
Module 1: Cryptography

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University, Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Security Fundamentals
• Confidentiality: Data should be accessible only to

entities (users/machines/processes) with the valid
permissions (also includes privacy)

• Integrity:
– Data should be modified only by entities with the valid

permissions

– A system should perform its function without any deliberate
manipulation by entities without valid permissions

• Availability: Data and service should be accessible
(timely and reliable) to entities with the valid permissions

• Authentication:
– Entity authentication – validating user/machine identity

– Message authentication – validating whether a message came
from the user/machine/source who claims to have sent it

• Access control: Validating the permissions a user
claims to have on a resource

• Non-repudiation: Actions of an entity should be
uniquely traced back to that entity.

Security Fundamentals
• Cryptography (Encryption and Decryption):

– Transform information from plaintext to ciphertext (encryption) so
that it is not comprehensible for unauthorized entities during
transmission or at the end systems (more towards confidentiality)

– Every encryption algorithm needs to have a corresponding
decryption algorithm to get back the plaintext

• Digital Signature: A form of encryption/ decryption that
ensures the message came from the appropriate entity
– Non-repudiation, Message Authentication

• Hashing: A digest of the message such that even if a bit
changes in the message, the hash value should change
– Integrity

• Notarization: Vouching for a user/machine – the
notarizing authority is trusted by the associated entities
– Entity authentication

• Steganography: Replace certain bits in a media file with
the plaintext bits and transmit them
– Weak confidentiality (but not very obvious to unauthorized users)

Security Mechanism vs.
Security Service

• Security Mechanism: A mechanism that is designed to
detect, prevent or recover from a security attack.
– Examples: Encryption, Hashing, Digital signature, Notarization,

Steganography

• Security Service: A service that enhances the security
of the data processing systems and the information
transfers of an organization.

• The services are intended to counter security attacks,
and they make use of one or more security mechanisms
to provide the service.
– Examples: Authentication, Access control, Data confidentiality,

Data integrity, Non-repudiation, Availability

Types of Encryption
• Symmetric encryption: The same key performs, both

encryption and decryption.

– P = D(K, E(K, P))

• Asymmetric encryption: distinct, very different keys, one

for encryption and the other for decryption only

Encryption
Plaintext Ciphertext

Decryption
Original Plaintext

Key

Encryption
Plaintext Ciphertext

Decryption
Original Plaintext

Encryption Key, KE Decryption Key, KD

Cryptanalysis

• Analyzing the ciphertext (along with the encryption/
decryption algorithms, sometimes the plaintext, known
plaintext-ciphertext pairs, etc) to deduce the key used for
encryption.

Source: Table 2.2 from William Stallings – Cryptography and Network Security, 5th Ed.

Average Time Required for Exhaustive Key Search

Principles of Symmetric Key
Encryption Algorithms

• Substitution: Replace every character in the
plaintext with a corresponding ciphertext.
– The encryption and decryption of one character is

independent of the others
• Used for stream ciphers (more faster)

– However, if the same key is used for encrypting every
plaintext character to a ciphertext character (Ceasar
Cipher), then cryptanalysis is quite straightforward.

– Substitution-based algorithms are designed to cause
more confusion. The keys are to be chosen such that
the ciphertext for a particular plaintext character is
different at different instants (like in Vigenere Cipher).

– Classical ciphers like Caesar cipher, Vigenere Cipher
are substitution-based.

Principles of Symmetric Key
Encryption Algorithms

• Permutation: The plaintext characters are moved here
and there in a certain fashion that is known only to the
sender and receiver.
– The characters are not replaced one after the other.

– Encryption are decryption are done to be in a block (relatively
slow). Characters are moved within a block in a certain fashion.

– Permutation-based ciphers are designed to produce more
diffusion such that the adjacent plaintext characters are moved
to far away locations in the ciphertext so that it becomes difficult
to recover the plaintext.

Example: Columnar transposition Cipher

Types of Permutations

Permutation Expansion

Permutation
Permuted Choice

Representing Characters
• Conventions/ Assumptions:

– The plaintext is written in UPPERCASE letters and the ciphertext in

lowercase letters

– We use a numeric encoding for the letters as shown below as most

encryption algorithms are based on mathematical transformations.

– We can perform arithmetic on the letters of a message. For example, A

+ 3 = D, K – 1 = J

– Arithmetic is performed as if the above alphabetic table were circular. In

other words, all arithmetic is with respect to modulo 26. The result of

every arithmetic operation is between 0 and 25.

• For example, Y + 3 = B

Letter

Code

Letter

Code

Substitution Ciphers
• Idea: Use a correspondence table and substitute a character or symbol for

each character of the original message

• Goal of substitution is Confusion: an attempt to make it difficult for a

cryptanalyst or an intruder to determine how a message and key were

transformed into ciphertext.

• Caesar Cipher

– Each letter is translated to the letter a fixed number of times after it in the
alphabet table

– Caesar cipher uses shift by 3.

– Ci = E(pi) = pi + 3

– Example:

• Plaintext: TREATY IMPOSSIBLE

• Ciphertext: wuhdwb lpsrvvleoh

– Complexity of the encryption algorithm: Length of the message

Plaintext
Ciphertext

Plaintext
Ciphertext

Cryptanalysis of the Caesar Cipher

• On a closer look at the result of applying Caesar’s encryption technique to
“TREATY IMPOSSIBLE”, we get the following clues from the ciphertext
even if did not know the plaintext:

– The break in between the two words is preserved in the ciphertext

– Double letters are preserved (SS is translated to vv)

– When a letter is repeated, it maps to the same ciphertext as before (look at
letters T, I, E in the plaintext)

• Consider you are given the following ciphertext and you want to determine
the plaintext: “wklv phvvdjh lv qrw wrr kdug wr euhdn”

– As a start, assume that the coder was lazy, and has allowed the blank space to
be translated to itself. Hence, the message has actually been enciphered with a
27-symbol alphabet: A through Z and a blank-space separating the words.

– If this assumption is true, knowing where the spaces helps to find out what are
the small words.

– The English language has very few short words like am, is, to, be, he, she, we,
and, you, are, and so on.

• There is a strong clue in the repeated r of the word wrr.

– Two very common three-letter words having the pattern xyy are see and too;
other less common possibilities are add, odd and off. Try the more common
word first.

Cryptanalysis of the Caesar Cipher
– Also, the combination wr appears in the ciphertext too, so you can

determine whether the first two letters of the three-letter word form a
separate word by themselves.

– wklv phvvdjh lv qrw wrr kdug wr euhdn

– T--- ------- -- -OT TOO ---- TO -----

– The –OT could be cot, dot, got, hot, lot, not, pot, rot or tot. A
likely choice is not. So q = N

– The word lv is also the end of the word wklv.

• lv cannot be SO, because then wklv is T-SO. There is no such word

• lv cannot be IN, because we have q = N

• lv has to be IS, so wklv is THIS

– wklv phvvdjh lv qrw wrr kdug wr euhdn

– THIS --SS--- IS NOT TOO H--- TO -----

• By now, we should be able to figure out that the shift has been by
three characters for each character in the plaintext. So, the plaintext
for the given ciphertext is:
– wklv phvvdjh lv qrw wrr kdug wr euhdn

– THIS MESSAGE IS NOT TOO HARD TO BREAK

Cryptanalysis of Substitution Ciphers
• Some clues to break the code more quickly

– The frequency with which certain letters are used can help us to break
the code more quickly.

• The letters E, T, O, A occur more often the letters J, Q, X, Z

– The nature and context of the text being analyzed affects the distribution

• In a medical article in which the term x-ray may be used often, the letter x
would have an uncommonly high frequency

– Letters appear to each other with predictable frequency

– In usual English, EN, RE, ER,…, and ENT, ION, AND,… are most
frequently-occurring coincident pairs (digrams) and triples (trigrams) of
letters

– Digrams and trigram frequencies are well-known for all written languages

– Frequency distribution may not give complete decryption, due to
peculiarities of plaintext, but considerably narrows down choices.

• Short messages give a cryptanalyst little to work with as the latter
works by finding patterns (possible to obtain more with long
messages). So, shorter messages are fairly more secure with simple
encryption algorithms.

Useful English Language Statistics

Book Ciphers
• Book cipher is a variation of the well-known Vignere cipher

• The key comes from a text portion starting from a certain page of a
book. Both the sender and receiver should have the same edition of
the book.

• Consider encrypting the message MACHINES CANNOT THINK

• Using the Key: i am i exist that is certain

• The ciphertext is the character corresponding to the cell at the
intersection of the row of the plaintext character and the column of
the character in the key

• Cryptanalysis becomes difficult with more flatter frequency
distribution.

• Encryption:

• Decryption:

• Example for Book Cipher: Use a character grouping of size 5
– Plaintext: MACHI NESCA NNOTT HINK

– Key: iamie xistt hatis cert

– Ciphertext: uaopm kmkvt unhbl jmed

Cryptanalysis of Book Ciphers
• The probability that a given character in the plaintext is any one of E,

A, O, T, N or I is close to 50%.

• Similarly, the probability that a given character in the key (taken from

a book) is any one of E, A, O, T, N or I is close to 50%.

• To break the cipher, assume that each letter of the ciphertext comes

from a situation in which the plaintext letter (row selector) and the

key letter (column selector) are both one of the six most frequent

letters.

• A sub-table of the Vigenere tableau table that lists the intersections

between these six characters is given below:

Cryptanalysis of Book Ciphers
• Searching through the sub-table for possibilities, we have:

– Ciphertext: uaopm kmkvt unhbl jmed

– Possible ?AA?E ?E?NA ?AOO? ?EA?

Plaintexts: NO T T IT NTT TE

I I I

- Actual Plaintext: MACHI NESCA NNOTT HINK

- Out of the 25 predictions, 8 were correct. Hence, the overall

percentage correctness in the predictions is 8/25 = 32%.

- Fraction of the plaintext characters correctly predicted = 8/19.

Example for Columnar Transposition
• Plain text: THIS IS A MESSAGE TO SHOW HOW

COLUMNAR TRANSPOSITION WORKS

• Ciphertext:
TSSOHLRSTOHAASOUTPIRIMGHWMROOKSEEOC
NASNSISTWOANIWX

• At the receiver:

– To figure out each column and the number of rows, the
receiver divides the message length by the number of
columns agreed upon.

• To make it more secure, the sender and receiver could
agree on a code word of length equal to the number of
columns and then send the columns in the alphabetical
order of the characters in the key word.

• Let the code word be ZEBRA. Then, the fifth column
would be sent first, followed by the third column,
followed by the second column and so on.

• Ciphertext:
ISTWOANIWXIMGHWMROOKHAASOUTPIRSEEOC
NASNSTSSOHLRSTO

Z E B R A

123 45

532 41

Data Encryption Standard (DES):

Cycles of Substitution and Permutation
Input (64-bit) Plaintext block

Initial Permutation

L0 R0

L1= R0 R1

Cycle 1 64-bit Key

L2= R1 R2

Cycle 2 64-bit Key

.

.

.

.

.

.

K1

K2

Cycles of Substitution and Permutation

L15 = R14
R15

L16= R15 R16

Cycle 16 64-bit Key

.

.

.

.

.

.

Final Permutation

64-bit Ciphertext

K16

Details of a Cycle

⊕

Left Data Half

32-bits

Right Data Half

32-bits

Expansion

Permutation

48-bits

New Left Data Half

32-bits

Every 8th bit removed

64-bit key

56-bit key

Key Shifted

and

Permuted

48-bits

Substitution,

Permuted Choice

32 bits

Permutation

⊕

New Right Data Half

32-bits

Double DES and Triple DES

• The DES algorithm is fixed for a 56-bit key.

• As the computing power has increased rapidly these days and

hopefully will continue in the near future too, it may not be that time

consuming to do an exhaustive search of all the 256 keys, when an

attacker gets a plaintext and the corresponding ciphertext.

Double DES:

– To encrypt: C = E(K2, E(P, K1))

– To decrypt: P = D(K1, D(K2, C))

– The encryption/ decryption algorithm used is DES.

• Triple DES:

– To encrypt: C = E(K3, D(K2, E(K1, P)))

– To decrypt: P = D(K1, E(K2, D(K3, C)))

– The encryption/ decryption algorithm used is DES.

– With 3 keys, 3DES uses 168-bits and is more robust; but, also slow.

– 3DES has also been adopted for Internet applications like PGP, S/MIME.

Meet-in-the-Middle Attack with Double DES

• It is a known-plaintext attack where the <plaintext,

ciphertext> pair and the encryption algorithm (DES) is
known and the key(s) need to be determined.

–– C = EC = EK2K2(E(EK1K1(P))(P))

• Since X = EK1(P) = DK2(C), the attack consists of

encrypting P with all possible values of 56-bit keys (K1)

and storing the resulting X values. Similarly, we decrypt

C with all possible values of 56-bit keys (K2) and compare

the resulting values for a match with the set obtained
based on K1. The 56-bit key values (K1 and K2) for which

EK1(P) = DK2 (C), constitute the 112-bit key K1 K2.

• The time complexity for cryptanalysis is thus O(256) and

not O(2112).

Message Authentication Code
(CBC: Cipher Block Chaining)

P1

Encryption

C1

K

IV

P2

Encryption

C2

K

P3

Encryption

C3

K

CBC for Data Integrity and

Message Authentication

• A ciphertext block depends on all blocks before it

• Any change to a plaintext block affects all of the
succeeding ciphertext blocks – creates an Avalanche
effect. This property can be used to compute a “Message
Authentication Code” (MAC) for the entire plaintext and
sent as part of the message.

• If the “integrity” of the message is the only required
criterion, then we can send P1, P2, …, Plast_block, MAC.
– If any intruder changes any of the plaintext, the Avalanche Effect

property of CBC requires that the MAC value computed by the
destination to be different than what is sent by the sender as part
of the message.

• The encryption Key K and the Initialization Vector are the
secret keys to be known only to the sender and receiver.

One-way Hash Function
• A hash function accepts a

variable-size message M as input
and produces a fixed-size
message digest H(M) as output.

• Unlike a MAC, a hash function
does not take a secret key as
input;
– Used for integrity check
– Combined with encryption for

authentication check

• The length of the message (in
bits) is padded along with the
message to compute the hash
value. This is to make it
complicated for an attacker to
come up with a message of the
same hash value.

• The hash value is a “finger print”
of the file, message or block of
data.

Figure 2.5: W. Stallings: Computer Security: Principles and Practice

Secure Hash Function: Requirements
• To be useful for data integrity, a hash function H must have the

following properties:
– H can be applied to a block of data of any size

– H produces a fixed-length output

– H(x) is relatively easy to compute for any given x.

– One-way property: Given a hash value h, it is computationally infeasible
to compute the underlying message x such that H(x) = h.

– Weak-collision resistant: For any given block x, it is computationally
infeasible to find another block y, where y ≠ x and H(y) = H(x).

– Strong-collision resistant: It is computationally infeasible to find any pair
of blocks x and y, such that y ≠ x and H(y) = H(x).

• Hash functions that satisfy the first five properties (listed above) are
said to be weak hash functions. Hash functions that satisfy all of the
above properties are said to be strong hash functions.

• Secure Hash Algorithm (SHA) and its variants (SHA-256, 384, 512)
are the commonly used hash functions.

• Other uses: (1) Store passwords for operating systems; (2)
Periodically compute/ verify the hash values of files; the hash values
are stored in a secure location or disc.

Public Key Encryption

• Motivation: Key distribution problem of symmetric encryption system

• Let KPRIV and KPUB be the private key and public key of a user. Then,

– P = D(KPRIV, E(KPUB, P))

– With some, public key encryption algorithms like RSA, the following is

also true: P = D(KPUB, E(KPRIV, P))

• In a system of n users, the number of secret keys for point-to-point

communication is n(n-1)/2 = O(n2). With the public key encryption

system, we need 2 keys (one public and one private key) per user.

Hence, the total number of keys needed is 2n = O(n).

Modular Arithmetic

• Given any positive integer n and any integer a, if we divide a by n,

we get a quotient q and a remainder r that obey the following

relationship:

– a = q * n + r, 0 ≤ r < n and r is the remainder, q is the quotient

– Example:

• a = 59; n = 7; 59 = (8)*7 + 3 r = 3; q = 8

• a = -59; n = 7; -59 = (-9)*7 + 4 r = 4; q = -9

• 59 mod 7 = 3

• -59 mod 7 = 4

0 1 2 qn (q+1)n

n

a
r

When a is positive

When a is negative

2 1 0(q-1)n(q)n

n

a

r

n 2n 3n

n2n3n

(q-1)n

All the numbers marked on the line are actually negative with respect to sign

Modular Arithmetic

• Two integers a and b are said to be congruent modulo n, if a mod n =
b mod n. This is written as a ≡ b mod n.

– We say “a and b are equivalent to each other in class modulo n”

• Example:

– 73 ≡ 4 mod 23, because 73 mod 23 = 4 = 4 mod 23

– 21 ≡ -9 mod 10, because 21 mod 10 = 1 = -9 mod 10

• Properties of the Modulo Operator

– If a ≡ b mod n, then (a – b) mod n = 0

– If a ≡ b mod n, then b ≡ a mod n

– If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n

• Example:

– 73 ≡ 4 mod 23, then (73 – 4) mod 23 = 0

– 73 ≡ 4 mod 23, then 4 ≡ 73 mod 23, because 4 mod 23 = 73 mod 23

– 73 ≡ 4 mod 23 and 4 ≡ 96 mod 23, then 73 ≡ 96 mod 23.

Modular Arithmetic

• Now, that we have studied the meaning of “equivalency” or

“congruent modulo n”, it is see that the “mod n” operator maps “all

integers” (negative and positive) into the set of integers [0, 1, …., n-

1].

• Example: Class of modulo 15

• From the above table, we could say things like

– -38 ≡ 22 mod 15 24 ≡ 54 mod 15

– -38 mod 15 = 7 [-38 = (-3)*15 + 7] 24 mod 15 = 9 [24 = (1)*15 + 9]

– 22 mod 15 = 7 [22 = (1)*15 + 7] 54 mod 15 = 9 [54 = (3)*15 + 9]

Multiplicative Inverse Modulo n
• If (a * b) modulo n = 1, then

– a is said to be the multiplicative inverse of b in class modulo n

– b is said to be the multiplicative inverse of a in class modulo n

• Example:

– Find the multiplicative inverse of 7 in class modulo 15

– Straightforward approach:

• Multiply 7 with all the integers [0, 1, …, 14] in class modulo 15

• There will be only one integer x for which (7*x) modulo 15 = 1

– Find the multiplicative inverse of 9 in class modulo 13

• Multiply 9 with all the integers [0, 1, …, 12] in class modulo 13

• There will be only one integer x for which (9*x) modulo 13 = 1

• A more efficient approach to find multiplicative inverse in class
modulo n is to use the Extended Euclid Algorithm

Example for Modular Exponentiation
• To compute 541 mod 9

– Straightforward approach:

• 541 mod 9 = (45474735088646411895751953125) mod 9 = 2

• Number of multiplications - 40

– Using the Right-to-Left Binary Algorithm

• Write 41 in binary: 101001

• 541 = 532 * 58 * 51

• 541 mod 9 = (532 * 58 * 51) mod 9

Multiplications is dependent on the

bits in the binary representation of

the exponent n

Multiplications = Θ(logn)

Example for Modular Exponentiation
• To compute 835 mod 11

– Straightforward approach:

• 835 mod 11 = (40564819207303340847894502572032) mod 11 = 10

• Number of multiplications - 34

Multiplications = 2 + 5 = 7

RSA Algorithm
• Given the two keys (e, n) and (d, n).

• The two keys are e and d are related as follows:
– d is the multiplicative inverse of e in the class modulo (p-1)*(q-1), where

n = p*q; also, p and q are prime integers

– The complexity of breaking RSA lies in the fact that p, q, n are large
integers of the order of 100 digits, 200 digits; it becomes difficult to
factorize a large integer into two prime factors

• A plaintext message P is encrypted to ciphertext by:

– C = Pe mod n

• The plaintext is recovered by:

– P = Cd mod n

• Because of symmetry in modular arithmetic, encryption and
decryption are mutual inverses and commutative. Therefore,

– P = Cd mod n = (Pe)d mod n = (Pd)e mod n

• Thus, one can apply the encrypting transformation first and then the
decrypting one, or the decrypting transformation first followed by the
encrypting one.

• One of the two keys is known publicly and the other one is known
only to the user.

Another Example for RSA Algorithm
• Let the encryption and decryption keys be (13, 391) and (325, 391)

respectively. Show the encryption and decryption for Plaintext 127

• Encryption for Plaintext P = 127

• Ciphertext C = Pe mod n

= 12713 mod 391

Ciphertext is 213

Another Example for RSA Algorithm
• Decryption for Ciphertext C = 213

• Plaintext P = Cd mod n

= 213325 mod 391

Plaintext is 127

Applications of Public-Key Encryption

• Diffie-Hellman Key Exchange

– Used to allow two parties that have to establish a shared secret key over an

insecure communication channel.

– Alice and Bob agree on a field size n and a starting number g.

– Alice generates a secret integer a and sends ga mod n to Bob. Alice sends

this encrypted using its private key, so that Bob can decrypt it using Alice’s

public key, thereby authenticating that the message came from Alice. E(KPRI-

ALICE, ga mod n)

– At the same time, Bob generates a secret integer b and sends gb mod n to

Alice. Bob sends this encrypted using its private key, thereby authenticating

to Alice that the message came from Bob. E(KPRI-Bob, g
b mod n)

– When Bob gets Alice’s message, it computes (ga)b mod n and uses it as the

secret key.

– Similarly, when Alice gets Bob’s message, it computes (gb)a mod n and uses

it as the secret key.

– According to Modular arithmetic, (ga)b mod n = (gb)a mod n. Hence, both Alice

and Bob have agreed on a shared secret key.

Example for Diffie-Hellman Key
Exchange

• Assume the secret integers used by Alice and Bob to be 15 and 29

respectively. The values of g and n are 13 and 45 respectively. What

would be the secret key they will be agreeing with?

Alice Side

Compute ga mod n = 1315 mod 45

g = 13; n = 45; a = 15; b = 29

131 mod 45 = 13

132 mod 45 = (131 mod 45 * 131 mod 45) = 169 mod 45 =34

134 mod 45 = (132 mod 45 * 132 mod 45) = (34*34) mod 45 =31

138 mod 45 = (134 mod 45 * 134 mod 45) = (31*31) mod 45 =16

15 is: 1 1 1 1

8 4 2 1

1315 mod 45 = (138 * 134 * 132 * 131) mod 45 = (16 * 31 * 34 * 13) mod 45

= (1 * 34 * 13) mod 45

= 37

Example for Diffie-Hellman Key
Exchange (continued…)

Alice sends 37 to Bob

Bob computes (g
a

mod n)
b

mod n = 3729 mod 45

g = 13; n = 45; a = 15; b = 29

371 mod 45 = 37

372 mod 45 = (371 mod 45 * 371 mod 45) = 19

374 mod 45 = (372 mod 45 * 372 mod 45) = (19*19) mod 45 = 1

378 mod 45 = (374 mod 45 * 374 mod 45) = (1*1) mod 45 =1

3716 mod 45 = (378 mod 45 * 378 mod 45) = (1*1) mod 45 =1

29 is: 1 1 1 0 1

16 8 4 2 1

3729 mod 45 = (3716 *378 * 374 * 371) mod 45 = (1 * 1 * 1 * 37) mod 45

= 37

Example for Diffie-Hellman Key
Exchange (continued…)

• Assume the secret integers used by Alice and Bob to be 15 and 29

respectively. The values of g and n are 13 and 45 respectively. What

would be the secret key they will be agreeing with?

Bob Side

Compute gb mod n = 1329 mod 45

g = 13; n = 45; a = 15; b = 29

29 is: 1 1 1 0 1

16 8 4 2 1

131 mod 45 = 13

132 mod 45 = (131 mod 45 * 131 mod 45) = 19

134 mod 45 = (132 mod 45 * 132 mod 45) = (19*19) mod 45 = 1

138 mod 45 = (134 mod 45 * 134 mod 45) = (1*1) mod 45 =1

1316 mod 45 = (138 mod 45 * 138 mod 45) = (1*1) mod 45 =1

1329 mod 45 = (1316 *138 * 134 * 131) mod 45 = (1 * 1 * 1 * 13) mod 45

= 13

Example for Diffie-Hellman Key
Exchange (continued…)

Bob sends 13 to Alice

Alice computes (g
b

mod n)
a

mod n = 1315 mod 45

g = 13; n = 45; a = 15; b = 29

15 is: 1 1 1 1

8 4 2 1

131 mod 45 = 13

132 mod 45 = (131 mod 45 * 131 mod 45) = 169 mod 45 =34

134 mod 45 = (132 mod 45 * 132 mod 45) = (34*34) mod 45 =31

138 mod 45 = (134 mod 45 * 134 mod 45) = (31*31) mod 45 =16

1315 mod 45 = (138 * 134 * 132 * 131) mod 45 = (16 * 31 * 34 * 13) mod 45

= (1 * 34 * 13) mod 45

= 37

37 is the session key agreed upon by both sides

Public-Key Encryption

• Let KPRIV and KPUB be the private key and public key of a

user. Then,

– P = D(KPRIV, E(KPUB, P))

– P = D(KPUB, E(KPRIV, P))

• Exchange of Secret Message using Asymmetric

Encryption

– Let KPUB-S, KPRI-S denote the public and private keys of Sender S.

Similarly, let KPUB-R and KPRI-R be the public and private key of

Receiver R. Let M be the secret message to be sent from S to R.

– S sends to R the following:

• E (KPUB-R E(KPRI-S, M))

– The inner encryption guarantees that the secret message M

came from S and the outer encryption guarantees that only the

receiver R could open the outer encryption of the message and

get access to the inner encryption.

Use of Public-Key Encryption to
Provide Integrity and Authentication

• M || EPri-S(Hash(M))

M

H

| |

EP

PRS

M

Dec

PUS

E(PRS, H(M))

H(M) H(M)

H

Compare

Source Side Destination Side

Use of Public-Key Encryption to
Provide Confidentiality

• ESecret-Key(M) || EPub-R(Secret-key)

M

Dec

PRR

E(PUR,KS)

KS

Source Side Destination Side

EC

KS EP

PUR

| | KS

Dec

M

Note that the secret key is
generated for each message for
better security and also to avoid

the need for key distribution.

Use of Public-Key Encryption to Provide
Confidentiality, Integrity and Authentication

ESecret-Key(M || EPri-S(Hash (M))) || EPub-R(Secret-key)

M

Dec

PRR

KS

Source Side Destination Side

EC

KS EP

PUR

KS

Dec

M

H

| |

EP

PRS

| |
H(M) H(M)

Dec

PUS

HCompare

Man-in-the-Middle Attack
• Man-in-the-middle (MITM) attack is an attack in which an attacker is able to read,

insert and modify at will, messages between two parties without either party
knowing that the link between them has been compromised.

• The attacker must be able to observe and intercept messages going between the
two victims.

• Example: (MITM attack on public-key cryptography)

– Suppose Alice wishes to communicate with Bob.

– Mallory wants to eavesdrop their conversation or also possibly deliver a false message
to Bob.

– First, Alice must ask Bob for his public key.

– If Bob sends his public key to Alice, but Mallory is able to intercept it, a MITM attack
can begin.

– Mallory sends a forged message to Alice that claims to have come from Bob, but
contains Mallory’s public key

– Alice believes the public key received to be that of Bob’s. So, Alice encrypts the
message she wishes to send to Bob using the public key received and transmits on the
link to Bob.

– Mallory could now intercept the message, decrypt it with his private key and get the
actual contents of the message.

– Mallory now again encrypts the message (could be even altered too) with Bob’s public
key and transmits the message to Bob.

– Bob on receiving the message, decrypts the message with his private key and reads
the contents of the message assuming it came from Alice

Public-Key Certificates
• Each of us adopt a “trust threshold” – a degree to

which we are willing to believe an unidentified
individual.

• We will use the concept of “vouching for” by a
third party as the basis of thrust in settings where
two parties do not know about each other.

• Certification Authority (CA): Is an entity that
issues digital certificates that contain a public key
and the identity of the owner.

• The CA attests that the public key contained in
the digital certificate belongs to the person (CA is
a sort of digital notary).

Certificates

Name: A

ID for A

Public key for A: KPUB-A

Hash value

128C4

Encrypted with KPRI-CA

User A sending to user B

Hash Value of

Message to

user B

Encrypted

with KPRI-A
Name: A

ID for A

Public key for A: KPUB-A

Hash value

128C4

Encrypted with KPRI-CA

Encrypted with KPUB-B

Digital Certificate for the

Public Key of A

Note: The certificates are created and formatted based on the X.509 standard, which

outlines the necessary fields of a certificate and the possible values that can be

inserted into these fields. The latest X.509 version is v.3.

Message to

user B

