
Module 5: Buffer Overflow

Attacks

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University, Jackson MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Buffer Overflow Attacks
• Buffer overflow (Buffer overrun) is a condition at an interface under

which more input can be placed into a buffer (data holding area) than
the capacity allocated, overwriting other information.

• Attackers exploit such a condition to crash a system or to insert
specifically crafted code that allows them to gain control of the system.

• A very common attack mechanism (due to programming errors).
– Morris Worm (1988): fingerd

– Code Red Worm (2001): Microsoft IIS 5.0

– Slammer Worm (2003): Microsoft SQL Server 2000

– Sasser Worm (2004): Microsoft Windows 2000/XP LSASS (Local Security
Authority Subsystem Service)

• Prevention techniques known

• Still of major concern:
– Legacy of buggy code in widely deployed operating systems and

applications

– Continued careless programming practices by programmers.

Overview of Buffer Overflow Attacks
• A buffer overflow can occur when a process (as a result of

programming error) attempts to store data beyond the
limits of a fixed-size buffer and consequently overwrites
adjacent memory locations.
– The locations could hold other program variables or parameters or

program control flow data (like return addresses and pointers to
stack frames).

– The buffer could be located on the stack, in the heap, or in the
data section of the process.

– The consequences of this error include corruption of data used by
the program, unexpected transfer of control in the program,
possible memory access violations, and very likely eventual
program termination

• If the overflow is done deliberately (an attack on the
system), the transfer of control could be to the code of the
attacker’s choosing, and the arbitrary code will be
executed with the privileges of the attacked process.

Note on Processor Architectures

• Big endian: The Most Significant Bit (or

Byte) is stored in the low memory end.

0

3
2

7
6
8

0

1
6

3
8
4

0

8
1

9
2

0

4
0

9
6

0

2
0

4
8

0

1
0

2
4

0

5
1

2

0

2
5

6

1

1
2

8

0

6
4

0
3

2
0

1
6

1

8

1

4

0

2

0

1

‘D’

B

‘A’

B

‘T’

B

‘A’

B

‘\0’

B

A = 140
Low Memory

Address

High Memory

Address

B = “DATA\0”

LSbit LSByte
Big Endian Architecture

E.g. Motorola convention: 6800 and 68k series of processors

Note on Processor Architectures

• Little endian: The Least Significant Bit (or

Byte) is stored in the low memory end.

E.g. Intel convention: x86 processors

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 ‘\0’

B

‘A’

B

‘T’

B

‘A’

B

‘D’

B

A = 140
Low Memory

Address

High Memory

Address

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8
4

3
2

7
6
8LSbit LSByte

Little Endian Architecture

B = “DATA\0”

Logical Memory Layout of a Process

Contains all the executable code (read-only)

Contains the values of all initialized static and global
variables initialized to a non-zero value in the code

Contains all the static and global variables uninitialized
(some initialized to zero) in the code

Used for dynamic memory allocation

Used to store information about the active Sub-routines

Low Memory Address

High Memory Address

Text Segment

Initialized Data
Segment

Uninitialized
Data Segment

Heap

Stack

Environment
Variables

Available memory

Stack Layout of a Process

Stack Frame
for main()

Stack Frame
for A()

Stack Frame
for B()

Low Memory Address

High Memory Address

Stack
Pointer

Program Segment

main(){

A();

}

A(){

B();

}

B(){

}

Stack Layout: Terminologies
• Stack Frame: The activation record for a sub routine comprising of

(in the order facing towards the low memory end): parameters,
return address, old frame pointer, local variables.

•

• Return address: The memory address to which the execution
control should return once the execution of a stack frame is
completed.

• Stack Pointer Register: Stores the memory address to which the
stack pointer (the current top of the stack: pointing towards the low
memory end) is pointing to.

• The stack pointer dynamically moves as contents are pushed and
popped out of the stack frame.

• Frame Pointer Register: Stores the memory address to which the
frame pointer (the reference pointer for a stack frame with respect to
which the different memory locations can be accessed using relative
addressing) is pointing to.

• The frame pointer typically points to an address (a fixed address),
after the address (facing the low memory end) where the old frame
pointer is stored.

Stack Layout of a Process

Program Segment

Locals for main(): int x

Return address to the OS

Parameters of main():
argv[n-1]…. argv[0], argc

Low Memory Address

High Memory Address

Frame
Pointer

Old address of the Frame
Pointer (typically NULL)

Stack
Pointer

cfafbfc4
Frame Pointer

Register

cfafbfc0
Stack Pointer

Register

cfafbfc0

cfafbfc4

cfafbfc8

cfafbfcc

cfafbfd0

Stack Layout of a Process (continued)

Locals of A(): int z

Return address to main()
\x 80C03008

Parameters for A(): int y

Low Memory Address

Stack
Pointer

Locals of A(): int z

Address of Frame Pointer
for main(): cfafbfc4

Frame
Pointer

Locals for main(): int x

Return address to the OS

Parameters of main():
argv[n-1]…. argv[0], argc

High Memory Address

Old address of the Frame
Pointer (typically NULL)

cfafbfb4
Frame Pointer

Register

cfafbfb0
Stack Pointer

Register

Program Segment

cfafbfc0

cfafbfc4

cfafbfc8

cfafbfcc

cfafbfd0

cfafbfb0

cfafbfb4

cfafbfb8

cfafbfbc

Stack Layout of a Process

Program Segment

Address of Frame Pointer
for A(): cfafbfb4

Return address to A()
\x 80C02508

Parameters for B(): int w

Low Memory Address

Stack
Pointer

Locals of B(): int u

Locals of A(): int z

Return address to main()
\x 80C03008

Parameters for A(): int y

Locals of A(): int z

Address of Frame Pointer
for main(): cfafbfc4

Frame
Pointer

Locals for main(): int x

Return address to the OS

Parameters of main():
argv[n-1]…. argv[0], argc

High Memory Address

Old address of the Frame
Pointer (inconsequential)

cfafbfa4
Frame Pointer

Register

cfafbfa0
Stack Pointer

Register

cfafbfc0

cfafbfc4

cfafbfc8

cfafbfcc

cfafbfd0

cfafbfb0

cfafbfb4

cfafbfb8

cfafbfbc

cfafbfa0

cfafbfa4

cfafbfa8

cfafbfac

Example of a Vulnerable C Program

gets(string)- C routine vulnerable for buffer overflow

Source: Figure 10.1: W. Stallings: Computer Security: Principles and Practice: 2nd Ed.

Proper Input
Correct Output

Mischievous Input
for buffer overflow:
No Impact

Mischievous Input
for buffer overflow:
Vulnerability
exploited

Stack for the C Program
(Buffer Overflow Exploited)

Low memory end

High memory end

Source: Figure 10.2: W. Stallings: Computer Security: Principles and Practice: 2nd Ed.

Assume Big Endian
System

Buffer Overflow Vulnerability

• To exploit buffer overflow, an attacker needs to:
– Identify a buffer overflow vulnerability in some program

that can be triggered using externally sourced data
under the attacker’s control

– Understand how that buffer will be stored in the
process’ memory, and hence the potential for
corrupting memory locations and potentially altering
the execution flow of the program.

• Vulnerable programs may be identified through:
(1) Inspection of program source; 2) Tracing the
execution of programs as they process oversized
input or (3) Using automated tools (like fuzzing)

Programming Language History

• At the machine level, data manipulated by machine
instructions executed by the computer processor are
stored in either the processor’s registers or in memory.

• It is the responsibility of the assembly language
programmer to ensure that correct interpretation is
placed on any saved data value.

– Some machine language instructions will treat the bytes to
represent integer values; others as addresses of data or
instructions, and others as arrays of characters.

• Assembly language programs get the greatest access to the
resources of the computer system, but at a high risk (cost); it is the
responsibility of the programmer to code without any vulnerability for
buffer overflow (data being written to a buffer more than its allocated
space).

Programming Language History
• Modern high-level programming languages like Java,

ADA, Python, etc are strongly typed and clearly define
what constitutes permissible operations on variables.

– They do not suffer from buffer overflow

– The higher levels of abstraction and safe usage features allow
programmers to focus more on solving the problem at hand and
less on managing details of interactions with variables.

– The tradeoff is at both compile time and run time, additional
checks have be made to make sure there are no violations (like
on buffer limits).

– Also, access to some instructions and hardware resources is
also lost, limiting the usefulness of these languages in writing
low-level code (like device drivers) that must interact with the
hardware resources.

Programming Language History
• In between the two extremes (assembly languages and

high-level languages like Java), we have the C
language and its derivatives that have many modern
high-level control structures and data type abstractions
as well as provide the ability to directly access and
manipulate memory data.
– The UNIX operating system and its derivative operating systems

like Linux as well as many of their applications are developed in
C

• Facilitated portability to a wide range of processor architectures
(unlike OS written in assembly language)

– Ability to access low-level machine resources: memory is viewed
as just a sequence of bytes

• Burden on the programmer to take care of buffer overflow when
directly manipulating data (buffer) in the memory through program
variables/inputs.

– There is a large body of legacy code with unsafe functions (like
input and string processing routines) in UNIX/C that are
potentially vulnerable for buffer overflows.

Example: Stack Smashing Attack
Name of the program is
demo.c

Assume Little Endian
System

Sequence of Steps
1 Compile with the following options

2 Start gdb and use the list command to find the line
numbers of the different key statements/function calls
so that the execution can be more closely observed at
these points.

Use list 1,50 (where 50 is some arbitrarily chosen large
number that is at least guaranteed to be the number of
lines in the program).

In our sample program, we have only 23 lines. So, I
could have used list 1, 23 itself.

3 Issue breakpoints at lines 17 and 10 to temporarily stop execution

4 Run the disas command on the CannotExecute and main functions
to respectively find the starting memory address and return address
after the return from GetInput().

Address to return to
after executing the
GetInput() function

0x0804844e

Starting memory
address for the
CannotExecute()
Function

0x08048414

5 Start the execution of the program using the run command
The execution will halt before line # 17, the first breakpoint.
That is, before the call to the GetInput() function.

6 Check and see the value on the top of the stack to use it as a
reference later to identify the return address to overwrite. The
command/option used is x/8xw $esp to obtain the 8 words
(32-bits each) starting from the current location on the top of
the stack.

7 Continue execution by pressing s at the gdb prompt. Now the
GetInput() function is called. The processor would allocate 8
bytes, for the buffer array. So the stack pointer would be
moved by 8 bytes towards the low memory end.

8 Use the x/8xw $esp command to obtain the 8 words (32-bits
each) starting from the current location pointed to by the Stack
Pointer. We could see the Stack Pointer has moved by 16
bytes (from the reference value of Step 6) towards the low
memory end. You could continue executing by pressing s at
the gdb prompt. You may even pass a valid input after gets()
is executed and see what puts() prints.

9 Quit from gdb using the ‘quit’ command at the (gdb) prompt.

Value at the memory address on
the top of the stack before the call
to the GetInput() function

Value on the top of the stack
after the call to the GetInput() function

Corresponds to the Return address in main(): 0x0804844e. See
the screenshot for Step 4. This is the address that needs to be
overwritten with the starting address for the CannotExecute() function

Value that was previously pointed
to by the Stack Pointer

8 bytes of the buffer
array

Value of the
Frame Pointer
for main()

High memory end

Low memory end

Return address to

main (0x0804844e)

Frame pointer for

main

Frame pointer for

Main (0xbffff448)

Buffer

(8 bytes)

Return address to

the OS (0x00000001)

Old frame pointer

(0x144bd6)
SP

0xbffff4c8

0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

Return address to

the OS (0x00000001)
Old frame pointer

(0x144bd6)

SP

0xbffff4c8
0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

FP 0xbffff444

0xbffff440

0xbffff43c

0xbffff434
0x0011e0c0

Stack Layout

Passing a
valid
input

Desired
output

Either way of
passing inputs
is fine when we
pass just printable
Regular characters

When we want to pass non-printable characters or memory addresses, we need
to use the printf option (need to pass them as hexadecimal values)

Running the Program
for Valid Input

abcd efg\0

High memory end

Low memory end

Return address to

main (0x0804844e)

Frame pointer for

main

Frame pointer for

Main (0xbffff448)

Return address to

the OS (0x00000001)

Old frame pointer

(0x144bd6)
SP

0xbffff4c8

0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

Return address to

the OS (0x00000001)
Old frame pointer

(0x144bd6)

SP

0xbffff4c8
0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

FP 0xbffff444

0xbffff440

0xbffff43c

0xbffff434
0xbffff438

Stack Layout: Valid Input

64 63 62 61

00 67 66 65
0xbffff438

Running the Program for an Input
that will Overflow: No Side Effects

The LSB of the memory address pointed to by the frame pointer is

overwritten. However, since this corresponds to the inconsequential

frame pointer value for the main(), there are no side effects.

Exploiting the Buffer Overflow
Attack

• We need to pass the starting memory address of
the CannotExecute() function: 0x08048414 as
part of the user input to overwrite the correct
return address of the GetInput() function.
– We need to pass 16 bytes of character input (8 bytes

for the buffer array, 4 bytes for the Frame Pointer for
main(); the last 4 bytes corresponding the starting
memory address of CannotExecute()).

• Note that the processor architecture on which
the example is run is a Little-endian one.

• Hence, the least significant value of the memory
address (\x14) should be passed first as part of
the sub string input along with the characters.

Return address to

main (0x08048414)

Frame pointer for

main

Frame pointer Main

72 71 70 69

Return address to

the OS (0x00000001)
Old frame pointer

(0x144bd6)

SP

0xbffff4c8
0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

0xbffff444

0xbffff440

0xbffff43c

0xbffff434
0xbffff438

64 63 62 61

68 67 66 65

Segmentation fault because from the
CannotExecute() function, there is
no way for the control to return to
the main() function and go through
a graceful termination.

Starting memory address for
the CannotExecute() function

printf has to
be used to pass
Memory addresses as inputs

Seizing Control of Execution: NOP Sledding
• To be able to successfully launch a buffer-

overflow attack, an attacker has to: (i) guess the
location of the return address with respect to the
buffer and (ii) determine the address to use for
overwriting the return address so that execution is
passed to the attacker’s code.

• In real-world, it is difficult to determine the
distance (# bytes) between the return address
and the beginning of the buffer – because, we
may not have access to the source code.

• So, we have to guess the distance. We do this by
having a sequence of NOP instructions before the
shell code (evil code) and insert a return address
(hopefully to where a NOP is inserted) several
times after the shell code.

• If the actual return address gets overwritten by
the return address that we inserted, then control
passes to that particular address of the NOP-
region. We then sled through the NOP
instructions until we come across the evil code.

• NOP (a.k.a. No-op) is a CPU instruction that does
not actually do anything except tell the processor
to proceed to the next instruction.

evil code

:
:

:
:

ret

ret

:

NOP

NOP

:

ret
←

return
address
pointer

Source: Figure 11.7 from M. Stamp,

Information Security: Principles and

Practice, 2nd Edition, May 2011

ret

Common Unsafe C Standard
Library Routines

gets (char

*str)

Read line from standard input into str

sprintf (char

*str, char

*format)

Create str according to supplied format

and variables

strcat

(char *dest,

char *src)

Append contents of string src to string

dest

strcpy

(char *dest,

char *src)

Copy contents of string src to string dest

Source: Table 10.2: W. Stallings: Computer Security: Principles and Practice: 2nd Ed.

Shellcode-based Stack Smashing

• Code supplied by attacker
– Machine code: specific to processor and OS

– Often saved in buffer being overflowed
– Traditionally transferred control to a user command-line

interpreter (shell)

– Shellcode functions
• Launch a remote shell when connected to

• Flush firewall rules that currently block other attacks

• Break out of a chroot (restricted execution) environment, giving
full access to the system.

– Target program can be:
• A trusted system utility

• Network Service daemon

• Commonly used library code

Defending against Buffer Overflows

• Two broad categories of defenses:
– Compile-time defenses: Aim to harden new programs

to resist attacks

– Run-time defenses: Aim to detect and abort attacks in
existing programs.

• Compile-time defenses:
– Harden new programs when they are compiled

– Strategies:
• Choose a high-level language that does not permit buffer

overflows

• Encourage safe coding standards

• Use safe standard libraries

• Include additional code to detect corruption of the stack frame.

Safe Coding Techniques
• With C, the ability to manipulate pointer addresses and directly access

memory comes at a cost.

• The designers of C placed more emphasis on space efficiency and
performance considerations than on type safety.
– It is the job of the programmers to take care to write proper code and

ensure the safe use of all data structures and variables.

• There exists a large legacy body of potentially unsafe code in the
Linux, UNIX and Windows OS and applications, some of which are
potentially vulnerable to buffer overflows.

• In order to harden the existing systems, the programmer needs to
inspect the code and rewrite any unsafe coding constructs in a safe
manner.

• OpenBSD Project: The objective is to produce a free, multi-platform
4.4BSD-based UNIX-line OS.
– Programmers have undertaken an audit of the existing code base,

including the OS, standard libraries and common utilities.

– As a result, OpenBSD is widely considered as one of the safest OS.

Language Extensions/ Safe Libraries
• Handling dynamically allocated memory is more

problematic because the size information is not
available at compile time

• requires an extension to the semantic of a pointer to include
bounds information and the use of safe library routines

• programs and libraries need to be recompiled

• Feasible for new OS and its associated utilities

• likely to have problems with legacy and third-party applications

• Concern with C is use of unsafe standard library
routines: one approach has been to replace these
with safer variants

• Libsafe is an example

• Library is implemented as a dynamic library arranged to load
before the existing standard libraries that are typically
accessed through the Libsafe libraries.

Sample exploit program

Buffer (80 bytes) fp ra

Attack code g &
a b
r u
b f
a f
g e
e r

void foo(char * input_string)
{ char buffer[80];

strcpy(buffer,input_string);
return;

}
/*input_string =

attack code+garbage+&buffer
total length = 88 bytes */

A vulnerable program running without Libsafe

Sample exploit program(cont.)

Buffer (80 bytes) fp ra void foo(char * input_string)
{ char buffer[80];
strcpy(buffer,input_string);

return;
}/*len(input_string)=88 bytes*/

char * libsafeStrcpy(
char *dest,
const char * src)

{ if (src is longer than max_size)
report the event;

else
return strcpy(dest,src);

}

A vulnerable program running with Libsafe

max_size=80

Stack Protection Mechanisms
(Compiler Extensions)

• Insert additional function entry and exit code at compile-
time (GCC extension)

• Stackguard
– The function entry code writes a canary value below the old

frame pointer address (before the allocation of space for local
variables).

– The added function exit code checks that the canary value has
not changed before continuing with the usual function exit
operations of restoring the old frame pointer and transferring
control back to the return address.

– Any attempt at a classic stack buffer overflow would have to alter
the canary value in order to change the old frame pointer and
return addresses, and hence would be detected, resulting in the
program being aborted.

– The canary value should be unpredictable (typically a random
value chosen at the time of process creation and saved as part
of the process state) and should be different on different
systems.

StackGuard vs. Return Address
Defender (RAD)

• Drawbacks of StackGuard
– All programs needing protection need to be recompiled.

– Since the structure of the stack frame has changed, it can cause
problems with programs, such as debuggers that analyze stack
frames.

• Return Address Defender (RAD)
– While RAD is also a compile-time solution (a GCC extension) -

requiring the programs to be recompiled, this extension does not
alter the structure of the stack frame (so, compatible with
unmodified debuggers).

– On function entry, the added code writes a copy of the return
address to a safe region of memory that would be very difficult to
corrupt. On function exit, the added code checks the return
address in the stack frame against the saved value, and if any
change is found, the program is aborted.

Executable Address Space Protection

• Many of the stack overflow attacks involved copying the
machine code into the targeted buffer and then
transferring execution to it.

• The solution idea is to make the stack and heap non-
executable, and executable code should only be found
elsewhere in a process’ address space.

• The Memory Management Unit (MMU) is set up to tag
pages of virtual memory as being non-executable.
– Most operating systems of today support this.

• Executable stack is needed for entities like: (1) Just-in-
time compilers in the Java Runtime system; (2) Nested
functions in C; (3) Linux signal handler
– Special provisions are needed to support these entities

Address Space Randomization

• Manipulate location of key data structures
– Stack, heap, global data

– Using random shift for each process
– Large address range on modern systems � wasting

some memory due to randomization has negligible
impact.

• Randomize location of heap buffer rather than
contiguous allocation.

• Randomize the location (virtual memory
addresses) of standard library routines and
randomize the order of their loading.

Guard Pages

• Place guard pages between critical

regions of memory

– flagged in MMU as illegal addresses

– any attempted access aborts process

• Further extension places guard pages

between stack frames and heap buffers
• cost in execution time to support the large number

of page mappings necessary

