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Dependency Attacks

1. Block access to libraries.

2. Manipulate registry values.

3. Force the application to use corrupt files 
(includes write protected, inaccessible, 
physically corrupt etc.) and file names.

4. Force the application to operate in low 
memory/disk space/network availability 
conditions



1. Block Access to Libraries

• When this attack can be launched
– Applications rely on libraries to get work done.

– These libraries may be application-specific or may be from 

another application or the OS.

– There are tools (like Holodeck from Florida Inst. Tech.) that 

can help a tester to identify the libraries that an application 

loads/uses.  These give us clues as to what to block and 

when.

– Often the application’s secure behavior is contingent on it 

having access to everything it thinks it has access to.

– Interesting times to apply this attack:

• Validation tasks

• Application startup

• While using some security-related functionality



2. Manipulate Registry Values

• This is a Windows OS specific attack

• When developers read/write information from/to the registry, they 

trust that the values are accurate and have not been/ will not be 

tampered with maliciously

• This trust can lead to sensitive information, such as password or 

software license purchase info, stored in plain text in the registry.

• The checks done on user input are often not made on data retrieved 

from the registry.

• Many of the “try and buy” software that run on Windows have been 

easily subverted by altering a registry key (either weakly encrypted 

or could be a simple text value)  which can then deceive an 

application into thinking that it has been legitimately purchased.

• Registry keys have also been altered to gain access to protected

data such as other user’s accounts or inappropriately alter 

application’s functionality or configuration.



3. Force the Application to use 
Corrupt Files

• Developers are good at screening input directly 
from users

– Data type constraints on fields

– Integrity checks on data

• When information comes from the file system 
though, the checks/ constraints are much less 
stringent.

• Corrupt data (from a file) that is not filtered and 

makes its way into the application usually 
causes a crash, leading to denial of service.



4. Manipulate Memory/ Disk Space/ 
Network

• Applications need memory and disk space to get work done.

• Depriving them of these resources can have unpredictable results.

• This attack helps determine how robust an application is under 
stress – i.e., block a resource when an application seems most in 
need of it and see how the application reacts.

• At worst, this attack gives a better understanding of what resources 
an application needs and when.

• Applications tend to take the availability of remote resources as 
granted – especially in the middle of transactions.

• How to Conduct this Attack: Deprive the application of these 
resources by:

• (memory) Launching lots of applications and creating contention

• (disk space) Creating large files on disk.

• (network) Starting a few sizable background downloads 



Application Program Security
• Instead of directly exploiting the weaknesses in 

the OS kernel, the attack could be on the 
insecure application programs running on the 
system or even the non-kernel OS programs 
(such as the passwd program) that run at high 
privileges than those granted to common users.

• We will look at the following programming-based 
attacks in this module

1. Linearization Attacks

2. Arithmetic Overflow Attack
3. Buffer Overflow Attack

4. Stack Smashing Attack

5. Format String Attack

6. Time of Check to Time of Use Attack



Linearization Attacks
• Linearization attacks on a software occur when a user-

supplied key is to be validated for correctness wherein the 
key is formed from a given set of symbols (characters).

• Cause: For efficiency, programmers often develop the 
key-validating software in such a way that it checks one 
character at a time (from left to right) and quits checking 
once an incorrect character is found.
– According to the above logic, the correct key will take longer to be 

processed than any incorrect key.

– The more leading characters that are correct, the longer the 
program will take to check for the key.

• A prospective key (could be a correct key) that has the first character 
correct will take a longer time for validation than any key that does 
not correctly have the first character.

• Similarly, a prospective key with the first two characters being correct 
will take a longer time for validation than any key that has the first 
character correct; but, an incorrect second character…



Linearization Attacks
• Given the length L of the correct key, an attacker can select a string 

of characters of length L and vary the first character over all 
possibilities. 

• For example, assume the correct key is “SD579436” and the key is 
formed from a set of alphabets A-Z and digits 0-9.
– The attacker can assume an initial string “12345678”

– If the attacker can time the program precisely enough and try varying the 
first character of the key string, he will find that the string beginning with 
‘S’ takes the most time.

– The attacker can then fix the first character as ‘S’ and vary the second 
character, in which case, he will find that a second character of ‘D’ takes 
the longest.

– Continuing like above, the attacker can find the correct key, one character 
at a time.

– Thus, the attacker can search and determine the correct key in linear 
time, rather than searching through an exponential number of cases.

• If the length of the correct key is L and the symbol set is N characters 
in size, then the time complexity of a brute-force attack is O(NL); 
whereas, the time complexity of a linearization attack is O(NL).

• Solution: Do not break early from the loop. Check the entire key even 
though it is determined to be invalid at the first mismatch. 

• Tradeoff: More processing time.



C Example: Linearization Attacks



Java Example: 

Linearization 

Attacks



Execution of the Java Linearization Attack 
Example

Note: the difference in time is printed in nanoseconds.



Java Example: 

Solution to the 

Linearization Attacks



Example for Arithmetic Overflow 
Vulnerability and Protection

C-Program vulnerable to an Arithmetic

Overflow Attack

Revised C-Program Protected against 

Arithmetic Overflow Attack

Source: Code Fragments 3.3 & 3.4 from 

Introduction to Computer Security, M. Goodrich & 
R. Tamassia, Addison-Wesley (2011)



Arithmetic Overflow Attack
• The C program is supposed to keep track of the number of 

connection requests it has received since it has started, 
and only grant access to the first four users.

• If the C program (on the left) vulnerable to the arithmetic 
overflow attack is run, an attacker could just initiate 
several fake network connection requests that will simply 
increment the connections integer variable and make it 
to eventually reach the maximum and then wraparound to 
0, so that 4 more connection requests will be then granted.

• If the revised C program (on the right) is run, no matter 
how many connection requests the attacker generates, the 
value of the connections variable will not exceed 5 and 
the program will simply deny all connection requests, 
beyond the first 4 connection requests.



Buffer Overflows
• A buffer overflow is the computing equivalent of trying to pour 4-

liters of water to a jar that can hold only 2-liters of water. Result: The 

water spills over the jar.

• Buffer: 

– Is a finite space in memory in which the data can be held.

– A programmer must declare the buffer’s maximum capacity so that the 

compiler can set aside that much amount of space

• Example of a Buffer Overflow:

– Declare a character buffer of size 10        char sample[10];

– The compiler sets aside 10 bytes to store this buffer, one byte to store 
each element of the array, sample[0] through sample[9].

– Consider the following code:

for (i=0; i<=10; i++)

sample[i] = ‘A’;

– A compiler cannot check this out-of-bounds error at compile time and 

some programming languages cannot detect this error at run-time even.



Buffer Overflows
• Attack on user’s data:

– Let us say your program has defined two data items which are adjacent 

in memory: a 5-byte long string buffer A and a two-byte integer, B. 

– Initially, A contains nothing but zero bytes, and B contains the number 

4. Characters are one byte wide.

– Now, the program attempts to store the character string “MANIAC” in 

the A buffer, followed by a zero byte to mark the end of the string. By 

not checking the length of the string, it overwrites the value of B.

– Although the programmer did not intend to change B, B’s value has now 

been replaced by a number formed from part of the character string. 

– In this example, on a little-endian system that uses ASCII, “C” followed 

by a zero byte, the value of B would become the number 17152.

– If B was the only other variable data item defined by the program, 

writing an even longer string that went past the end of B could cause an 

error such as a segmentation fault (incase of unauthorized write

attempt), terminating the process.
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Sample Problem 1: Buffer Overflow Attack
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Consider the following layout of memory: 
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Sample Problem 1: Buffer Overflow Attack
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B = “000\0”
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Value to be assigned for
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Buffer Overflows through the Web
• Another type of buffer overflow occurs when parameter values are

passed to a web server through the Internet.

• The web browser on the caller’s machine will accept values from a user 
who probably completes fields on a form. The browser encodes those 
values and transmits them back to the server’s website.

• Parameters are passed in the URL line, with a syntax similar to:

– http://www.somesite.com/subpage/userinput.asp?param1=(808)555-
1223&param2=2009Jan17

• In the above example, the page userinput receives two parameters:

– param1 – a US telephone number

– Param2 – a date 

• Since customers might be from all over the world, the developer of the 
somesite.com website might have allocated 15 or 20 bytes for an 
expected maximum length phone number. 

• An attacker might try to explore what the server would do when one 
passes a really long telephone number, say with 500 or 1000 digits

• Passing a very long string to a web server is just a slight variation of the 
classic buffer overflow problem.



Logical Memory Layout of a Process

Contains all the executable code (read-only)

Contains the values of all initialized static and global 
variables initialized to a value in the code

Contains all the static and global variables uninitialized 
in the code

Used for dynamic memory allocation

Used to store information about the active Sub-routines

Low Memory Address

High Memory Address

Text Segment

Initialized Data
Segment

Uninitialized
Data Segment

Heap

Stack

Environment
Variables

Available memory



Stack Layout of a Process

Stack Frame 
for main( )

Stack Frame 
for A( )

Stack Frame 
for B( )

Low Memory Address

High Memory Address

Stack
Pointer

Program Segment

main( ){

A( );

}

A( ){

B( );

}

B( ){

}



Stack Layout: Terminologies
• Stack Frame: The activation record for a sub routine comprising of 

(in the order facing towards the low memory end): parameters, 
return address, old frame pointer, local variables.

•

• Return address: The memory address to which the execution 
control should return once the execution of a stack frame is 
completed.

• Stack Pointer Register: Stores the memory address to which the 
stack pointer (the current top of the stack: pointing towards the low 
memory end) is pointing to.

• The stack pointer dynamically moves as contents are pushed and 
popped out of the stack frame.

• Frame Pointer Register: Stores the memory address to which the 
frame pointer (the reference pointer for a stack frame with respect to 
which the different memory locations can be accessed using relative 
addressing) is pointing to. 

• The frame pointer typically points to an address (a fixed address), 
after the address (facing the low memory end) where the return 
address for the stack frame is stored.



Stack Layout of a Process

Program Segment

Locals for main( ): int x

Return address to the OS

Parameters of main( ): 
argv[n-1]…. argv[0], argc

Low Memory Address

High Memory Address

Frame
Pointer

Old address of the Frame
Pointer (typically NULL)

Stack
Pointer

cfafbfc4
Frame Pointer

Register

cfafbfc0
Stack Pointer

Register



Stack Layout of a Process (continued)

Locals of A( ): int z

Return address to main( )
\x 80C03008 

Parameters for A( ): int y

Low Memory Address

Stack
Pointer

Locals of A( ): int z

Address of Frame Pointer 
for main( ): cfafbfc4

Frame
Pointer

Locals for main( ): int x

Return address to the OS

Parameters of main( ): 
argv[n-1]…. argv[0], argc

High Memory Address

Old address of the Frame
Pointer (typically NULL)

cfafbfb4
Frame Pointer

Register

cfafbfb0
Stack Pointer

Register

Program Segment



Stack Layout of a Process

Program Segment

Address of Frame Pointer
for A( ): cfafbfb4

Return address to A( )
\x 80C02508 

Parameters for B( ): int w

Low Memory Address

Stack
Pointer

Locals of B( ): int u

Locals of A( ): int z

Return address to main( )
\x 80C03008 

Parameters for A( ): int y

Locals of A( ): int z

Address of Frame Pointer 
for main( ): cfafbfc4

Frame
Pointer

Locals for main( ): int x

Return address to the OS

Parameters of main( ): 
argv[n-1]…. argv[0], argc

High Memory Address

Old address of the Frame
Pointer (inconsequential)

cfafbfa4
Frame Pointer

Register

cfafbfa0
Stack Pointer

Register



Example of a Vulnerable C Program

gets(string)- C routine vulnerable for buffer overflow

Source: Figure 10.1: W. Stallings: Computer Security: Principles and Practice: 2nd Ed.

Proper Input 
Correct Output

Mischievous Input
for buffer overflow:
No Impact

Mischievous Input
for buffer overflow:
Vulnerability 
exploited



Stack for the C Program 
(Buffer Overflow Exploited)

Low memory end

High memory end

Source: Figure 10.2: W. Stallings: Computer Security: Principles and Practice: 2nd Ed.

Assume
Big-Endian
Architecture



Example: Stack Smashing Attack
Name of the program is 
demo.c

Assume
Little-Endian
Architecture



Sequence of Steps
1 Compile with the following options

2 Start gdb and use the list command to find the line 
numbers of the different key statements/function calls 
so that the execution can be more closely observed at 
these points. 

Use list 1,50 (where 50 is some arbitrarily chosen large 
number that is at least guaranteed to be the number of 
lines in the program). 

In our sample program, we have only 23 lines. So, I 
could have used list 1, 23 itself.





3 Issue breakpoints at lines 17 and 10 to temporarily stop execution

4 Run the disas command on the CannotExecute and main functions 
to respectively find the starting memory address and return address 
after the return from GetInput( ).

Address to return to
after executing the
GetInput( ) function

0x0804844e

Starting memory
address for the 
CannotExecute( )
Function

0x08048414



5 Start the execution of the program using the run command
The execution will halt before line # 17, the first breakpoint.
That is, before the call to the GetInput( ) function.

6 Check and see the value on the top of the stack to use it as a 
reference later to identify the return address to overwrite. The
command/option used is x/8xw $esp to obtain the 8 words 
(32-bits each) starting from the current location on the top of 
the stack.

7 Continue execution by pressing s at the gdb prompt. Now the 
GetInput( ) function is called. The processor would allocate 8 
bytes, for the buffer array. So the stack pointer would be 
moved by 8 bytes towards the low memory end.

8 Use the x/8xw $esp command to obtain the 8 words (32-bits 
each) starting from the current location pointed to by the Stack
Pointer. We could see the Stack Pointer has moved by 16 
bytes (from the reference value of Step 6) towards the low 
memory end. You could continue executing by pressing s at 
the gdb prompt. You may even pass a valid input after gets( )
is executed and see what puts( ) prints. 

9 Quit from gdb using the ‘quit’ command at the (gdb) prompt.



Value at the memory address on 
the top of the stack before the call
to the GetInput( ) function

Value on the top of the stack
after the call to the GetInput( ) function

Corresponds to the Return address in main( ): 0x0804844e.  See 
the screenshot for Step 4. This is the address that needs to be 
overwritten with the starting address for the CannotExecute( ) function

Value that was previously pointed
to by the Stack Pointer

8 bytes of the buffer
array

Value of the 
Frame Pointer
for main( )



High memory end

Low memory end

Return address to

main (0x0804844e) 

Frame pointer for 

main

Frame pointer for 

Main (0xbffff448)

Buffer

(8 bytes)

Return address to

the OS (0x00000001)

Old frame pointer

(0x144bd6)
SP

0xbffff4c8

0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

Return address to

the OS (0x00000001)
Old frame pointer

(0x144bd6)

SP

0xbffff4c8
0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

FP 0xbffff444

0xbffff440

0xbffff43c

0xbffff434
0x0011e0c0

Stack Layout



Passing a 
valid 
input

Desired 
output

Either way of 
passing inputs
is fine when we 
pass just printable
Regular characters

When we want to pass non-printable characters or memory addresses, we need 
to use the printf option (need to pass them as hexadecimal values)

Running the Program 
for Valid Input

abcd efg\0



High memory end

Low memory end

Return address to

main (0x0804844e) 

Frame pointer for 

main

Frame pointer for 

Main (0xbffff448)

Return address to

the OS (0x00000001)

Old frame pointer

(0x144bd6)
SP

0xbffff4c8

0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

Return address to

the OS (0x00000001)
Old frame pointer

(0x144bd6)

SP

0xbffff4c8
0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

FP 0xbffff444

0xbffff440

0xbffff43c

0xbffff434
0xbffff438

Stack Layout: Valid Input

64    63    62    61

00    67    66     65
0xbffff438



Running the Program for an Input 
that will Overflow: No Side Effects

The LSB of the memory address pointed to by the frame pointer is

overwritten. However, since this corresponds to the inconsequential 

old frame pointer value for the main( ), there are no side effects.



Exploiting the Stack Smashing 
Attack

• We need to pass the starting memory address of the 
CannotExecute( ) function: 0x08048414 as part of the 
user input to overwrite the correct return address of the 
GetInput( ) function. 

– We need to pass 16 bytes of character input (8 bytes 
for the buffer array, 4 bytes for the Frame Pointer for 
main( ); the last 4 bytes corresponding the starting 
memory address of CannotExecute( )).

• Note that the processor architecture on which the 
example is run is a Little-endian one. 

• Hence, the least significant value of the memory address 
(\x14) should be passed first and so on, so that \x14 is 
considered as the most significant byte of the sub string 
and written at the higher memory end.  



Return address to

main (0x08048414) 

Frame pointer for 

main

Frame pointer Main

72    71   70    69

Return address to

the OS (0x00000001)
Old frame pointer

(0x144bd6)

SP

0xbffff4c8
0xbffff448

0xbffff44c

0xbffff450

0xbffff458

0xbffff4f4
0xbffff454

0xbffff4fc

0xbffff444

0xbffff440

0xbffff43c

0xbffff434
0xbffff438

64    63    62    61

68    67    66     65

Segmentation fault because from the 
CannotExecute( ) function, there is 
no way for the control to return to 
the main( ) function and go through 
a graceful termination.

Starting memory address for
the CannotExecute( ) function

printf has to
be used to pass
Memory addresses as inputs



Seizing Control of Execution: NOP Sledding
• To be able to successfully launch a buffer-

overflow attack, an attacker has to: (i) guess the 
location of the return address with respect to the 
buffer and (ii) determine the address to use for 
overwriting the return address so that execution is 
passed to the attacker’s code.

• In real-world, it is difficult to determine the 
distance (# bytes) between the return address 
and the beginning of the buffer – because, we 
may not have access to the source code.

• So, we have to guess the distance. We do this by 
having a sequence of NOP instructions before the 
shell code (evil code) and insert a return address 
(hopefully to where a NOP is inserted) several 
times after the shell code. 

• If the actual return address gets overwritten by 
the return address that we inserted, then control 
passes to that particular address of the NOP-
region. We then sled through the NOP 
instructions until we come across the evil code.

• NOP (a.k.a. No-op) is a CPU instruction that does 
not actually do anything except tell the processor 
to proceed to the next instruction.

evil code

:
:

:
:

ret

ret

:

NOP

NOP

:

ret
←

return 
address 
pointer

Source: Figure 11.7 from M. Stamp, 

Information Security: Principles and 

Practice, 2nd Edition, May 2011

ret
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• To be able to successfully launch a buffer-

overflow attack, an attacker has to: (i) guess the 
location of the return address with respect to the 
buffer and (ii) determine the address to use for 
overwriting the return address so that execution is 
passed to the attacker’s code.

• In real-world, it is difficult to determine the 
distance (# bytes) between the return address 
and the beginning of the buffer – because, we 
may not have access to the source code.

• So, we have to guess the distance. We do this by 
having a sequence of NOP instructions before the 
shell code (evil code) and insert a return address 
(hopefully to where a NOP is inserted) several 
times after the shell code. 

• If the actual return address gets overwritten by 
the return address that we inserted, then control 
passes to that particular address of the NOP-
region. We then sled through the NOP 
instructions until we come across the evil code.

• NOP (a.k.a. No-op) is a CPU instruction that does 
not actually do anything except tell the processor 
to proceed to the next instruction.

evil code

:
:

:
:

ret

ret

:

NOP

NOP

:

ret
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address 
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Common Unsafe C Standard 
Library Routines

gets        (char 

*str)

Read line from standard input into str

sprintf (char 

*str, char 

*format)

Create str according to supplied format 

and variables

strcat

(char *dest, 

char *src)

Append contents of string src to string 

dest

strcpy

(char *dest, 

char *src)

Copy contents of string src to string dest

Source: Table 10.2: W. Stallings: Computer Security: Principles and Practice: 2nd Ed.



Protection Schemes
• Stack Canaries

– A small integer called “canary” (the value of the integer is randomly 
chosen at the start of the program), is placed in memory just before 
the return address. 

– As most of the buffer overflows overwrite memory from lower to 
higher memory addresses, in order to overwrite the return address, 
the canary value must also be overwritten. 

– The value of the “canary” integer is checked to make sure it has not 
changed before passing the control to the return address.

Source: Figure 3.16 from Introduction to Computer Security, M. Goodrich & R. Tamassia, Addison-Wesley 

(2011)



Protection Schemes

• Non-executable Stack

– Execution from the stack is disallowed.

– In order to execute the malicious code, the attacker must 

either find a way to disable the execution protection from 
stack or find a way to put the code in a non-protected 

region of the memory like the heap.

• Built-in bound checking schemes in the 
programming languages

– Mostly all the interpreted programming languages like 

Java have very tight boundary checking mechanism.

• In C/C++, the new STL library functions enforce 
strict boundary-checking



Format String Attacks
• The printf function in C is typically passed arguments 

containing the message to be printed along with a format 
string that denotes how this message should be displayed.

– Example: printf(“a has value %d and b has value %s”, a, b); where a 

is an integer and b is a string

• When a programmer does not supply a format string, the 

input argument to the printf function controls the format of 

the output. If this argument is user-supplied, then an attacker 
can carefully craft an input that uses format strings, 

including:

– %x that reads data from the stack

– %s that reads data from the process’ memory

– %n that writes an integer (the number of bytes output so far) to the 

memory address of the first argument to the function. 



Format String Attacks

• If argv[1] is passed “%08x %08x %08x %08x %08x\n”, then printf-
function will retrieve five parameters from the stack (based on where the 
stack pointer is currently pointing to) and display them as 8-digit padded 
hexadecimal numbers. 

– A possible output will be: 40012980 080628c4 bffff7a4 00000005 08059c04

• If argv[1] is passed “\x10\x01\x48\x08 %s”, then the printf-function will 
display the contents of the memory location pointed by the address 
0x10014808.

• If the printf function in the above code was called like this: printf(argv[1], 
&i) where i is an integer variable, and the value of argv[1] is passed 
“12345%n”, then the value of i will be stored as 5.

Source: Code Fragment 3.9  from Introduction to Computer 

Security, M. Goodrich & R. Tamassia, Addison-Wesley (2011)



Time of Check to Time of Use Attacks
• TOCTOU (Time of Check/Time of Use) attacks occur if the operations 

of checking whether a process has access to an object and actually 
letting the process to access the object are not performed atomically, 
i.e., if they are not performed as a single uninterruptible operation.

• We now illustrate TOCTOU attacks using a classic example that 
makes use of C functions open( ) and access( ):
– The open( ) function opens the file using the effective user id (euid) of the 

calling process to check for permissions

– The access( ) function checks whether the real user (i.e., the user running 
the program, uid) has access to the specified file.

• Note that in UNIX, each process at any time has two ids – the real 
user id (uid) and effective user id (euid). The uid is the id of the owner 
of the process (who developed that program) and the euid is the uid of 
the user who invokes the process.

• If the setuid bit of a process P (owned by user X) is set, then when the 
process is invoked by a user Y (say X and Y are different users), then 
the euid of the process P is set to that of X instead of Y.

• If the setuid bit of a process P is not set, then when it is invoked by a 
user Y, the euid is set to that of Y.

• A user can run a process P with privileges based on the euid of P at 
run-time.



Time of Check to Time of Use Attacks
• Assume the file reader program 

to the left is a SUID program 

whose owner is the root.

• Since, file reader program is a 

SUID program, the euid of the 

calling process gets elevated to 

that of the file reader program 

when the user process runs the 

file reader program.

• The file reader program first 

uses the access( ) function to 

make sure that the user 

process has read permissions 

to the file, as a real user (using 

his uid).

• Then, the file reader program 

opens the file for reading. 



Race Condition: TOCTOU Attacks
• There is a race condition in the implementation: There is a tiny, 

almost unnoticeable delay, between the calls to the access( ) and 
the open( ) functions.

– If the user turns malicious and during this small gap of time, 
manages to change the contents of the file to be read to a symbolic 
link that points to the system password file, then the user will be able 
to read the contents of the password file, because the euid of the file 
reader program is that of the root.

• It may not be humanly possible to accomplish the above in one 
trial.

– The malicious user has to repeatedly run the vulnerable file reader 
program as well as run another process in the background and this 
process should repeatedly change back and forth the contents of the 
file to be read from its legitimate original contents to the symbolic link 
to the password file and vice-versa.

– If the switch between the contents of the file to read occurs exactly 
during the time gap between the calls to the access( ) and open( ) 
functions, then the malicious user will be able to read the contents of 
the password file.



Solution to the Race Condition Problem

• Do the following changes 
to the file reader program:
– Drop the privileges of the 

user process – set the euid
of the file reader program to 
the uid of the user process

– Remove the code that uses 
the access( ) function and 
directly open the file to be 
read

– After reading the file, 
restore the privileges 
(actually, elevate the 
privileges because it is a 
SUID program) by setting 
the euid of the file reader 
program to the euid value 
that existed before the 
privileges of the user 
process was dropped.

returns the uid of 
the file reader program as

it is a SUID program

returns the uid of 

he user process 
that invoked the 

file reader program


