
Jackson State University, Department of Computer Science
CSC 437/539 Computer Security, Fall 2013

Instructor: Dr. Natarajan Meghanathan

Lab Project # 4: Stack Smashing Attack on a C Program

Due: November 21, 2013: 7.30 PM

Project Specifications: Your task in this project is to execute the sequence of steps that we

discussed in class to launch a stack smashing attack on the demo.c program. Use the Ubuntu VM installed

on a VMware player or Virtualbox. You need to record a video showing how you would execute the

sequence of steps to launch the stack smashing attack. You should demonstrate the behavior of the
program for inputs that (i) is valid; (ii) would cause overflow, but no side effects; (iii) would cause

overflow and change the return address so that control gets transferred to a function that should not be

executed. As part of the video recording, you should talk clearly as you do the steps.

You could try using one of the following desktop recording software (or anything of your choice):

CamStudio: http://sourceforge.net/projects/camstudio/files/legacy/
Debut: http://www.nchsoftware.com/capture/index.html

Submission: Upload your video to GoogleDrive or Dropbox and share it with my email address:

natarajan.meghanathan@jsums.edu

Installing VMWare Player
Download the latest version (v.5 or v.6) of VMware Player for your Operating System from
https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_player/5_0

Downloading and Installing Ubuntu OS

1. Download Ubuntu OS http://www.ubuntu.com/download/desktop and save it somewhere on your

computer

2. Open up VMWare Player
3. Click on Create a New Virtual Machine

4. Select Installer disc image file (iso): browse for your Ubuntu .iso file and click Next

5. Type in your full name in the space provided. Use your J-number as Username (with a lowercase j). In
my case, I use natarajan as the username. For your password, Select a password of your choice (easy to

remember; but, difficult to find out by others). Click Next after entering the information.

6. Next, type in a name for your virtual machine (use your J-number again). Click Next.

7. On the next page, select Store virtual disk as a single file, and click Next.
8. Click Finish on the next page and wait for the OS to be installed.

9. Next, log into Ubuntu OS with your password and press Enter.

10. Click the Player menu, and go to Manage then Virtual Machine settings.

11. When the settings come up, make sure that the Network Adapter is set to NAT, and click OK.

12. Launch a terminal by clicking the Dash Home (indicated in the picture below) and typing terminal in

the box provided. Then click the Terminal icon.

E84892
Typewritten Text
Download the 32-bit version of Ubuntu VM .iso file

Example: Stack Smashing Attack
Name of the program is
demo.c

Sequence of Steps
1 Compile with the following options

2 Start gdb and use the list command to find the line
numbers of the different key statements/function calls
so that the execution can be more closely observed at
these points.

Use list 1,50 (where 50 is some arbitrarily chosen large
number that is at least guaranteed to be the number of
lines in the program).

In our sample program, we have only 23 lines. So, I
could have used list 1, 23 itself.

3 Issue breakpoints at lines 17 and 10 to temporarily stop execution

4 Run the disas command on the CannotExecute and main functions
to respectively find the starting memory address and return address
after the return from GetInput().

Address to return to
after executing the
GetInput() function

0x0804844e

Starting memory
address for the
CannotExecute()
Function

0x08048414

5 Start the execution of the program using the run command
The execution will halt before line # 17, the first breakpoint.
That is, before the call to the GetInput() function.

6 Check and see the value on the top of the stack to use it as a
reference later to identify the return address to overwrite. The
command/option used is x/8xw $esp to obtain the 8 words
(32-bits each) starting from the current location on the top of
the stack.

7 Continue execution by pressing s at the gdb prompt. Now the
GetInput() function is called. The processor would allocate 8
bytes, for the buffer array. So the stack pointer would be
moved by 8 bytes towards the low memory end.

8 Use the x/8xw $esp command to obtain the 8 words (32-bits
each) starting from the current location pointed to by the Stack
Pointer. We could see the Stack Pointer has moved by 16
bytes (from the reference value of Step 6) towards the low
memory end. You could continue executing by pressing s at
the gdb prompt. You may even pass a valid input after gets()
is executed and see what puts() prints.

9 Quit from gdb using the ‘quit’ command at the (gdb) prompt.

Value at the memory address on
the top of the stack before the call
to the GetInput() function

Value on the top of the stack
after the call to the GetInput() function

Corresponds to the Return address in main(): 0x0804844e. See
the screenshot for Step 4. This is the address that needs to be
overwritten with the starting address for the CannotExecute() function

Value that was previously pointed
to by the Stack Pointer

8 bytes of the buffer
array

Value of the
Frame Pointer
for main()

High memory end

Low memory end

Return address to

main (0x0804844e)

Frame pointer for

main

Frame pointer for

Main (0xbffff448)

Buffer

(8 bytes)

Return address to

the OS (0x00000001)

Old frame pointer

(0x144bd6)
SP

0xbffff4c8

0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

Return address to

the OS (0x00000001)
Old frame pointer

(0x144bd6)

SP

0xbffff4c8
0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

FP 0xbffff444

0xbffff440

0xbffff43c

0xbffff434
0x0011e0c0

Stack Layout

Passing a
valid
input

Desired
output

Either way of
passing inputs
is fine when we
pass just printable
Regular characters

When we want to pass non-printable characters or memory addresses, we need
to use the printf option (need to pass them as hexadecimal values)

Running the Program
for Valid Input

abcd efg\0

High memory end

Low memory end

Return address to

main (0x0804844e)

Frame pointer for

main

Frame pointer for

Main (0xbffff448)

Return address to

the OS (0x00000001)

Old frame pointer

(0x144bd6)
SP

0xbffff4c8

0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

Return address to

the OS (0x00000001)
Old frame pointer

(0x144bd6)

SP

0xbffff4c8
0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

FP 0xbffff444

0xbffff440

0xbffff43c

0xbffff434
0xbffff438

Stack Layout: Valid Input

64 63 62 61

00 67 66 65
0xbffff438

Running the Program for an Input
that will Overflow: No Side Effects

The LSB of the memory address pointed to by the frame pointer is

overwritten. However, since this corresponds to the inconsequential

frame pointer value for the main(), there are no side effects.

Exploiting the Buffer Overflow
Attack

• We need to pass the starting memory address of
the CannotExecute() function: 0x08048414 as
part of the user input to overwrite the correct
return address of the GetInput() function.
– We need to pass 16 bytes of character input (8 bytes

for the buffer array, 4 bytes for the Frame Pointer for
main(); the last 4 bytes corresponding the starting
memory address of CannotExecute()).

• Note that the processor architecture on which
the example is run is a Little-endian one.

• Hence, the least significant value of the memory
address (\x14) should be passed first and so on.

Return address to

main (0x08048414)

Frame pointer for

main

Frame pointer Main

72 71 70 69

Return address to

the OS (0x00000001)
Old frame pointer

(0x144bd6)

SP

0xbffff4c8
0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

0xbffff444

0xbffff440

0xbffff43c

0xbffff434
0xbffff438

64 63 62 61

68 67 66 65

Segmentation fault because from the
CannotExecute() function, there is
no way for the control to return to
the main() function and go through
a graceful termination.

Starting memory address for
the CannotExecute() function

printf has to
be used to pass
Memory addresses as inputs

