
Module 2: Systems Security

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University, MS

E-mail: natarajan.meghanathan@jsums.edu

Topics

• 2.1 Authentication

• 2.2 Access Control

• 2.3 File Protection

• 2.4 Firewalls and Intrusion Detection

Systems

2.1 Authentication
• Identification – the process of asserting who a user is.

• Authentication – is the process of determining whether a user should be

allowed to access a system (a yes or no decision).

Password-based Authentication
• User submits an identifier (ID) and password.

– The system compares the user entered password to a previously stored
password (or a hash) for that user ID, maintained in a system password
file.

• The non-randomness in password selection is the root cause of problems
with passwords (being cracked easily).

• For a password of 8-characters long chosen from a 256-character set, it
may appear that the search space is 2568 = 264.

– However, a user is far more likely to select an 8-character dictionary
word as password (i.e., something that is easy to remember) rather than
choosing an arbitrary combination of 8 characters.

• Common Vulnerabilities of Password-based authentication
– Offline dictionary attack: Comparing the hash values of passwords in

the system file with those corresponding to commonly used passwords;
and extracting the user ID/password

• A pre-computed table of hashed passwords of possible passwords is called
a rainbow table.

– Guess password for a specific account through repeated login attempts
(thru’ info about user and system policies)

– Social Engineering attacks – tricking users/admin to reveal password

Passwords and Passphrases
• Thumb rule for selecting passwords: Easy to Remember, but difficult

to guess. For example,

– FCa7Yago: Four Centuries and Seven Years ago

– 1400JLSt: 1400 John Lynch Street

• One should also choose strong password recovery
mechanisms with security questions that can be
answered only by the user and not easily by a hacker.

• Passphrases are nowadays being considered as an
alternative for passwords:
– A passphrase is a sequence of words or text typically longer

than a password

– Example: Five Multiplied by Eight: 4Zero

– A passphrase is difficult to crack than a password. Even if a
passphrase is formed from words that are part of a dictionary,
the presence of more than one word in the passphrase leads to
an exhaustive search space.

Password Strength
• Password strength – is a measure of the effectiveness of a

password to resist guessing and brute-force attacks

– Quantified in terms of the number of trials an attacker would need to

crack the password

– Password strength is a function of length, complexity and

unpredictability.

• Password strength is quantified as the “Number of Entropy bits” (H) and

2H is the number of attempts an attacker would need to exhaust all

possibilities during a brute-force search.

• If a password can be ‘L’ symbols long and the number of possible

symbols is ‘N’, the maximum number of passwords is NL, if any

combination of L symbols could be a password. In that case, the

password entropy H (# bits) = log2N
L = L*log2N.

• �Entropy (# bits) per symbol of the password = log2N.

Password Strength
• Password strength, in terms of the number of entropy bits, depends

both on the size of the symbol set (referred to as ‘Symbol Count’) and

the length of the password.

• Given a target value for the number of entropy bits for the password

(Htarget) and a measure of the number of entropy bits per symbol (H/L)S

of a symbol set S, the number of symbols to be chosen from a symbol

set (LS) to form the password with the targeted strength would be:









=

N

H
L

ett

S

2

arg

log








=

S

ett

S

LH

H
L

)/(

arg
N – Symbol set size

L – Password length (# symbols)

Password Strength
• To form a password with a targeted value for the Number of Entropy

bits, we can choose an appropriate number of symbols from any

available symbol set, provided all symbols of a symbol set have an

equal property of being part of the password.

Source: Wikipedia: http://en.wikipedia.org/wiki/Password_strength

Use of Salt to Mitigate Dictionary Attacks
• Motivation: The hash value for a particular password will be the same

each time the password is passed as the only input to the cryptographic
hashing algorithm.

• With salting, an additional input, a non-secret value (say s), could be
passed along with the password p as the input to the hashing algorithm
h(p, s).
– Even if two users choose the same password, if their salt values are different,

their hashed password values will be different too.

• The tuple <s, h(p, s)> is stored in the password file.

• If the salt value is publicly displayed in the password file, then an attacker
has to compute N hash values for every word in the dictionary, where N
is the number of users listed in the password file and the N values of the
salt for each word in the dictionary will be those of these N users.

• If the salt values could be hidden from the user’s view,
– If the salt is represented using Ns bits, then for every word in the dictionary,

the attacker has to now compute 2Ns hash values, one for each possible
value of the salt in the range [0,…, 2Ns-1].

• Considering the above, it also becomes very difficult to find out whether a
person with passwords on two or more systems has used the same
password on all of them [Each system could have its own salt value].

Math Problem on Dictionary Attacks

• (a) If a UNIX system publicly displays the 12-bit salt
values of each of its 210 users along with the hash values
of the 8-character long passwords, compute the average
number of attempts needed for an attacker to launch a
dictionary attack. Assume the cardinality of the character
set of the passwords is 64 and the size of the dictionary
of common passwords is 220. Also, assume that there is
a 25% chance that a user password is chosen from the
dictionary.

• (b) If the UNIX system, described in (a), does not
publicly display the salt values, compute the compute the
average number of attempts needed for an attacker to
launch a dictionary attack.

Math Problem on Dictionary Attacks

If all passwords are from the dictionary.
Average # attempts needed = (210) * (220) / 2

= 229.

If no password is from the dictionary.

Average # attempts needed = (210) * (648) / 2
= (210) * ((26)8) / 2

= (210) * (248) / 2

= 257.

There is a 25% chance that a password can be from the
dictionary. Hence, the average number of attempts is:

0.25*229 + 0.75*257 = 229*(0.25 + 0.75*228) = 0.75 *229*228.

= 0.75*257.

(a) Salt values displayed publicly in the password file

Math Problem on Dictionary Attacks

If all passwords are from the dictionary.
Average # attempts needed = (212) * (220) / 2

= 231.

If no password is from the dictionary.

Average # attempts needed = (212) * (648) / 2
= (212) * ((26)8) / 2

= (212) * (248) / 2

= 259.

There is a 25% chance that a password can be from the
dictionary. Hence, the average number of attempts is:

0.25*231 + 0.75*259 = 231*(0.25 + 0.75*228) = 0.75 *231*228.

= 0.75*259.

(b) Salt values NOT displayed publicly in password file

Proactive Password Cracking using
Bloom Filter

• Proactive Password Cracking: Store a list of bad
passwords; When a user (re)sets his password, check if
it is in the bad list. If so, reject the password; otherwise,
accept.

• Bloom Filter: Data structure to capture the list of bad
passwords.
– A Bloom Filter of order k consists of a set of k independent hash

functions H1(x), H2(x), …, Hk(x), where each hash function maps
a password x into a value in the range 0 to N-1.

Bloom Filter: Procedure and Analysis
• The Bloom Filter is a hash table.

• The hash table is of size N bits, with all the bits initially set to 0.

• For each password, its k hash values are calculated, and the
corresponding bits in the hash table are set to 1. If the bit already
has the value 1, it remains at 1.

• When a new password is presented to the checker, its k hash values
are calculated. If all the corresponding bits of the hash table are
equal to 1, then the password is rejected (considered to be in the list
of bad passwords).

• Note that there cannot be false negatives (i.e., a user entered
password that is in the bad list has to have all its k hash values
index in the Bloom Filter to bit positions that are set to 1).

• However, there can be false positives (i.e., a user entered password
that is not in the bad list could still have its k hash values that index
to the Bloom Filter to bit positions that are set to 1).

Test password

Bloom Filter Analysis

Ratio R = Max. Value in the hash table / # words in the dictionary

P
ro

b
a

b
ili

ty
 [

 F
a

ls
e

 P
o

s
it
iv

e
s
]

Figure 3.2: W. Stallings:

Computer Security: Principles
and Practice, 2nd edition

ZKPP: Challenge-Response Systems
• Zero-Knowledge Password Proof: It is used in authentication systems where

one party wants to prove its identity to a second party using a password but
doesn’t want the second party or anybody else to learn anything about the
password.

– This technique does not even again require the system from storing the
user password!! (The system should be just convinced that the user
permitted to access it is the legitimate user who knows the correct
password, but the system need not store the password any where in its
memory)

– This technique is based on the Zero-Knowledge Proof Protocol (ZKPP) –
an interactive method (with multiple trials) for one party to prove to another
that a statement is true in all the trials, without revealing anything other
than the veracity of the statement.

• Tradeoff: There is always a tradeoff between the time a user wants to spend
being authenticated and the level of security.

• Simple Example for Zero-Knowledge Proof Protocol (ZKPP)
– Let there be two persons Peggy (the prover of the statement) and Victor (the verifier of the

statement).
– Peggy knows the secret word to open a magic door in a cave.
– Victor does not know the secret word, but needs to make sure that Peggy knows the

secret word before letting her access to enter the cave.
– Peggy needs to demonstrate Victor that she knows the secret word, without telling it to

Victor.

Zero-Knowledge Proof Protocol
• Let the cave be shaped like a circle, with the

entrance in one side and the magic door blocking
the opposite side.

• Victor waits outside the cave as Peggy goes in.
• Let the paths from the left and right of the

entrance be labeled A and B.
• Peggy randomly takes either path A or B.
• Peggy knows the magic word, so she opens the

door and stands inside waiting for Victor to call
her back.

• Victor enters the cave and shouts the name of the
path he wants her to use to return, either A or B,
chosen at random.

• Only if Peggy has opened the magic door, she
can return on the path (including the path that she
did not use to enter the cave) asked to return by
Victor; otherwise she has to return through the
same path that she entered.

• If Peggy did not know the magic word and she
was just lucky enough to return through the same
path that Victor wanted her to return, the
probability of this happening per trial is ½.

• We repeat the above process over n trials. The
probability that Peggy could fool Victor in all these
n trials is only (1/2)n.

Token-based Authentication
• A token is an object that a user possesses for the

purpose of user authentication.

• Traditional token: Memory card (magnetic stripe:
containing the user ID) swiped by the user to a card
reader. The card reader communicates with the server to
authenticate the user.
– Disadvantage: Anyone who possess the token can get

authenticated.

• Smart card: Add intelligence to the token
– Include a microprocessor, human-token interface or electronic

interface to communicate with a card reader, authentication
protocol

– The user enters a PIN; the card reader transmits the user ID and
PIN # to the server

• Example for multi-factor authentication
• Swipe the card; enter the PIN; also have your fingerprint scanned.

• Like ZKPP; the probability of someone forging all the three is less

Introduction to Biometrics
• Biometrics: Comprises of methods for uniquely

recognizing humans based upon one or more
intrinsic physical or behavioral traits or identifiers
– Used to authenticate users and grant or deny access

control rights to data and system resources.

• Biometric identifiers can be divided into two main
classes:
– Physiological: related to the body – often unique and

can be used for identification as well as verification
• Examples: Fingerprint, Face recognition, DNA, Palm print,

Iris recognition and etc.

– Behavioral: related to the behavior of a person – may
not be unique for each person and can be used
mainly for verification

• Examples: Typing rhythm, body mechanics (gait), voice and
etc.

Basic Block Diagram of a Biometric
System

Source: Wikipedia

Two Modes of Biometric Systems
• Identification Mode: (primary means/source of authentication)

– Uses biometric traits that cannot be easily forged and are
supposedly unique for each user

– Could be used for one to many comparison (if username is
unknown) and subsequent authentication

– Low false accept and low false error rates

– More accurate, difficulty associated with data collection and
usage

– Examples: Fingerprint systems, Iris recognition systems, Retinal
scans

• Verification Mode: (secondary source of authentication)

– Uses biometric traits that need not be unique for each user and
will incur high false accept and false error rates if used for
identification; but, can be used to validate whether a user is
whom he/she claims

– Could be used for one to one comparison

– Favored for ease associated with data collection and usage

– Examples: Face recognition systems (only biometric system
used for Mass Surveillance), Signature recognition systems,
Voice recognition systems

2.2 Access Control
• Access control refers to preventing unauthorized access to a

computer system or network.

• Access is the ability of a subject (such as an individual or a process
running on a computer system) to interact with an object (such as a
file or hardware device).

• Once the individual has verified their identity (authentication), access
controls regulate what the individual can actually do on the system.
In other words, just because a person is granted entry to the system,
it does not mean that they should have access to all data the system
contains.

• Access Control Models (tell what needs to be protected from what
access):
– Discretionary Access Control

– Mandatory Access Control

– Role-based Access Control

• Access control Mechanisms (tell how to protect the objects):
– Access Control Matrix, Access Control List, Capability List

Discretionary Access Control
(DAC)

• In systems that employ discretionary access
controls, the owner of an object can decide
which other subjects may have access to the

object and what specific access they may have.

• One common method to accomplish this is via
the permission bits used in UNIX-based
systems.

– The owner of a fie can specify what permissions

(read/write/execute) members in the same group may
have and also what permissions all others may have.

Mandatory Access Control (MAC)
• Used in multi-level security systems.

• Access permissions are decided by the operating system
and not by the subject (i.e., owner of an object).

• Each subject as well as object is identified with a security
label.

• The Bell-LaPadula Confidentiality model and the Biba
Integrity model are the commonly used mandatory
access control models.
– Bell-LaPadula model

• The “no-read-up” rule states that no subject (such as a user or a
program) can read information from an object (such as a file) with a
security classification higher than that possessed by the subject
itself.

• The “no-write-down” rule states that a subject can write to an object
only if the subject’s security classification is lower than or equal to
the object’s security classification.

– The Biba Integrity model
• No read down rule and No write up rule

Role-Based Access Control (RBAC)
• A user has access to an object based on his/ her assigned role in the

system.

• Roles are defined based on job functions.

• Permissions are defined on job authority and responsibilities of the job.

• Operations on the object are invoked based on the permissions.

• RBAC is used in Database Management Systems, Security

Management and Network Operating Systems

Access Control Matrix (ACM)

• A matrix in which each row represents a single user and

each column represents a single object.

• This is a common method used in database management

systems.

• Inefficient use of memory and time overhead to access the

entries:

– The matrix is huge, but is often a sparse matrix.

Access Control List (ACL)
• Each column in the Access Control Matrix forms the Access Control List

(ACL), one list for each object.

• Example: Biblio � (User_A, ORW) � (User_B, R) � (User_S, RW)

– TEMP � (User_A, ORW)

– F � (User_A, ORW) � (User_S, R)

• Each entry in the ACL for an object is called an Access Control Entry

(ACE) that defines the access permissions that a specific user has on

an object. Each user needs to be associated with an ACE for the object.

Capability List (C-List)
• Each row in the Access Control Matrix forms the Capability List (C-List),

one list for each user/process.

• Example: User_T � (Help.TXT, R) � (C_COMP, X) � ….

• C-Lists can be easily delegated when a user executes a process or

when a new process is spawned by another process being executed by

the user.

Confused Deputy Problem
• Consider a system with 2 subjects (a user Alice and a user process

Compiler) and two objects (user process Compiler, a file named BILL).

• The Access Control Matrix is as shown.

• The purpose of the Compiler is to compile

the source code passed and write the

debugging information to a file passed as

an input argument.

• Alice invokes (has execute permission) the

Compiler and passes the name of the file BILL

to write the debugging information.

• If the Compiler does not check whether Alice has ‘Write’ permissions to

the BILL file and goes ahead to write the debugging information to the

BILL because the Compiler process itself has the ‘Write’ permission to

the BILL file, then Alice would have successfully written to a file for

which she does not have write permission.

rwrx

---x

Compiler BILL

Alice

Compiler

Confused Deputy Problem
• The Compiler process is a confused deputy of Alice, because even

though the Compiler process has Write permissions to the BILL file, it
does not know whether Alice has Write permissions to the file and it will
mess up the security of the system if it executes the instructions of Alice
without checking for her access permissions with the OS.

– In other words, it has to check whether the user Alice has the appropriate
access permissions to the resource (the BILL file).

• If the OS implements access control via ACLs, the breach of security,
as described in the previous slide, will happen, unless the Compiler
process requests the OS to validate whether Alice has ‘Write’
permission to BILL. Note that Alice does not have an ACE for BILL.

– In other words, if an OS implements access controls through ACLs, it has to
still associate each user with the objects in the form of ACEs and has to do
the validation checks for every object access request from a user.

• If the OS implements access control via C-Lists, the C-List can be
passed on by the user Alice to the Compiler process and the Compiler
process by itself can validate whether or not Alice has access to the
BILL file and need not go through the OS.

– Note that the C-Lists are created by the OS and are read-only for all users
and processes.

Time Complexity-Comparison of ACM,

ACL and C-List
• Let there be N subjects (users, processes) and M objects.

ACL

O1 � (U1, r-x) � (U2, r--) � (U3, rwx)

O2 � (U1, r-x) � (U2, --x)

O3 � (U2, rw-) � (U3, --x)

M

N

C-List

U1 � (O1, r-x) � (O2, r-x)

U2 � (O1, r--) � (O2, --x) � (O3, rw-)

U3 � (O1, rwx) � (O3, --x)

N

M

2.3 File Protection

Mechanisms

File System
• The file system is an abstraction of how the

external, non-volatile memory of the computer is
organized.

• Operating systems typically organize files
hierarchically into folders, also called directories.

• Each resource on disk, including both data files
and programs, has a set of permissions associated
with it.

• File permissions (typically stored in the metadata
of the file along with attributes such as type of the
file, etc) are checked by the OS to determine if a
file is readable, writable, or executable by a user,
group of users, or a process.

UNIX File Access Control
• Associated with each file is a set of 12 protection bits.

• Nine of the protection bits specify read, write and execute
permission for the owner of the file, other members of the
group to which the file belongs, and all other users.
– These form a hierarchy of owner, group and all others, with the

highest relevant set of permissions being used.

• When applied to a directory,
– the read bit lets one to list the contents of the directory

– the write bit lets one to create/delete/rename files in the directory

– the execute bit grants right to descend into the directory or search
it for a filename.

• SetUID (Set User ID) bit and SetGID (Set Group ID) bits:
– If these are set on an executable file: When a user (with execute

privileges for this file) executes the file, the system temporarily
allocates the rights of the user’s ID of the file’s creator and the
file’s group, to those of the user executing the file (referred to as
the effective user id and effective group id at the time of execution,
in addition to the real user id and real group id).

UNIX File Access Control
• SetUID (Set User ID) bit and SetGID (Set Group ID) bits:

– If these are set on an executable file:

• This change is effective only while the program is being executed.

• This feature enables the creation and use of privileged programs that
may use files normally inaccessible to other users (e.g., passwd
program)

– If these are set on a directory, the SetGID permission indicates
that newly created files will inherit the group of this directory. The
SetUID permission is ignored.

• Sticky bit
– When set for a file, the file contents are not totally moved out of

main memory after execution, and are stored in swap space: set
for frequently used programs to speedup execution.

– When set for a directory, only the owner of a file in the directory
can move, rename or delete the file: useful for managing files in
shared temporary directories.

UNIX File Permissions
• The owner uses the chmod command to set the access rights of a file

and can use the chown command to change the owner or group of a
file.

• The Access rights are: Read (r – 4), Write (w – 2) and Execute (x – 1),
nothing (0).

• Each file has associated permissions of the form

• If a file has to be given more than one access right to a class, we have
to add their corresponding values.

• Examples:

– Consider a file A.txt. To set read, write and execute permissions to
its owner, read and execute only permission to the group and read-
only permission to others, use the chmod command as chmod 754
A.txt

– To set the SetUID bit (4) and SetGID bit (2) to a file and set read,
write and execute permissions to the owner, read/write permission
to group and read permissions to others, use the chmod command
as: chmod 6764 A.txt

– To set the sticky bit to a file, use: chmod +t A.txt

rwx rwx rwx

owner group others

Standard UNIX Password Encryption
• The first 8 ASCII characters of a user’s password are used. If your

password is less than 8 characters in length, then 0 bits are padded to

make it 8*7 = 56 bits in length.

• The 56 bits of the user’s password is used as the DES key. A constant

64-bit block (consisting of all zero bits) is then encrypted via DES 25

times (the result of each encryption being used to feed the next round),

using the 56-bit user password as the key.

• A 12-bit salt value drives the DES P- and S-box tables used.

• The resultant 64-bits is converted into a string of 11 printable ASCII

characters, by encoding every six bits into a printable ASCII character

and zero padding the 11th character.

6-bit

segment

64-bit block

Each of the 11 characters holds six bits of the result, represented

as one of 64 characters in the set ".", "/", 0-9, A-Z, a-z, in that

order. Thus, the value 0 is represented as ".", and 37 is the letter “Z"

. / 0 1 ….. 9 A B ….. Z a b …. Z

0 1 2 3 11 12 13 37 38 39 63

UNIX System Password File
• Can an encrypted system password file (with user name and encrypted

password) be made public?

– What happens if there are two users who choose the same password. The

encrypted password appearing in the password file would also be the

same. So a user can realize that the other user is most likely to have

chosen the same password.

• Solution: Use Salting

– Generate a 12-bit salt, (which is normally obtained by dividing the system

clock time by 4096 and the remainder is used as a salt) at the time of

setting the password.

– Use the 12-bit salt to decide the Expansion table to be used for encrypting

the 64-bit 0 block and the subsequent encrypted strings.

– A given user password can now be encrypted to 4096 different ciphertexts.

– So, even if two encrypted passwords are the same, their source could be

different from each other.

– Salting is used to reduce the possibility of a dictionary attack in which the attacker
would have a mapping between the passwords in plaintexts and their encrypted
versions. Instead of having a one-to-one mapping between a plaintext string and its
encrypted version, an attacker now needs to have a one-to-4096 mapping between
a plaintext string and its encrypted versions.

UNIX System Password File
• On any UNIX-like file system, the user identity information is stored in the

“passwd” file and it is located in the “/etc/” directory.

• The “passwd” file has the following format: 7 colon-delimited fields and the

fields are in the following order:

– Username, encrypted password along with the salt, user ID, group ID, full name,
Home directory, Shell

– User ID – is a numeric identifier, which the OS uses to identify which files belong to
the user. The system always thinks of the user in terms of a number. It uses the
“passwd” file to convert the number into a more human-friendly form, the

“username”. The “username” is the name assigned by the system administrator and
will be used to log in to the system.

– Group ID – a UNIX group may contain none, one or more users, who will be able to
access the files and directories owned by that group, based on that group’s

permissions. This is useful for sharing files between two people, as a file can have
only one owner.

• User Private Groups – each user is assigned their own group, identified by their username.
The user is the only member of the group.

• User private groups are used in most modern day implementations

– Home directory – location where all the user files are usually stored

– Shell – the command line that provides the user interface to the UNIX OS

UNIX System Password File
• The encrypted password + salt field is a 13-character field: the first two

characters are the salt and the next 11 characters form the encrypted

password.

• In the above example, 5/.mj7NB3dx is the encrypted password and eH is the

salt for username “rachel”.

• Traditional UNIX systems keep user account information, including the

encrypted passwords, in the “/etc/passwd” text file.

• The “/etc/passwd” File is used by many tools (such as “ls”) to display file

ownerships, etc., by matching user ID with the username field. As a result, the

file needs to be world-readable and consequentially can be somewhat of a

security risk.

• Solution: Store the actual encrypted password in another file called the

“/etc/shadow” file and it is readable only by the root. This file also contains the

password aging information along with the account information.

UNIX System Password File
• In most modern day UNIX and LINUX systems, the encrypted password is not

stored in the “/etc/passwd” file and is stored in the “/etc/shadow” file.

• If the encrypted password is stored in the “/etc/shadow” file, then the password

holder field in each row of the “/etc/passwd” file is filled with just character “x”.

• The “/etc/shadow” file contains a row for each user; each row contains 9 fields,

each separated by a “:”, in the form:

– Login-id: User name

– Password: 13 character (2 character salt + 11 character encrypted password)

– lastchg: number of days, since the password was last changed

– Min: the minimum number of days before password may be changed

– Max: the maximum number of days, after which the password must be changed

– Warn: the number of days to warn user of an expiring password

– Inactive: the number of days the account can be inactive, without being used

– Expire: the number of days (since Jan 1, 1970) that the account should be disabled

– Flag – reserved for future use

Finding the Salt Value from the
UNIX /etc/passwd File

The first two characters (of the 13 characters) in the second field represent the salt.

In the above example, they are ‘eH’

. / 0 1 ….. 9 A B C D E F G H ….. Z a b c d e …. Z

0 1 2 3 11 12 13 14 15 16 17 18 19 37 38 39 40 41 42 63

The 6-bit equivalents for e and H are 42 and 19 respectively.

1 0 1 0 1 0

42

0 1 0 0 1 1

19

e H

1 0 1 0 1 0 0 1 0 0 1 1
2

0
4

8

1
0

2
4

5
1

2

2
5

6

1
2

8

6
4

3
2

1
6

8 4 2 1

12-bit Integer Salt Value
2048 + 512 +128 + 16 + 2 + 1 = 2707

Working with File Descriptors
• A “file descriptor” is an abstract indicator used by the kernel to access

the files opened and currently used by a process, instead of requiring

to always send the entire path information to access the file.

• When a process attempts to open a file located at a certain path, the

OS kernel assigns to the user a file descriptor for the file and stores

the same in a “file descriptor table” that maps the file descriptor with

the file’s location on the disk.

• Before the kernel assigns the file descriptor for the process, the kernel

makes sure that the calling process has all the appropriate access

permissions on the file.

• The file descriptor table cannot be directly accessed by the user

process and can be accessed only through system calls (e.g., open,

close).

• Before termination, the user process should make sure to return the

open file descriptor by initiating a “close” system call.

File Descriptor Leak Vulnerability
• Causing Factors

• When a parent
process spawns a
child process, the
latter inherits copies
of all of the file
descriptors that are
open in the parent.

• The OS only checks
whether a process
has permissions to
read or write to a file
only at the time of
creating a file
descriptor entry and
not at the time of
using it to read or
write to a file.

• In the above code, since the parent

process did not close the passwords file

descriptor before spawning the child

process, the latter can also read the file,

even if the parent process’ intention is

not to have any child process read the

password file.

Source: Code Fragment 3.2 from

Introduction to Computer Security, M.
Goodrich & R. Tamassia, Addison-Wesley

(2011)

Symbolic Links and Shortcuts
• Motivation: To avoid copying an entire file to different locations.

Instead, a user can create a link to the file at the different locations
(e.g., Desktop) from which the file will be accessed. If the user makes
any change to the underlying file, all links to the file will automatically
be referring to the updated version.

• Unix-based systems accomplish the above through symbolic links
(created using the ln command) and Windows through shortcuts.

• In Unix, the use of symbolic links is completely transparent to the user
applications. For example, if a user passes the path to a symbolic link
file as the input argument to a file reader program, the OS will follow
the link to the actual file pointed to by the symbolic link and makes the
file available to the user application.
– However, this could be misused by a malicious party. If a file reader

program is written to read all files except the passwords file located at
/home/admin/passwords, a malicious user could trick the reader program
by passing a file that has a symbolic link to the password file. The trick will
work if the file reader program merely checks the path/filename specified
by the user.

– To prevent such aliasing based attacks, the file reader program should not
accept filenames with symbolic links. This can be validated by issuing a
stat system call on the filename and checking the return value for a
symbolic link.

Symbolic Links and Shortcuts
• In Windows, the shortcuts are treated like ordinary files by

the file system and by software programs that are not
aware of them.

• Only software programs that understand shortcuts (such

as the Windows shell and file browsers) treat them as

references to other files.

• This way, the aliasing attack that could be possible with
Symbolic links in Unix-based systems is avoided in

Windows systems.

• Unlike the Unix symbolic links, Windows shortcuts
maintain the references to their targets even if the target is

moved or renamed.

2.4 Firewalls and Intrusion

Detection Systems

Firewalls
• Firewall is a software running on a dedicated hardware.

– No other application is run on this hardware: to protect the
firewalls rules from being tampered.

• A firewall is usually placed in the network boundary,
monitoring and filtering incoming and outgoing traffic.
– Ingress filtering (filter incoming traffic)

– Egress filtering (filter outgoing traffic)

– All traffic for a network has to be designed to go through a firewall

• A firewall has to be designed with a combination of black-
list (default-allow) and white-list (default-deny)
approaches
– Default-allow: Allow all packets except those that match the

blacklisted networks, ports, etc

– Default-deny: Allow only those that match the preferred networks,
ports, etc; drop other packets.

Packet Filter and Stateful Firewalls
• Both packet filter and stateful firewalls operate only on the

packet headers and not on the data.

• Packet Filter: Stateless firewalls that operate on a per-
packet basis
– Decisions are independently taken on each packet and are not

remembered (no state info)

• Stateful Firewalls: Monitors sessions and maintains state
information on the packets seen for the session
– Could be used to detect bandwidth used by a particular source

and enforce users from downloading more than certain amount of
bytes within a time period

– Could drop excessive traffic coming to specific servers (prevent
denial of service attacks)

Application Firewall
• The packet filter and stateful firewall look at only the

packet headers. The application proxy firewall scans
through the entire packet (including the application data)
and makes sure if it could be forwarded in/out.

• An application firewall protecting an internal network of
clients from being attacked by an external server/user is
called a Proxy Firewall.
– Example: An application firewall that protects an internal network

of desktop/ office machines from users attempting to connect
after office hours.

• An application firewall protecting an internal network of
servers from being attacked by an external client is
called a Reverse Proxy Firewall
– Example: A reverse proxy firewall hosted to protect a sales

network (comprising of various servers – database server, file
server, etc) monitors every incoming packet to make sure it does
not have any malicious scripts to cause any command injection
attacks (XSS, XSRF or SQL-injection) or buffer overflow attacks.

Personal Firewall
• Personal firewalls are different from the network

firewalls (packet filter, stateful and application
firewalls)
– A personal firewall runs on a host (that it wants to

protect) on which several other applications also run

– They are kind of like all-in-one: Could scan for virus,
block traffic to/from specific sites, etc.

– The rules of a personal firewall can be more
customzied to the demands of the user, unlike the
network firewalls that are configured based on only
network-wide policies.

– Each Operating System has its own variant of
personal firewalls (Linux kernel firewall - iptables;
Microsoft Security Essentials for Windows systems)

Intrusion Detection Systems (IDS)
• An IDS is operated inside a network to monitor for any abnormal or

malicious activities; operates in promiscuous mode
– Passive IDS: Raises an alarm and keeps quiet

– Active IDS: Reacts to the attack traffic and tries to control the attack
(Intrusion Prevention Systems)

• Network-based IDS: Monitors the network activities; runs on
dedicated computers; handles large volume of traffic; coordinates
with network firewalls to update the filtering rules

• Host-based IDS: Runs on individual hosts; customized for the host
needs; logs all user activities; could also as anti-virus scanner; takes
up host resources for monitoring

• Signature-based IDS: Goes strictly by rules (can detect only known
attacks) – more false negatives and few false positives

• Anomaly-based IDS: Raises alarm when notices unusual behaviors
(e.g., changing password right after login; unusual amount of traffic
leaving the host): Could detect even zero-day attacks (attacks for
which there exists no pre-determined signature – more false
positives and few false negatives.

