
Test Case-based Verification of
Programs: Equivalence Partitions

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University

E-mail: natarajan.meghanathan@jsums.edu

Test Cases Example

The following exercise involves

– writing a Java program,

– developing test cases, and

– altering the code to account for the test cases.

The basis of the Java program will be

provided for you.

Example – Program Specification

Problem: Given two positive integers, determine

whether the first one is larger than the second one.

Input: The input should be two positive integers.

Output: Print “Yes” if the first number is greater.

Otherwise, print “No.”

Example - Code

import java.util.Scanner;

public class Compare {

public static void main(String args[]) {

Scanner in = new Scanner(System.in);

System.out.print(“Enter the first positive integer: “);

int first = in.nextInt();

System.out.print(“Enter the second positive integer: “);

int second = in.nextInt();

if (first > second)

System.out.println(“Yes”);

else

System.out.println(“No”);

}

}

Input Types

We will now develop test cases for this program using the
method of equivalent partitions.

The input could be of several types:
– Integer

– Non-integer

– Positive

– Negative

We need to develop our equivalent partitions for these
scenarios.

Test Cases

Equivalent partitions allow us to simplify the amount of test cases we
will need to use.

Developing equivalent partitions allows us to group many different
specific input values into larger classes of input.

By determining how the program reacts to one set of input from a
particular class of input (from a particular partition), we can assume that
the program will act in a similar manner to all sets of input from the
same class or partition.

In this way, we can use a handful of test cases to test almost any input
our program could receive.

Equivalent Partitions

Of our four types of input
(positive, negative, integer,

non-integer), the largest

type is non-integer.

We will begin creating our
partitions by separating our

input into integer and non-

integer.

Non-Integer Integer

Equivalent Partitions

Since any input that is not an integer is not

valid, according to our input specification,
we do not need to make any further

partitions in the Non-Integer category.

These means that all non-integers will be

treated the same.

Equivalent Partitions

In our Integer category,
there can be either positive

or negative integers (0 will

be considered positive).

Therefore, we must create 2
partitions inside of the

Integer partition: Positive

and Negative.

Non-
Integer

Integer

Positive Negative

Equivalent Partitions

We now have 3 equivalent partitions:

– Non-Integer

– Integer, Positive

– Integer, Negative

Now that we have considered the input types
which might be provided to the program, we must
consider what the program does.

Equivalent Partitions

For our program, if the input is of the correct type
(2 positive integers), there are three different
scenarios that can take place:

– The first number is larger

– The second number is larger

– The numbers are equal

We must now create partitions for these three
scenarios within our “Integer, Positive” partition.

Equivalent Partitions

Non-
Integer

(1)

Integer

Positive Negative

(5)

First Number
Larger

(2)

Second
Number Larger

(3)

First and Second
Numbers Equal

(4)

Test Cases

Each test case will consist of the following fields:
– Name

– Input

– Oracle (expected output)

– Log (actual output)

The test case names will correspond to the numbers at the
bottom of each equivalent partition.

For example, Test Case (1) will be the test case for Non-
Integers, and Test Case (5) will be the test case for
Negative Integers.

Test Cases

Name: Test Case (1)
Input: 5.17, 3.12
Oracle: Enter only positive integers

Log:

Name: Test Case (2)
Input: 8, 4
Oracle: Yes
Log:

Test Cases

Name: Test Case (3)
Input: 3, 5
Oracle: No

Log:

Name: Test Case (4)
Input: 4, 4
Oracle: No
Log:

Test Cases

Name: Test Case (5)

Input: -3, -8

Oracle: Enter only positive integers

Log:

Testing

Run the program with each set of input data

and complete the “Log:” portions of the test
cases.

Test Cases

Upon completing the Test Case Logs, you
will find that for Test Case (1), instead of
providing the expected “Yes,” the program
threw an InputMismatchException.

We must adjust the code so that this Test
Case is properly handled by issuing an
appropriate message to the user.

Program Alteration

We will adjust the code be encapsulating the

integer-specific parts of our program within a try

block.

Immediately following the try block, we will insert a
catch block, which will catch all exceptions
(including the InputMismatchException) and issue
a warning message to the user.

Updated Code

import java.util.Scanner;

public class Compare {
public static void main(String args[]) {

Scanner in = new Scanner(System.in);

try{

System.out.print(“Enter the first positive integer: “);

int first = in.nextInt();
System.out.print(“Enter the second positive integer: “);

int second = in.nextInt();

if (first > second)

System.out.println(“Yes”);

else
System.out.println(“No”);

}//end try block

catch (Exception e) {

System.out.println(“Please enter only positive integers.”);

}//end catch block
}//end main() method

}//end Compare class

Test Cases

We must now adjust our code to properly
handle Test Case (5) which returned a
result, but should not have accepted the
input.

The input should not have been accepted
because the input specification states that
only positive integers should be accepted.

Program Alteration

We will do this by inserting an if statement

after the integers are received from the user.

If either of the numbers is less than zero, we

will issue a warning to the user.

Updated Code

import java.util.Scanner;

public class Compare {

public static void main(String args[]) {

Scanner in = new Scanner(System.in);

try{

System.out.print(“Enter the first positive integer: “);
int first = in.nextInt();

System.out.print(“Enter the second positive integer: “);

int second = in.nextInt();

if ((first < 0) || (second < 0))

{

System.out.println(“Please enter only positive integers.”);

return;

}//end if

if (first > second)
System.out.println(“Yes”);

else

System.out.println(“No”);

}//end try block

catch (Exception e) {

System.out.println(“Please enter only positive integers.”);

}//end catch block

}//end main() method

}//end Compare class

Testing

You should have found that now the

program will only accept values from the
user that are positive integers, just as the

input specification stated.

