
Secure Coding Standards 

(Selected) in Java

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu



Standards
• Standard-1: Detect or Prevent Integer Overflow

• Standard-2: Do Not Use Floating Point Values for 
Precise Computation

• Standard 3: Do not Attempt Comparisons with NaN

• Standard 4: Check Floating Point Inputs for Exceptional 
Values

• Standard 5: Conversions of Numeric Types to Narrower 
Types should not result in Lost or Misinterpreted Data



Standard-1: Detect or Prevent 
Integer Overflow

• Programs should not permit arithmetic operations to 
exceed the ranges provided by the various primitive 
integer data types.
– In the Java language, the only integer operators that can throw 

an exception are the / and % operators, which throw an 
Arithmetic Exception if the right-hand operand is a 0. In addition, 
the -- or ++ unary operators throw an OutofMemoryError if the 
decrement or increment operation requires insufficient memory.



Vulnerable Program: Integer Overflow



Solution # 1: Pre-condition Testing

• Idea: Check the inputs to each arithmetic 

operator to ensure that overflow cannot 

occur. Throw an ArithmeticException when 

the operation would overflow if it were 

performed; otherwise, perform the 
operation. 



Pre-condition Testing for Addition



Code Segments for Safe Arithmetic

Source: https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow

For the sake of understanding,

Assume Integer.MAX_VALUE = 127

Integer.MIN_VALUE = -128

left = 65; right = 2

left = - 65; right = 2

left = 65; right = -2
left = - 65;

right = -2



Code Segments for Safe Arithmetic

Source: https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow



Solution # 2: Upcasting

• Idea:

– Cast the inputs to the next larger integer type

– Do the arithmetic operation on the larger type

– Check the value of each intermediate result 
and final result to see if it would still fit within 
the range of the original integer type; if not 
raise an ArithmeticException

– Downcast the final result to the original 
smaller type before assigning the result to a 
variable of smaller type and throw an 



Vulnerable Program

How is this possible???



Continued…..

Solution using Upcasting





Standard 2: Do Not Use Floating 
Point Values for Precise Computation

• When precise computation is necessary, such as when performing 

currency calculations, floating-point types must not be used. Instead, 

use an alternative representation that can completely represent the 

necessary values. 
Vulnerable Code: Program requiring 

Precise Computation



Solution: Use Integer types



Do not use Floating Point Values 
as Loop Counters



Solution: Use Integer Loop Counter



Standard 3: Do not Attempt 
Comparisons with NaN

• Use of the numerical comparison operators (<, <=, >, >=, ==) with NaN (not 
a number) returns false, if either or both operands are NaN. 

• Use of the inequality operator (!=) returns true, if either operand is NaN.



Solution: Use the 
Double.isNaN(double) Method



Standard 4: Check Floating Point 
Inputs for Exceptional Values

• Floating-point numbers can take on three exceptional 
values: infinity, -infinity, and NaN (not-a-number). These values are 
produced as a result of exceptional or otherwise unresolvable
floating-point operations, such as division by zero, or can be input by 
the user.



Solution: Check 

Values before 

Use



Standard 5: Conversions of Numeric 

Types to Narrower Types should not 

result in Lost or Misinterpreted Data



Solution: Range Check the Values 
before Conversion


