
Jackson State University

Department of Computer Science

CSC 438/539 Systems and Software Security, Spring 2014
Instructor: Dr. Natarajan Meghanathan

Project 2: Simulating the TOCTTOU Vulnerability in a Linux-C++ Environment

Due Date: March 26, 2014, 7.30 PM Max. Points: 100

Project Objective: The objective of this project is to demonstrate the TOCTTOU (Time of Check to

Time of Use) vulnerability in Linux environment using a simple file updater program written in C++.

Introduction to TOCTTOU Vulnerability

 TOCTTOU stands for Time of Control to Time of Use. This type of vulnerability occurs when a

user is granted permission to access to a resource or file at a particular time and if access to the file or
resource is taken away from the user, the user may still access the file or resource if the user has never

relinquished control over the asset.

 In this activity, you will simulate this kind of vulnerability using a text file in an Ubuntu virtual

machine. You will create two users in the operating system: User A and User B (see the details below
for the exact naming convention for the user names). User A will create a text file and grant permission

to everyone to read and write to it. User B will then access this file via a simple program (written in

C++). While User B is accessing the file, User A will revoke User B’s permission to read from and write
to the file. Even though User B loses permission to access the file, User B has already been granted

permission to access the file, and is able to continue reading and writing to the file until it is released.

 It is important that you read this entire document first, as some of the steps are time-sensitive.

You will need to know in advance what you will need to do in order for the activity to work properly.

What to Submit (Submit the recorded video through GoogleDrive using your JSU email

address; after uploading the video, e-mail the link to natarajan.meghanathan@jsums.edu):
After you setup the VM, install g++, type and compile your program in user B's account, start the

recording and record as follows:
 (1) Login to User A's account; create a text file (owned by user A) and set its permissions such that

others can read and write to it.

(2) Login to User B's account in another terminal. Launch the file updater program to write to the text file
of user A.

(3) As it is running, go to the terminal where you have logged in as User A and displays the contents of

the text file. The text file's contents should reflect the updates from user B's file updater program. Now,

let user A to change the permission for others to be not able to write to the file (the read permission is still
granted).

(4) Return to the terminal for User B and show that the program is still running without any problem/error

reported. After a couple of minutes, go the terminal for user A and display the contents of the text file.
Explain the TOCTTOU vulnerability that is behind the fact that the contents of the file continuing to be

updated.

(5) After the file updater program at user B stops, launch it again. Observe what happens when you try to
start fresh and run the program at user B. Explain the reason behind what you observe.

Desktop Video Recording

You could try using one of the desktop recording software (or anything of your choice):
CamStudio: http://sourceforge.net/projects/camstudio/files/legacy/

Debut: http://www.nchsoftware.com/capture/index.html

Creating the Programming Environment: Ubuntu/Linux VM

Task 1:
You will use the Ubuntu VM that you installed in Oracle Virtualbox or VM Player for Project 1. If you

have not already installed Ubuntu VM in Oracle Virtualbox, read the description for Project 1 to complete

this task.

To install C++ on the Ubuntu VM, follow the instructions in Task 2.

Task 2: Installing C++ on your VM

Open a terminal by using Applications --> Accessories --> Terminal. Type “sudo apt-get install g++” and

press enter. You will then be prompted for your password. This will install the g++ compiler.

Task 3: Creating the Two User Accounts

Make sure you install C++ on your VM, before you create the two user accounts and logging in as the two

users.
Open a terminal by using Applications --> Accessories --> Terminal. Let the two user accounts you create

be named using the following convention.. [FirstInitial][LastInitial]_UserA and

[FirstInitial][LastInitial]_UserB

In my case, I am going to create the two user accounts with name NM_UserA and NM_UserB.

You would have to use the "--Force-badname" option to let the system to create the usernames of your
choice.

You will create a user account as shown in Figure 1.

[NM_UserA, as above] and [NM_UserB, when the procedure is repeated]

Following the above approach, you can create user accounts NM_UserA and NM_UserB. Make sure to

remember the usernames and passwords you setup for the two user accounts that you create.

Task 4: User A: Creating the text file to update

You will now login as User A using the following sudo command:

sudo login NM_UserA

Inside the NM_UserA account, create a text file by name NM_UserAFile.txt, depending on the naming

convention that corresponds to you.

Use an editor of your choice to create the text file. I use the pico editor to create the text file. In the pico

editor, after typing the contents, I press Ctrl+X to save and exit. The contents of the text file should be
your name and the name of the course.

After you type the contents of the file, save and exit; set the permissions for others to be able to "read and

write" to the file. Capture this as screenshot Figure 3. Note that User A considers User B to belong to the
'others' category.

Then, use the ls -l command to display the permissions of the files in the folder.

Task 5: User B: Creating the C++ program to update the text file

Open another terminal. You will now login as User B using the following sudo command:

sudo login NM_UserB

Again, using an editor of your choice, type the C++ program to update the text file you created in user A's

account. The following description will guide you through the development of the C++ program. This
C++ program will do several things. First, it will open _UserA’s text file, read the contents and print

them out to the screen. Then, it will open the text file for writing. It will initiate a five-minute loop in

which a new line is written to the file every 30 seconds. Once the five minutes has passed, the file will be

closed, and the program will end.

You need to include several C++ and C header files as well as the namespace std, as follows:

#include <iostream>

#include <fstream>

#include <string>
#include <ctime>

#include <unistd.h>

using namespace std;

I have commented the various statements you would need to develop a complete C++ program to read

and update (append) the contents of a text file. Replace the comments with the appropriate code.

int main(){

 // Declare an object 'infile' of class ifstream

 // Call the open method on the infile object and pass the path of the NM_UserAFile.txt in NM_UserA's
account

 /* Call the fail() method on the infile object and print an error message like "file cannot be opened for

reading" in case you cannot open the file... Terminate

 (return from) the program and do not execute further. */

 // Declare an object by name 'line' of class string

 // Call the getline() method and pass the infile and line objects as arguments and print the contents of the

line. Repeat this in a while loop

 // Call the close() method on the infile object

 // Declare an object 'outfile' of class ofstream

 // Call the open method on the outfile object and pass the two arguments: (1) path of the

NM_UserAFile.txt in NM_UserA's account and (2) ios::app to append to the file

 /* Call the fail() method on the outfile object and print an error message like "file cannot be opened for

writing" in case you cannot open the file... Terminate
 (return from) the program and do not execute further. */

 // Run the following in a for loop, for 10 times

 for (int i=1; i<=10; i++){

 // get the current system time in milliseconds since Jan 1, 1970, using the time(0) function and store it
in an object of name currentTime of class time_t.

 // get the pointer reference 'now' of struct type tm to currentTime as follows
 struct tm *now = localtime(¤tTime);

 // Create a string object (say by name timeString) of the date/time in 'now' by calling the asctime()
function and pass the 'now' struct pointer as the argument

 // Direct (<<) the contents of the string timeString to the outfile object

 Call the sleep() method and pass 30 as the argument - to indicate the program should sleep for 30

seconds for every iteration of the loop

 }

 // Call the close() method on the outfile object

 return 0;

}

Task 6: Run User B’s File Updater C++ Program

Now you have written the complete C++ program which opens a file for reading, reads and prints out its

contents, and closes the file. The program then opens the file for appending (writing to the end), writes
the current time, waits for one minute, and loops ten times (writing the current time to the file once a

minute for five minutes), and closes the file.

To compile the file, type g++ followed by (a blank space and) the name of your .cpp file (including
the .cpp extension), and press enter. If you are presented with any errors, you will need to find and

correct them.

Once the file has compiled without any errors, use the cat command to print the contents of the complete

the file updater C++ program that you had just developed.

Once the file is compiled, you will need to run the file, but before you do, make sure that you know how

to change file permissions (review Project 2, if needed). Once you begin running the file, you will have

five minutes in which to change the file’s permissions in order to get the full effect of this activity.

To run the file, type g++ followed by (a blank space and) the name of your C++ class (excluding the .cpp

extension), and press enter. You will see the contents of the file output to the screen, and then you will

not see any activity in the terminal window until the program is complete.

Task 7: User A: Changing the Permissions for User B

While the file updater C++ program is running at the terminal for User B, go to terminal that you have
opened for User A; wait for a minute or so, and then run the cat command to display the contents of the

NM_UserAFile.txt file. What is that you observe? Explain the reason behind what you observe.

Now, use the chmod command to remove the write permissions for others.

Use the ls -l command to display the permissions of the files in the folder for User A.

Let the C++ program to complete running in the terminal for User B.

In the terminal for User A, use the cat command to display the contents of the NM_UserAFile.txt file.

Task 8: User B Running the File Updater C++ Program (after User A removed the write

permissions to the text file)

Now, in the terminal for User B, run the file updater C++ program again. You should see an error

message. Capture the error message as screenshot.

Explain why you now got an error message now and not in Task 6.

