and then
transferring execution to it.

« The solution idea is to make the stack and heap non-
executable, and executable code should only be found
elsewhere in a process’ address space.

« The Memory Management Unit (MMU) is set up to tag
pages of virtual memory as being non-executable.
— Most operating systems of today support this.

« Executable stack is needed for entities like: (1) Just-in-
time compilers in the Java Runtime system; (2) Nested
functions in C; (3) Linux signal handler

— Special provisions are needed to support these entities

Address Space Randomization

« Manipulate location of key data structures
— Stack, heap, global data
— Using random shift for each process

— Large address range on modern systems - wasting
some memory due to randomization has negligible
impact.

- Randomize location of heap buffer rather than
contiguous allocation.

- Randomize the location (virtual memory
addresses) of standard library routines and
randomize the order of their loading.

Guard Pages

* Place guard pages between critical
regions of memory
— flagged in MMU as illegal addresses
— any attempted access aborts process

* Further extension places guard pages

between stack frames and heap buffers

« cost in execution time to support the large number
of page mappings necessary

