
Module 8: Database Security

Dr. Natarajan Meghanathan

Associate Professor of Computer Science,

Jackson State University, Jackson, MS

E-mail: natarajan.meghanathan@jsums.edu

Database Management Systems
• A database is a

structured collection of
data; contains (captures)
relationships between
data items and groups of
data items.

• A Database Management
System (DBMS) is a suite
of programs for
constructing and
maintaining the database
(DDL); and for offering ad
hoc query facilities to
multiple end users (SQL)
and applications (DML).

• A query language
provides a uniform
interface to the database
for users and
applications.

Source: Figure 5.1: W. Stallings: Computer Security: Principles and Practice, 2nd edition

Database Security
• The authorization tables ensure the user has permission

to execute the query language statement on the
database.

• The concurrent access table prevents conflicts when
simultaneous, conflicting commands are executed.

• Operating System security mechanisms typically control
read and write access to entire files.
– They could not be used to limit access to specific records or

fields in that file.

• A DBMS allows more detailed access control to be
specified over the data records as well as over a wide
range of commands, such as to select, insert, update, or
delete specified items in the database.

Relational Database
• Basic building block: Table of data, consisting of rows and columns.

– Each column holds a particular type of data (ref. as attribute)

– Each row contains a specific value for each column (tuple/ record)

• Need to store the table with a unique identifier (for each row) so that
the table can be indexed (searched).

• The drawback of using a single table is that some of the column
positions for a given row may be blank (not used).
– Also, any time a new service or new type of information is incorporated

in the database, more columns must be added and the database and
accompanying software must be redesigned and rebuilt.

• The relational database structure enables the creation of multiple
tables tied together by a unique identifier (primary key/foreign key)
that is present in all the tables.

• The query language allows the user to request selected items of
data from all records that fit a given set of criteria. The software then
figures out how to extract the requested data from one or more
tables.

Example for
Relational
Database

Model

Source: Figure 5.2: W. Stallings: Computer Security: Principles and Practice, 2nd edition

Primary Key, Foreign Key and View

• To create a relationship between two tables, the
attributes that define the primary key in one table must
appear as attributes in another table, where they are
referred to as a foreign key.

• Whereas the value of a primary key must be unique for
each row of its table, a foreign key value can appear
multiple times in a table, so that there is a one-to-many
relationship.

• A “View” is a virtual table:
– Is the result of a query that returns selected rows and columns

from one or more tables.

– It is possible to construct a view from a single table.

– Views are often used for security purposes. A view can provide
restricted access to a relational database so that a user or
application only has access to certain rows or columns.

Relational Database Example

Source: Figure 5.3: W. Stallings: Computer

Security: Principles and Practice, 2nd edition

Structured Query Language (SQL)
• SQL is used to define schema, manipulate, and query data in a

relational database.

A View on the two tables

Database Access Control
• Assumption: The underlying computer system (housing the

database) has authenticated the user to access the system as well
as granted access to the database.

• A Database Access Control System provides a specific capability
that controls access to portions of the database.

• A DBMS can support a range of administrative policies:
– Centralized admin: A small number of privileged users may grant and

revoke access rights

– Ownership-based admin: The owner

• Access rights for a DBMS:
– Create, Insert, Delete, Update, Read, and Write

• Access rights can be at different levels of granularity
– Entire database, individual tables, selected rows or columns within a

table.

• Access rights can be determined based on the contents of a table
entry.
– E.g., In a personnel database, a department manager may only be

allowed to view salary info for employees in his/her department.

Common Access Rights (Privileges)

• Select:
– Grantee may read entire database; individual tables; or specific

columns in a table

• Insert
– Grantee may insert rows in a table; or insert rows with values for

specific columns in a table.

• Update:
– Semantics is similar to INSERT

• Delete:
– Grantee may delete rows from a table

• References:
– Grantee is allowed to define foreign keys in another table that

refer to the specified columns.

SQL-based Access Definition
• SQL provides two commands for managing access rights: GRANT and

REVOKE.

• GRANT command
– Used to grant one or more access rights or can be used to assign a user to

a role.

– For access rights, the command can optionally specify that it applies only
to a specified table.

– The TO clause specifies the user or role to which the rights are granted.

– A PUBLIC value indicates that any user has the specified access rights.

– The optional IDENTIFIED BY clause specifies a password that must be
used to revoke the access rights of this GRANT command.

– The GRANT OPTION indicates that the grantee can grant this access right
to other users, with or without the grant option.

Example:
GRANT SELECT ON ANY

TABLE TO kenny

This statement permits user

‘kenny’ to query any table in

the database.

REVOKE command

Example:
REVOKE SELECT ON ANY

TABLE FROM kenny

This statement revokes the access rights

of the preceding example.

Cascading Authorizations
• The grant option enables an access right to cascade through a

number of users.

• When a user A revokes an access right, any cascaded access right
is also revoked unless that access right would exist even if the
original grant from A had never occurred.

Bob revokes privilege from David

Source: Figure 5.4: W. Stallings: Computer Security: Principles and Practice, 2nd ed.

Inference
• Inference is the process of performing authorized

queries and deducing unauthorized information from the
legitimate responses received.

• The inference problem arises when a combination of a
number of data items is more sensitive than the
individual items, or when a combination of data items
can be used to infer data of a higher sensitivity.

• The attackers may use non-sensitive data and metadata
(knowledge about correlations or dependencies among
data items)

• The information transfer path by which unauthorized
data is obtained is referred to as an inference channel.

• Two techniques to derive additional information:
– Analyzing functional dependencies between attributes within a

table or across tables

– Merging views with the same constraints

Inference Example
Employee Table

CREATE View V1 AS

SELECT Name, Position

FROM Employee

WHERE Department = “Software”

View V1

CREATE View V2 AS

SELECT Salary, Location

FROM Employee

WHERE Department = “Software”

View V2

Inference Example (continued…)
• A user who knows the structure of the Employee table and that who

knows that the View tables maintain the same row order as that of
the Employee table can then merge the two views and construct a
table from which s/he can infer the salary of each employee in the
Software department.

• Interference Countermeasures
– At Design time: Alter the database structure. For example: split

the table into multiple tables with some common attribute(s)
among them and change the access control regime.

– At Query time: Monitor and alert or reject the query; An inference
detection algorithm is needed and is more difficult: on-going
research.

Inference Countermeasures
(implementation)

• Split the Employee Table into three tables: Employee Name Table,
Salary Table and Employee Name-ID Table

• Set the regular user for permissions to access only the Employee
Name and Salary Tables.

• Set the administrator to be the only one to have access to the
Employee Name - ID Table.

• Store each table (sorted) according to a particular attribute

Inference Countermeasures
(implementation… continued…)

Inference Countermeasures
(implementation… continued…)

Can Inference work?

Inferred Information

Original Employee Table

Statistical Database (SDB)
• SDB provides data of a statistical nature such as

counts and averages

• Two types:
– Pure statistical database:

• Only stores statistical data (like census database)

– Ordinary database with statistical access:
• Contains individual entries

• Access using DAC, MAC and RBAC models

• Permit statistical queries based on the underlying raw data.

• The access control objective of an SDB is to
provide users with the aggregate information
without compromising the confidentiality of any
individual entity present in the database.
– The security problem is “inference” through one or a

series of statistical queries.

SDB: Characteristic Formula

• Statistics are derived from a database by means of a
logical Boolean formula (referred as Characteristic
formula) over the values of attributes.

• A Characteristic formula uses the operators OR, AND,
and NOT (+, *, ~), written here in the increasing order of
priority.
– E.g., (Sex = Male) * ((Major = CS) + (Major = EE)) specifies all

male students majoring in either CS or EE

– For numerical attributes, relational operators may be used. E.g.,
(GP > 3.7) specifies all students whose grade point average is
above 3.7.

• For simplicity, we may omit the attribute names if they
are clear from context. E.g., Male * (CS + EE)

SDB Example
Database with Statistical Access with 13 Students

Source: Table 5.3:

W. Stallings: Computer Security:
Principles and Practice, 2nd ed.

SDB: Characteristic Formula
• The query set of characteristic formula C, denoted as

X(C), is the set of records matching that characteristic.

• For example, for C = Male * EE, X(C) = 3, matching the
records of Cook, Frank and Lane (all Male and EE
majors).

• A statistical query is a query that produces a value
calculated over a query set.
– Examples: count (Female * CS) = 2; sum (Female * CS, SAT) =

1400

• Inference: Assume a questioner knows that Baker is a
female EE student; but, he does not know that she is the
only one. The following sequence of two queries will
reveal Baker’s GPA.
– count (EE * Female) = 1

– Sum (EE * Female, GPA) = 2.5
Solutions for SDB Inference
Query Restriction

Perturbation

Query Restriction Techniques
• Idea:

– If a query can lead to a compromise,
• Reject the query

– Else
• Return accurate answers.

• Technique # 1: Query Size Restriction

• For any fixed integer k > 1, a query q(C) on a Characteristic formula
C is allowed if and only if the returned set of records X(C) satisfies:
– k ≤ |X(C)| ≤ N – k.

• This way, queries that can lead to revealing data based on an
individual record can be denied.

• Why is there a need for the Upper Bound?

• Proof

• The upper bound is needed to avoid someone from inferring using a
query of type q(All) that would return statistics based on the entire
database.
– Instead of directly querying using C to collect statistics on an individual

record, one could collect statistics by computing

q(All) – q(~C)

Query Size Restriction
• Proof for Need of Upper Bound (continued…)

– Assume, we have only the lower bound (say, k = 2) for a
database of N > 2 users,

– We have a query q(C) that would return only one record. Hence,
q(~C) would return N-1 records.

– | X(All) | = N ≥ 2 (checking for lower bound)

– | X(~C) | = N-1 ≥ 2 . (checking for lower bound).

– Hence, both queries q(All) and q(~C) would be evaluated and
their results returned to the user.

– However, | X(All) | - | X(~C) | = 1 = | X(C) |.

– Hence results of q(All) – q(~C) can be considered the statistics
for the individual record that will returned if q(C) is directly
evaluated.

– Hence, we need the upper bound (N-k); in the above case,

| X(~C) | = N – 1 ≤ N – 2 (check for upper bound fails).

• Note that considering the potential benefits in collecting
statistics on the entire database, we do allow q(All).

Tracker : Query Size Restriction
• The questioner can divide his/her knowledge of an individual into

parts, such that queries can be made on the parts without violating
the query size restriction.

• The combination of parts is called a tracker, because it can be used
to track down the characteristics of an individual.

• Let there be a characteristic formula C *D that corresponds to zero
or one record, so that the query count (C*D) is not permitted.

• But, suppose that the formula C can be decomposed into two parts
C = C1 * C2, such that the query sets for both
C1 and T = (C1 * ~C2) satisfy the query size restriction.

If it is not known whether or not

individual I is uniquely identified by C,

then we can find count (C) as shown

below and check if it is equal to 1.

Count (C) = Count (C1) – Count (T)

One can then run the query as

q(C*D) = q(C1*D) – q((C1*~C2) * D)

C1 C2

CT

Tracker: Example
• Consider the table below. Suppose that we want to know whether

Evans scored 600 or above in SAT.

• Assume that we know that Evans is a Bio major of class 1979.

• If we directly launch the query based on the formula C = Male * Bio *
1979 on the database table, the count (C) = 1 and the results of the
query will not be returned.

Tracker: Example (continued…)
• Consider the table below. Suppose that we want to know whether

Evans scored 600 or above in SAT.

• Assume that we know that Evans is a Bio major of class 1979.

• If we directly launch the query based on the formula C = Male * Bio *
1979 on the database table, the count (C) = 1 and the results of the
query will not be returned.

• Suppose, we break C = C1 * C2; where C1 = Male; and C2 = Bio *
1979.

• � T = C1 * ~C2 = Male * ~(Bio * 1979).

• Count(C) = Count(C1) – Count(T)

• Count(C1) = Count(Male) = 7

• Count(T) = Count(Male * ~ (Bio * 1979)) = 6

• Hence, Count(C) = Count(Male * Bio * 1979) = 7 – 6 = 1

• Thus, one can now be confirmed that Evans is the only Male, Bio
major of class 1979.

Tracker: Example (continued…)

• Let D = SAT ≥ 600

• Since Count(C) = Count(C1) – Count(C1*~C2) = 1

• We can execute the query q(C*D) to find:

– Count(C*D) = Count(C1*D) – Count(C1*~C2*D)

– C1 = Male

– C2 = Bio * 1979

– Count (C1*D) = Count (Male * SAT ≥ 600) = 5

– Count (C1*~C2*D) = Count (Male* ~(Bio*1979) * SAT ≥

600) = 5

– Hence, Count(C*D) = 5 – 5 = 0. Thus, we can conclude

that Evans did not score 600 or above in SAT.

Query Set Overlap Control
• Note that the idea behind tracker is to make use of

queries wherein there is a considerable overlap in the
query sets.

• In the previous example, we had

• Count (Male * Bio * 1979) = Count (Male) – Count (Male
* ~ (Bio * 1979))

• That is, we found the number of males and subtracted
from it the number of males who are not Bio majors of
class 1979.

• There was considerable overlap between the above two
characteristic formulae, resulting in the difference in their
counts to be 1, leading to the inference that Evans is the
only Bio major of class 1979.

Query Set Overlap Control
• The idea behind Query Set Overlap control is to return

the results of a query for a user only if the number of
common records (i.e., extent of overlap) with the results
of the previous query of the same user is within a
threshold k.

• A query q(C) is permitted only if the number of records
that match C satisfies | X(C) X(D) | ≤ r for all q(D) that
have been answered for this user, and where r is a fixed
integer greater than 0.

• Problems with Query Set Overlap Control
– Ineffective to prevent the cooperation of several users to

compromise and infer from the database

– Statistics for both a set and its subset (e.g., all patients and all
patients undergoing a given treatment) cannot be released, thus
limiting the usefulness of the database

– For each user, a user profile has to be kept up to date.

∩

Partitioning
• Partitioning can be viewed as “Query Set Overlap

Control at its logical extreme:” Not allowing
overlapping queries at all.

• The idea is to cluster the records in a database into a
number of mutually exclusive groups.
– The user may only query the statistical properties of each group

as a whole.

– The user may not select a subset of a group.

• Restrictions:
– A group of a single record is forbidden (because a user can find

out details of the record): More design effort is needed.

– It is possible for a user to gain information about a record by
collecting statistics about the record before and after insertion or
deletion.

• Due to this restriction, insertion or deletion of records can occur
only in pairs; and each group has to have 0 or an even number
of records.

Side Effects of
Partitioning

Certain records (in the original database)
have to be even omitted to maintain 0
or even number of records for each
group.

Partitioned Database

Note that the record for Kline has

to be omitted; because she is the

only female in the class of 1981.

Source: Table 5.5: W. Stallings: Computer

Security: Principles and Practice, 2nd ed.

Query Denial: Information Leakage
• With query restriction techniques (that either deny or return an exact

answer), the denial of a query may provide sufficient clues that an
attacker can deduce underlying information.

• Example: Assume a database has real-valued entries and that a query
is denied only if it would enable the requestor to deduce a value.
– Suppose the requestor poses the query for sum(x1, x2, x3) and the

response is 15.

– Then, the requestor queries max(x1, x2, x3) and the query is denied. What
can the requestor infer from this?

• If max(x1, x2, x3) < 5, then the sum(x1, x2, x3) has to be < 15.

• If max(x1, x2, x3) > 5, then revealing the maximum value would not
lead to the inference of any individual value.

• Hence, the query is denied only if max(x1, x2, x3) = 5. This implies that
x1 = x2 = x3 = 5.

• Solution to prevent information leakage (more conservative):
– In the above example, the max query was denied only when x1 = x2 = x3 =

5.

– The idea behind the solution is to deny queries based on the history of
the queries posed by the user (i.e., a max query following a sum query or
vice-versa) and not based on the actual values in the database.

Perturbation
• The idea is to add noise to the statistics generated from

the original data.

• Data Perturbation: The data in the SDB can be
modified (perturbed) so as to produce statistics that
cannot be used to infer values for individual records

• Output Perturbation: When a statistical query is made,
the system can generate statistics that are modified from
those that the original database would provide.

• The goal is to minimize the differences (between the
perturbed results and ordinary results) and to provide
users with consistent/usable results; but nevertheless,
the questioner of the query should not be able to infer
any sensitive information.
– The main challenge is to determine the average size of the error

to be used.

Data Perturbation: Data Swapping

The transformed statistics D’ has the same statistics as that of D for one or two

attributes. However, three-attribute statistics are not preserved.

Example: Count (EE * Male * 4.0) = 1 in D and it is 0 in D’. (statistics not preserved)

Average GPA of Biology majors (statistics is preserved).

Data Perturbation: Modify Data
based on Underlying Probability
Distribution of Attribute Values

• For each confidential or sensitive attribute, determine the
probability distribution function that best matches the
data and estimate the parameters of the distribution
function.

• Generate a sample series of data from the estimated
density function for each sensitive attribute.

• Substitute the generated data of the confidential attribute
for the original data in the same rank order.
– That is the smallest value of the new sample should replace the

smallest value in the original data, and so on.

Output Perturbation

• Random-Sample Query
– A user issues a query q(C) to return a query set

(results of a query) X(C).

– The system replaces X(C) with a sampled query set,
which is a properly selected subset of X(C).

– The system calculates the requested statistic on the
sampled query set and returns the value.

• Another approach:
– Calculate the statistic on the requested query set and

then adjust the answer up or down by a given amount
in some systematic or randomized fashion.

Limitations of Perturbation
Techniques

• It is difficult to add sufficient perturbation to hide
data without badly distorting the results.

• As the size of the database grows, the
effectiveness of the perturbation techniques
increases.

• For a database of n records, if the number of
queries is linear to the size of the database, then
the amount of perturbation needed is of the
order of sqrt(n).

Database Encryption

• Encryption can be applied to the entire
database, at the record level (encrypt selected
records), at the attribute level (encrypt selected

attributes), or at the level of the individual field.

• Two disadvantages to database encryption:

– Key management: Distributing keys to authorized
users to access selected parts of the database.

– Inflexibility: Searching an encrypted database

becomes difficult.

• To be more flexible, it must be possible to work
with the database in its encrypted form.

A Database Encryption Scheme

Source: Figure 5.10: W. Stallings: Computer Security: Principles and Practice, 2nd ed.

A Simple DB Encryption Scheme
• Steps:

– The user issues a query for fields
from one or more records with a
specific value of the primary key.

– The query processor (stores the
query); encrypts the primary key and
sends it to the server.

– The server obtains encrypted
records from the Data Owner using
the encrypted primary key as the
index.

– The retrieved records (in their
encrypted form) are sent to the query
processor, which decrypts them
using the secret key shared between
the query processor and the data
owner.

– The values for the decrypted fields of
interest are sent to the user, who is
unaware of the database encryption.

Unencrypted query

Query with the value for
the primary key encrypted

Cannot search queries
based on ranges of values
for attributes (Salary > 500)

Secret key for encryption is
stored as part of metadata.

Binary Encryption Scheme
• Treat each record as a contiguous block of bits (when

the attribute values are concatenated together).

• For some or all of the attributes, an index value is
created.

• For each row Bi of the unencrypted database, the
mapping is:

• For the numeric attributes, introduce range of values and
associate them with indexes. For example: [1-200] – 1;
[201-400] – 2; etc. The range of the first alphabet in text
fields (a-c: 1; d-f: 2, etc) could be assigned unique index
values. These are the metadata stored at the query
processor and the data owner (not stored at the server).

• The encrypted database stores the entire records in their
encrypted form, as well as the index values of their
attribute columns.

Binary Encryption Scheme

Employee Table

Encrypted Employee Table with Indexes

Source: Table 5.7: W. Stallings: Computer Security: Principles and Practice, 2nd ed.

Suppose a user queries for all
records with eid < 300.

The query processor request all
records with I(eid ≤ 2). These are
returned by the server.

The query processor decrypts all
rows returned, discards those that
do not match the original query,
and returns the requested
unencrypted data to the user.

