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Dependency Attacks

Block access to libraries.
Manipulate registry values.

Force the application to use corrupt files
(includes write protected, inaccessible,
physically corrupt etc.) and file names.

Force the application to operate in low
memory/disk space/network availability
conditions



1. Block Access to Libraries

When this attack can be launched

Applications rely on libraries to get work done.

These libraries may be application-specific or may be from
another application or the OS.

There are tools (like Holodeck from Florida Inst. Tech.) that
can help a tester to identify the libraries that an application
loads/uses. These give us clues as to what to block and
when.

Often the application’s secure behavior is contingent on it
having access to everything it thinks it has access to.
Interesting times to apply this attack:

Validation tasks

Application startup

While using some security-related functionality



2. Manipulate Registry Values

This is a Windows OS specific attack

When developers read/write information from/to the registry, they
trust that the values are accurate and have not been/ will not be
tampered with maliciously

This trust can lead to sensitive information, such as password or
software license purchase info, stored in plain text in the registry.

The checks done on user input are often not made on data retrieved
from the registry.

Many of the “try and buy” software that run on Windows have been
easily subverted by altering a registry key (either weakly encrypted
or could be a simple text value) which can then deceive an
application into thinking that it has been legitimately purchased.

Registry keys have also been altered to gain access to protected
data such as other user’s accounts or inappropriately alter
application’s functionality or configuration.



3. Force the Application to use
Corrupt Files

» Developers are good at screening input directly
from users

— Data type constraints on fields
— Integrity checks on data

* When information comes from the file system
though, the checks/ constraints are much less
stringent.

« Corrupt data (from a file) that is not filtered and
makes its way into the application usually
causes a crash, leading to denial of service.



4. Manipulate Memory/ Disk Space/
Network

« Applications need memory and disk space to get work done.
« Depriving them of these resources can have unpredictable results.

« This attack helps determine how robust an application is under
stress — i.e., block a resource when an application seems most in
need of it and see how the application reacts.

« At worst, this attack gives a better understanding of what resources
an application needs and when.

 Applications tend to take the availability of remote resources as
granted — especially in the middle of transactions.

« How to Conduct this Attack: Deprive the application of these
resources by:

« (memory) Launching lots of applications and creating contention
« (disk space) Creating large files on disk.
« (network) Starting a few sizable background downloads



Application Program Security

Instead of directly exploiting the weaknesses in
the OS kernel, the attack could be on the
iInsecure application programs running on the
system or even the non-kernel OS programs
(such as the passwd program) that run at high

privileges than those granted to common users.

We will look at the following programming-based
attacks in this module

Linearization Attacks

Arithmetic Overflow Attack

Buffer Overflow Attack

Stack Smashing Attack

Format String Attack

Time of Check to Time of Use Attack

OO0 kW=



Linearization Attacks

« Linearization attacks on a software occur when a user-
supplied key is to be validated for correctness wherein the
key is formed from a given set of symbols (characters).

« Cause: For efficiency, programmers often develop the
key-validating software in such a way that it checks one
character at a time (from left to right) and quits checking
once an incorrect character is found.

— According to the above logic, the correct key will take longer to be
processed than any incorrect key.

— The more leading characters that are correct, the longer the
program will take to check for the key.

» A prospective key (could be a correct key) that has the first character
correct will take a longer time for validation than any key that does
not correctly have the first character.

« Similarly, a prospective key with the first two characters being correct
will take a longer time for validation than any key that has the first
character correct; but, an incorrect second character...




Linearization Attacks

Given the length L of the correct key, an attacker can select a string
of characters of length L and vary the first character over all
possibilities.

For example, assume the correct key is “SD579436” and the key is
formed from a set of alphabets A-Z and digits 0-9.

— The attacker can assume an initial string “12345678”

— If the attacker can time the program precisely enough and try varying the
first character of the key string, he will find that the string beginning with
‘S’ takes the most time.

— The attacker can then fix the first character as ‘S’ and vary the second
character, in which case, he will find that a second character of ‘D’ takes
the longest.

— Continuing like above, the attacker can find the correct key, one character
at a time.

— Thus, the attacker can search and determine the correct key in linear
time, rather than searching through an exponential number of cases.

If the length of the correct key is L and the symbol set is N characters
in size, then the time complexity of a brute-force attack is O(NL);
whereas the time complexity of a linearization attack is O(NL).

Solution: Do not break early from the loop. Check the entire key even
though it is determined to be invalid at the first mismatch.

Tradeoff: More processing time.




C Example: Linearization Attacks

#include <tdio.h>

int main(int argc, const chor *argv([])

{
int 1i;
char serial [9]="5123N456%n";

for{i = B; 1 < 8; ++1)

d
if{argv[1][i] != serial[i]) breok;
if{i == 8)
{
printf{"wnSerial number is correct!nin™);
}

].




clas= linearizsationi

public static wold mwain(3tringl[] args) { Java Example:
{ u L] | ]
o long beginTime = 3vystewm.nanoTime () l—lr]EBEir12ZEItIC)r]

long endTime = Systemn. hanoTime () ;2 ! tt l(

String serial = 143129031 ;

if [(arg=[0] .lengthi() < 8 || args[0] .lengthi{l = 8] {
Svstem.out.println("wrong length. .. :
endTime = Svystem.nanoTime ()
ovstem.out.println("difference in time: "+ i(endTime-bheginTime) ) !

Swstem.exit (0O)

for (int i=0; i< &S; i4+4+)4

if [(Eerial.charlici(i) '= args[0] .charic (i)l 1
endTime = Svyvstem.nanoTime ()
ovstem.out.println("difference in time: "+ iendTime-heginTime) ) ;

Swstem.exit (0)

Thread.sleep (100) ;

endTime = Svystem.nanoTime ()
Svstem.out.println("difference in time: "+ i(endTime-bheginTime) ) !
Syvstem.out.printlni(serial hnumber matches. . ') »

H
catch(Exception el{e.print3tackTrace (] -}
H



Execution of the Java Linearization Attack

Example

E:HFa11—2@11MEEE4EE—EEEHIineaPiEatiun}jaua
ifference in time: 188421422

ﬁ:HFa11—2@11MEEE438—EEEHIineaPiEatiun}jaua
ifference in time: 20137V6771

E:HFa11—2@11MEEE4EE—EEEHIineaPiEatiun}jaua
ifference in time: 381187721

ﬁ:HFa11—2@11MEEE438—EEEHIineaPiEatiun}jaua
ifference in time: 482463721

E:HFa11—2@11MEEE4EE—EEEHIineaPiEatiun}jaua
ifference in time: 582361613

E:HFa11—2@11MEEE4EE—EEEHIineaPiEatiun}jaua
ifference in time: 683571683

E:HFa11—2@11MEEE4EE—EEEHIineaPiEatiun}jaua
ifference in time: 74213525

E:HFa11—2@11MEEE4EE—EEEHIineaPiEatiun}jaua
ifference in time: BA4239365
ceprial number matches..

Note: the difference in time is printed in nanoseconds.

linearization

linearization

linearization

linearization

linearization

linearization

linearization

linearization

15981291

149812921

143681291

14311291

14312291

14312991

143129481

14312983



class lineari=zationd

public static void main(3tringl[] args) { Java Example.
Tty 0
long beginTimse = Svyvstem.nanoTime (] E;()lljtl()r] t() tr]EB

long endTime = System.hnanoTime ()

o insiso0aes Linearization Attacks

String serial

bhoolean flag = tCrue;

if [(arg=s[0] .lengthi)l < & || args[0] . lengthi{)l = S {
Syvstem.out .printlni"wrong length. . .™) ;
endTime = Svstem.hnanoTime (] :

System.out . println("difference in time: "+ (endTime-lbeginTim=) 1 -

System.exit (O] ;

for (int i=0; i< S:; di4++]14
if (serial.charit (i) '= args[0] .charitc (i) 14
flag = falzse;

Thread.slesep (100) ;

endTime = System.hnanoTime (]

Svstem.out.println(difference in time: T+iendTirwe-beginTime=) )

if (£flag)
Syvstem.out.println("=serial numbher matches. . ") ;
=el=se

Svstem.out.printlni(™ no match. . ™) ;

H
catch (Exception el{e.printitackTrace () 2}

}



Example for Arithmetic Overflow
Vulnerability and Protection

#include <stdio.h> #include <stdio.h=
int main(int argc, char * argv[]) int main{int argc, char * argv[])
{ {
unsigned int connections = 0; unsigned int connections = 0;
# Insert network code here // Insert network code here
ﬁ i"...
/I Does nothing to check overflow conditions ... "
connections++ a_’f F’revem:f-: overflow conditions
if(connections < 5) if(connections < 5)
grant_access(); connections++;
else if(connections < 5)
deny_access(); grant_access();
return 1; alse
f deny_access():
C-Program vulnerable to an Arithmetic return 1;
Overflow Attack )
Source: Code Fragments 3.3 & 3.4 from Revised C-Program Protected against
Introduction to Computer Security, M. Goodrich & Arithmetic Overflow Attack

R. Tamassia, Addison-Wesley (2011)



Arithmetic Overflow Attack

« The C program is supposed to keep track of the number of
connection requests it has received since it has started,
and only grant access to the first four users.

 |f the C program (on the left) vulnerable to the arithmetic
overflow attack is run, an attacker could just initiate
several fake network connection requests that will simply
iIncrement the connections integer variable and make it
to eventually reach the maximum and then wraparound to
0, so that 4 more connection requests will be then granted.

« If the revised C program (on the right) is run, no matter
how many connection requests the attacker generates, the
value of the connections variable will not exceed 5 and
the program will simply deny all connection requests,
beyond the first 4 connection requests.



Buffer Overflows

A buffer overflow is the computing equivalent of trying to pour 4-
liters of water to a jar that can hold only 2-liters of water. Result: The
water spills over the jar.

Buffer:
— Is a finite space in memory in which the data can be held.

— A programmer must declare the buffer's maximum capacity so that the
compiler can set aside that much amount of space

Example of a Buffer Overflow:
— Declare a character buffer of size 10 char sample[10];

— The compiler sets aside 10 bytes to store this buffer, one byte to store
each element of the array, sample [0] through sample[9].
— Consider the following code:
for (i=0; i<=10; i++)
sample][i] = ‘A’;
— A compiler cannot check this out-of-bounds error at compile time and
some programming languages cannot detect this error at run-time even.



Buffer Overflows

« Attack on user’s data:

— Let us say your program has defined two data items which are adjacent
in memory: a 5-byte long string buffer A and a two-byte integer, B.

— Initially, A contains nothing but zero bytes, and B contains the number

4. Characters are one byte wide. High Low
A | A | A | & | & | B B
0 0 0 0 0 0 4

— Now, the program attempts to store the character string “MANIAC” in
the A buffer, followed by a zero byte to mark the end of the string. By
not checking the length of the string, it overwrites the value of B. lo

High— T &2 T &2 T & [ &2 [ & | B
W & | W | T | & | T | 0

— Although the programmer did not intend to change B, B’s value has now
been replaced by a number formed from part of the character string.

— In this example, on a little-endian system that uses ASCII, “C” followed
by a zero byte, the value of B would become the number 17152.

— If B was the only other variable data item defined by the program,
writing an even longer string that went past the end of B could cause an
error such as a segmentation fault (incase of unauthorized write
attempt), terminating the process.



Sample Problem 1: Buffer Overflow Attack

Initial Values
Consider the following layout of memory: A =140
A A B B B B B C C B = “0000\0”
C =199
Low Memory High Value to be assigned for
Address ] B = “MEDALS\0”
Big-endian architecture Initial Values
o <
© 0O AN © 0 <
N~ M O O ¥« AN NN ©
Al ©O ~ O O O ~ IOHL Al ¥ A ©
o(o0;jo0{0j0(0|0|0O|1T]0|0|0]1]1 00| 0| 0]|0]|\O
Low Memory A =140 ]
Address 0 <t
© 0O AN © o <
~N~ M O O ¥ NN NN © o
Al © ~ O O O «~ IO NN I
M ~—~ O <+ N ~ IO N M ~ 0O < AN
000|000} O 111{0/0(0 1|11
< C =199 : >
High Memory

Address



Sample Problem 1: Buffer Overflow Attack Initial Values

Consider the following layout of memory: A =140
A A B B B B B C C B = “0000\0”
C =199
Low Memory High Value to be assigned for
Address _ B = “MEDALS\0”
Big-endian architecture :
o < Final Values
O© O NN © o
~N~ MO OO O ¥ NN NN © o
Al ©O ~ O O O ~ IOHL ANl < A ©
ojojojojo(ojojo0jt1tjojojof(1{1|0|0|'M|E|D|A|L
Low Memory A =140 ]
lllllll ll
‘S’ =83 g
— — 0O I N +~ + ~— 0O < N

o(10(1;]0;0|1}1]0;0]0]0|0j0|0]O0

C =21248
‘S’ > \O’

A A
v Vv

High Memory
Address



Sample Problem 1: Buffer Overflow Attack

Consider the following layout of memory: 'IAr‘liiie;IAr\galues
A A B B B B B C C B = “0000\0”
C =199
Low M High .
Aggresimory . Value to be assigned for
B = “MEDALS\0Q”
Little-endian architecture Initial Values
<t 0O
<t 0O O AN o O
00 O© AN ANl < OO0 OO M I~
O Al I A OO ~—~ O O o ~ oo
o(oj{1y1,0;0|0(1}]0|0|O0O|O|O|O|O|O|\0O|O|O]|O0]O0
< A =140 >
Low Memory y 2 Q¢ § @
Address o v X B3Y¥F T8 2TA
~ QAN < N O© ~ Al O ~ A\l < 6O ~ M
111|110 O|{1(1/]0;0|]0]O0|0|0|O0]O0
< C=199

High Memory Address



Sample Problem 1: Buffer Overflow Attack Initial Values

A =140
Consider the following layout of memory: B = “0000\0”
A A B B B B B C C C =199
. Value to be assigned for
Low Memory High B = “MEDALS\0"

Address

IIIIII Little-endian architecture
ens=EEEEEE AVl

Low Memory Address

0/,0[{0]0|0O0]|O O(1(170]0 110 |A|‘D|E|'M

< ‘\O’ >« GS’ >
< A =21248 >

< O

<t 00O O Al O O

00 ©O AN AN < O O M I~

O AN < NN O ~ O O O ~ ©o

— AN < — O ~ Al O ~ AN T 0O~ ™M

‘S’ = 83 111110 O(1{1;0;{0;0;0j0j0]O0O]O0
<« C=199

High Memory Address



Sample Problem 2: Buffer Overflow Attack

Initial Values
Consider the following layout of memory: A =69
A A B B B B C C B = “000\0”
C=74
Low Memory High Value to be assigned for
Address ] B = “SHIP\0”
Big-endian architecture Initial Values
o <
© 0O AN © 0 <
N~ M OO O ¥ N AN © 0
Al ©O ~ O O O ~ IO NN <
o,0,0/0(0(OjO|O|O|1|0O|O|O]|1T]|O|1T|0O]O0]O0]N\N
Low Memory A=869 ]
Address 0 <t
© 0O AN © o <
N~ M O OO ¥ AN NN ©
Al ©O ~ O O O «~—~ IOHL NN <~ «
M ~—~ O <+ N ~ IO N M ~ 0O < AN
o,0,0/0(0j0O|0O}|O]|O|1|]O]|O]|1T]O|1/0
« C=74

High Memor§1
Address



Sample Problem 2: Buffer Overflow Attack Initial Values

Consider the following layout of memory: A =69
A A B B B B C C B = “000\0”
C=74
Low Memory High Value to be assigned for
Address _ B = “SHIP\0”

Big-endian architecture

8 D oo ¥ Final Values
N OO O OO < “ A N © o

Al © ~ O O O ~ IO Al < A ©

® -~ 0o F A~ 1A~ O©®»®»~— o <FAN -~ B B B B

O O O O O O O O O 1 O O O 1 O 1 ‘S’ GH! GI! ‘P,

Low Memory A= "

Address

<t AN O g <t AN ©

NN ~ ~ O M ~ 0 < N
0(0{0|1/0j0|1|0(1]0
\0’ >

C=74 >
High Memory Address

© ® ~ o <
00

0/(0]0




Sample Problem 2: Buffer Overflow Attack

Consider the following layout of memory: }Ar‘liiieélgValues
A A B B B B B C C B — “000\0”
C=74
Low Memory High Value to be assigned for
Address ] B = “SHIP\0”
Little-endian architecture Initial Values
< OO
< 0O O© (NN O O
00O O NN N T OO O M I~
O Al &~ AN O ~ O O O ~—~ O
i1f0y1j0|0j0}1(0|O0O|O|O|O0O|O|O|O|O|N0O|O0O]|O]|O
« A =69 > < oo
Low Memory Address <+ 0 © o ®© ©
00O O AN NN < O O M I~
O Al &~ N IO —~ O O O ~—~ O
— N < O 0 ©O NN OO ~AN < 00— M
0|10 1 0|1/{0{0]0(0|O0|0]0O|O0]O
<« C=74

High Memory Address



Sample Problem 2: Buffer Overflow Attack Initial Values

A =69
Consider the following layout of memory: B = “000\0”
A A B B B B B C C C=74
Value to be assigned for
Low Memory High B = “SHIP\0”

Address

lllIIIIII Little-endian architecture
v 0?83 _

Low Memory Address Final Values
© o + N © o ¢ N
m— AN Y ® - MO AN Y O ®O - g g opgop
1/0(1|]0|0|O|1T]|O|O|O|O|O|O|O|O|O|P|T|H|S
< \0' =
) A =69 .
< ©O
<t 00O O AN 0 O
00O O AN NN < O OO ™M I~
O©O NN < NN IO ~ O O O ~—~ O «
ANl < OO ™M O ~ Al O~ AN T 0O M
O|1|0] 1 O0(1/0]{0;]0|0O0O]|]O0O|O0O|O0|O0O0]|O
< C=74

High Memory Address



Buffer Overflows through the Web

Another type of buffer overflow occurs when parameter values are
passed to a web server through the Internet.

The web browser on the caller’'s machine will accept values from a user
who probably completes fields on a form. The browser encodes those
values and transmits them back to the server’s website.

Parameters are passed in the URL line, with a syntax similar to:

— http://www.somesite.com/subpage/userinput.asp?parami=(808)555-
1223&param2=2009Jani7/

In the above example, the page userinput receives two parameters:
— parami1 —a US telephone number
— Param2 — a date

Since customers might be from all over the world, the developer of the
somesite.com website might have allocated 15 or 20 bytes for an
expected maximum length phone number.

An attacker might try to explore what the server would do when one
passes a really long telephone number, say with 500 or 1000 digits

Passing a very long string to a web server is just a slight variation of the
classic buffer overflow problem.




Logical Memory Layout of a Process

High Memory Address

Used to store information about the active Sub-routines

Available memory

Used for dynamic memory allocation

Uninitialized Contains all the static and global variables uninitialized
Data Segment| N the code

Initialized Data Contains the values of all initialized static and global
Segment variables initialized to a value in the code

Text Segment Contains all the executable code (read-only)

Low Memory Address



cfafbfcc

cfafbfc8

cfafbfc4

cfafbfcO

cfaftbfbe

cfafbfb8

cfafbfb4

cfaftbfb0

cfafbfac

cfafbfa8

cfafbfad

cfafbfal

Stack Layout of a Process

High Memory Address

Stack Frame
for B()

Low Memory Address

Stack
Pointer

B

Program Segment



Stack Layout: Terminologies

Stack Frame: The activation record for a sub routine comprising of
(in the order facing towards the low memory end): parameters,
return address, old frame pointer, local variables.

Return address: The memory address to which the execution
control should return once the execution of a stack frame is
completed.

Stack Pointer Register: Stores the memory address to which the
stack pointer (the current top of the stack: pointing towards the low
memory end) is pointing to.

The stack pointer dynamically moves as contents are pushed and

popped out of the stack frame.

Frame Pointer Register: Stores the memory address to which the
frame pointer (the reference pointer for a stack frame with respect to
which the different memory locations can be accessed using relative
addressing) is pointing to.

The frame pointer typically points to an address (a fixed address),
after the address (facing the low memory end) where the return
address for the stack frame is stored.




Frame Pointer

Stack Layout of a Process register  Lcfafbfos

High Memory Address

cfafbfce

cfafbfc8

cfafbfc4

cfafbfcl

Parameters of main( ):
argv[n-1].... argv[0], argc

Return address to the OS

Old address of the Frame

Pointer (typically NULL) | g

Locals for main( ): int x

Low Memory Address

Stack Pointer

Register cfafbfcO
Bt w){
mt u=73;
Frame
Pointer
}
Sta}ck Alint vi{
Pointer mt z=75;
Biz);
x 8002508 e
}
main (int arge, char *argv[|)}{
mtx=2;
A(x);
x 80C03008

}
Program Segment



Stack Layout of a Process (continued)

High Memory Address

cfafbfce

cfafbfc8

cfafbfc4

cfafbfc0

cfafbfbc

cfafbfb8

cfafbfb4

cfafbfb0

A#

Frame Pointer

Parameters of main( ):
argv[n-1].... argv[0], argc

cfafbfb4

Register
Stack Pointer

Return address to the OS

cfafbfbO

Register

Old address of the Frame
Pointer (typically NULL)

Biint w){
mtu=3;

Locals for main( ): int x

Parameters for A(): inty

Return address to main()
\x 80C03008

Afint v){
mt z=35;

Address of Frame Pointer
™ for main( ): cfafbfc4

Frame

: Biz);
Pointer ., goco2508

Locals of A( ): int z

Low Memory Address

« . " .
Stack main (int arge, char *argv[]){

Alx):
x 80C03008 .
} Program Segment



Stack Layout of a Process

High Memory Address

cfafbfce

cfafbfc8

cfafbfcd

cfafbfcl

cfafbfbe

cfafbfb§

cfafbfb4

cfafbfb0

cfafbfac

cfafbfa8

cfafbfad

cfafbfal

A

A

Parameters of main( ):
argv[n-1].... argv[0], argc

Return address to the OS

Old address of the Frame

~p| Pointer (inconsequential)

Locals for main( ): int x

Parameters for A(): inty

Return address to main()
\x 80C03008

v\Address of Frame Pointer

for main( ): cfafbfc4

Locals of A( ): int z

Parameters for B( ): intw

Return address to A()
\x 80C02508

.| Address of Frame Pointer

>~ for A(): cfafbfb4

Locals of B(): int u

Low Memory Address

Frame Pointer

Register cfafbfad
Stack Pointer
Register cfafbfa0
Bt w){
mt u=73;
)
Alint vi{
mt z=75;
B);
'x 80C02508
)

main (int arge, char *argv([]){

mtx=2:
Alx):
Frame soco3008
Pointer
H
P Sta}ck Program Segment
Pointer



Example of a Vulnerable C P

rogram

int main(int argec, char *argv([]) {
int valid = FALSE;
char strl [8];
char str2[8];

gets (str2) ; «——
if (strmcocmp(strl, str2, 8) == 0)
valid = TRUE:;:

next tag(strl);  gets(string)- C routine vulnerable for buffer overflow

printf ("bufferl: strl(%s), str2(%s), valid(sd)\n", strl, str2, valid);

$ cc -g -o bufferl bufferl.c Proper Input

$ ./bufferl Correct Output |

START L Mischievous Input
bufferl: stril (START), str2(START), valid(l) for-buffer overflow:

S ./bufferl No |

EVILINPUTVALUE o Impact .
bufferl: strl(TVALUE), str2(EVILINPUTVALUE), wvalid(0) Mischievous Inp|
$ ./bufferl for buffer overflo
BADINPUTEADINPUT Vulnerability
bufferl: strl(BADINPUT), str2 (BADINPUTBADINPUT), valldfliexpmited

Ut
w:

Source: Figure 10.1: W. Stallings: Computer Security: Principles and Practice: 2" Ed.



Stack for the C Program
(Buffer Overflow Exploited)

Lffffbtf4d

LEELffbLO

bffffbec

Lffffbes

bffffbed

LEfffbe(

Lffffbdc

Lffffbds

Lffffhd4d

LEEffbdl

Source: Figure 10.2: W. Stallings: Computer Security: Principles and Practice: 2" Ed.

Ed

3dfctf bt
4

0LO00000

3dfctffbhf
R

celbd0340
- L, @

01000000

O8fcf fbf

cebd0340
L J Ig.

Q0000000

OB8fcffbf

54001540
=

00000001

53544152
S T AR

4=505554
M P UOT

00850408

42414449
B A DI

20561540
0wV . @

4=505554
N P UT

42414449
B ADT

-

Assume
Big-Endian
Architecture

High memory end
argwv
arge

return addr
old base ptr
wvalid
strl[4-7]
strl1[0-3]
str2[4-T7]

stxr2[0-3]

Low memory end



Example: Stack Smashing Attack

#include <stdio.h>

Name of the program is

CannotExecute(){ demo.c
printf("This function cannot execute\n");

}
GetInput(){ ﬁﬂs;—:rr;ldian
buffer[8]; Architecture

gets(buffer);
puts(buffer);

}
main(){
GetInput();

B;




Sequence of Steps

1 Compile with the following options

mplanet@ubuntu:~$ gcc -fno-stack-protector -ggdb -mpreferred-stack-boundary=2 -o demo demo.c
/tmp/ccmmHHC4.0: In function GetInput':

/home/vmplanet/demo.c:10: warning: the gets' function is dangerous and should not be used.
mplanet@ubuntu:~$ |

2  Start gdb and use the list command to find the line
numbers of the different key statements/function calls
so that the execution can be more closely observed at
these points.

Use list 1,50 (where 50 is some arbitrarily chosen large
number that is at least guaranteed to be the number of
lines in the program).

In our sample program, we have only 23 lines. So, |
could have used list 1, 23 itself.



vmplanet@ubuntu:~¢ gdb demo

GNU gdb (GDB) 7.1-ubuntu

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "1486-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/=...

Reading-symbole-from /home/vmplanet/demo...done.

(gdb) list 1, 58

#lncluae <stdio.h>

CannotExecute(){
printf("This function cannot execute\n");

}

GetInput(){

1
2
3
4
5
6
7
8

char buffer[&];
gets(buffer);
puts(buffer);

}
main(){
GetInput();

return 8;




3 Issue breakpoints at lines 17 and 10 to temporarily stop execution

(gdb) break 17
Breakpoint 1 at 8x8848449: file demo.c, line 17.

(gdb) break 18

Breakpoint 2 at 0x804842e: file demo.c, line 10.

4 Run the disas command on the CannotExecute and main functions
to respectively find the starting memory address and return address
after the return from Getlnput( ).

Address to return to
after executing the
Getlnput( ) function

0x0804844e

Starting memory
address for the
CannotExecute( )
Function

0x08048414

(gdb) disas main

Dump oT assembler code for function main:

QxE08048446 <+0=:
x08048447 <+1=>:

ARV T <+13>:
BxB8048454 =+14=:
End of-zscembler-dump.

(gdb)

Dump o

Bx08048414 r0>:

SFARLs1 <+]1=:
Ox08048417 =+3=:
Ox0804841la =+0=:
Bx0804842]1 =+13=>:
Bx08048426 <+18>:
Bx08048427 =+19=:
End of assembler dump.

%ebp

%esp,%ebp

0x8048428 <=GetInput=
$0x0 ,%eax

%Zebp

push
mow
call
mow

pop
ret

disas CannotExecute
embler code fTor funmction CannotExecute:

%ebp

%esp,%ebp

$0x4 ,%esp
$0x8048520, (%esp)
Bx804834c <puts@plt=

push
mow
sub
mow L
call
leave
ret




5 Start the execution of the program using the run command
The execution will halt before line # 17, the first breakpoint.
That is, before the call to the Getlnput( ) function.

6 Check and see the value on the top of the stack to use it as a
reference later to identify the return address to overwrite. The
command/option used is x/8xw $esp to obtain the 8 words
(ﬁz-bits l?ach) starting from the current location on the top of
the stack.

7 Continue execution by pressing s at the gdb prompt. Now the
Getlnput( ) function is called. The processor would allocate 8
bytes, for the buffer array. So the stack pointer would be
moved by 8 bytes towards the low memory end.

8 Use the x/8xw $esp command to obtain the 8 words (32-bits
each) starting from the current location pointed to by the Stack
Pointer. We could see the Stack Pointer has moved by 16
bytes (from the reference value of Step 6) towards the low
memory end. You could continue executing by pressing s at
the gdb prompt. You may even pass a valid input after gets( )

IS executed and see what puts( ) prints.

x—

9  Quit from gdb using the ‘quit’ command at the (gdb) prompit.




Value of the
Value at the memory address on Frame Pointer

the top of the stack before the call 8 bvtes of the buffer .
to the Getlnput( ) function arrggt/ — for main()

(gdb) run
Starting program: /fhqme/vmplanet/demo

Breakpoint 1, main ()\at demo.c:17
17 GetInput();
(gdb) x/8xw $esp
6x00144bd6 6x00000001 oxpffffafs

Bxb 4tc @xb7fff858 @xbffff4be xf fffffff

Breakpoint 2, GetInput () at demo.c:10
18 gets(buffer);
(gdb) x/8xw $esp

0x0811e8ch 0x0804847hb 0x002831T4 @xbffff448
OxuE04844e \ CEGEREELL[E Bxo0boeee1

Value on the top of the stack Value that was previously pointed
after the call to the Getlnput( ) function to by the Stack Pointer

Corresponds to the Return address in main( ): 0x0804844e. See
the screenshot for Step 4. This is the address that needs to be
overwritten with the starting address for the CannotExecute( ) function



Oxbffff458 —

Oxbffff454
Oxbffff450

Oxbffff44c

Oxbffff448
SP

e

Stack Layout

High memory end

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Low memory end

Oxbffff458
Oxbffff454
Oxbffff450

Oxbffff44c
Oxbffff448

Oxbffff444

Oxbffff440

Oxbffff43c

Oxbffff434 SP

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Return address to
main (0x0804844e)

Frame pointer for
Main (0xbffff448)

y

Buffer
(8 bytes)

0x0011e0c0




(gdb) s Running the Program

Breakpoint 2, GetInput () at demo.g:10 .
10 gets(buffer); for Valid Input
(gdb) x/8xw $esp
Bxbffff434: BxoB1ledcE 0x0804847b 0x00283714 Oxbffff448
Passing a BxbffTf444: Bxp804844e Oxbffff4c8 0x00144bd6 BxpEopEael
valid
input
P puts(buffer);
(gdb) x/8xw $esp dcb a \0gfe
Bxbffff434: Oxbffff438 Bxb4636261 BxBBE676665 Oxbffff448
BxbffTf444: Bxp804844e Oxbffff4c8 0x00144bd6 BxpEopEael
Desired
output
. vmplanet@ubuntu:~$ ./demo
E|the_r way of abcdefg
pas:smg Inputs abcdefg
is fine when we vmplanet@ubuntu:~$ printf "abcdefg" | ./demo
pass just printable abcdefg
Regular characters vmplanet@ubuntu:~$ |

When we want to pass non-printable characters or memory addresses, we need
to use the printf option (need to pass them as hexadecimal values)



Oxbffff458 —

Oxbffff454
Oxbffff450

Oxbffff44c

Oxbffff448
SP

e

High memory end

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Low memory end

Oxbffff458
Oxbffff454
Oxbffff450

Oxbffff44c
Oxbffff448

Oxbffff444

Oxbffff440

Oxbffff43c
Oxbffff438

Oxbffff434 SP

Stack Layout: Valid Input

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Return address to
main (0x0804844e)

Frame pointer for
Main (0xbffff448)

00 67 66 65

64 63 62 61

A\ 4

Oxbffff438




Running the Program for an Input
that will Overflow: No Side Effects

Breakpoint 1, main () at demo.c:17

17 GetInput();

(gdb) x/8xw $esp

Bxbffff448: Oxbffff4cs Bx00144bdé
Bxbffff458: Bxbffffdfc Bxb7fff858
(gdb) s

Breakpoint 2, GetInput () at demo.c:1@

18 gets(buffer);

(gdb) x/8xw %esp

Oxbffff434: Ox081llebch Ox0884847b
OxbTffT444: Ox0804844e @xbffff4c8
(gdb) s

abcdefgh

11 puts(buffer);

(gdb) x/8xw %esp

Oxbffff434: @xbffff438 Ox64636261
Bxbffff444.: Bx0804844e Oxbffff4cs
(gdb) s

BxBeeeepel
@xbffff4be

Ox082831T4
Ox08144bdé

BxbE8676665
0x00144bd6

xbffff4f4
Oxffffffff

Oxbffff448
Bxboeeepel

abcdefgh The LSB of the memory address pointed to by the frame pointer is
13 } | overwritten. However, since this corresponds to the inconsequential
(gdb) |} old frame pointer value for the main( ), there are no side effects.




Exploiting the Stack Smashing
Attack

« We need to pass the starting memory address of the
CannotExecute( ) function: 0x08048414 as part of the
user input to overwrite the correct return address of the
Getlnput( ) function.

— We need to pass 16 bytes of character input (8 bytes
for the buffer array, 4 bytes for the Frame Pointer for
main( ); the last 4 bytes corresponding the starting
memory address of CannotExecute( )).

* Note that the processor architecture on which the
example is run is a Little-endian one.

* Hence, the least significant value of the memory address
(\x14) should be passed first and so on, so that \x14 is
considered as the most significant byte of the sub string
and written at the higher memory end.



. fdemo

:~% printf "abcdefg" |

:~% printf "abcdefghijkl\x14\x84\x04\x88" |

printf has to
be used to pass

his function cannot execute
Segmentation fault

vmplanet@ubuntu:~% ./demo
Segmentation fault because from the Oxbffff458
CannotExecute( ) function, there is Oxbffff454
no way for the control to return to
the main( ) function and go through Oxbffft450
a graceful termination.
Oxbffff44c

Starting memory address for
the CannotExecute( ) function

Oxbffff448

mplanet@ubuntu:~% ./demo

thEfghlJ l'l.-l.."'l.E]'-':. 14M0x84\0x04\0x08

. fdemo

Memory addresses as inputs

Oxbffff4fc

Oxbffff4{4

Return address to
the OS (0x00000001)

Old frame pointer
(0x144bd6)

Oxbffff4c8

Return address to
main (0x08048414

bcdefghijkl\0x14\0x84'0x04\0x08 Oxbfftf440 Frame pointer Main
Gegmentation fault b
mplanet@ubuntu:~% ./demo Oxbffff43c 72 71 70 69
bedefghijkl\x14\x84\x04\x08 68 67 66 65
Egmentat__mn fault Oxbffff434 SP >

mplanet@ubuntu:~$ | Oxbffff438




Seizing Control of Execution: NOP Sledding

« To be able to successfully launch a buffer- .
overflow attack, an attacker has to: (i) guess the .
location of the return address with respect to the
buffer and (ii) determine the address to use for
overwriting the return address so that execution is
passed to the attacker’s code.

* In real-world, it is difficult to determine the
distance (# bytes) between the return address
and the beginning of the buffer — because, we
may not have access to the source code.

« So, we have to guess the distance. We do this by
having a sequence of NOP instructions before the
shell code (evil code) and insert a return address
(hopefully to where a NOP is inserted) several

times after the shell code. return
« If the actual return address gets overwritten by address
the return address that we inserted, then control pointer

passes to that particular address of the NOP-
region. We then sled through the NOP
instructions until we come across the evil code.

 NOP (a.k.a. No-op) is a CPU instruction that does
nOt aCtua”y dO anything except te” the processor Source: Figure 11.7 from M. Stamp,
to proceed to the next instruction. Information Security: Principles and
Practice, 2nd Edition, May 2011



Seizing Control of Execution: NOP Sledding

« To be able to successfully launch a buffer- .
overflow attack, an attacker has to: (i) guess the .
location of the return address with respect to the
buffer and (ii) determine the address to use for
overwriting the return address so that execution is
passed to the attacker’s code.

* In real-world, it is difficult to determine the
distance (# bytes) between the return address
and the beginning of the buffer — because, we
may not have access to the source code.

« So, we have to guess the distance. We do this by
having a sequence of NOP instructions before the
shell code (evil code) and insert a return address
(hopefully to where a NOP is inserted) several
times after the shell code.

- If the actual return address gets overwritten by  ret
the return address that we inserted, then control
passes to that particular address of the NOP-
region. We then sled through the NOP
instructions until we come across the evil code.

 NOP (a.k.a. No-op) is a CPU instruction that does
nOt aCtua”y dO anything except te” the processor Source: Figure 11.7 from M. Stamp,
to proceed to the next instruction. Information Security: Principles and
Practice, 2nd Edition, May 2011

e
return
address
pointer




Common Unsafe C Standard

Library Routines

gets (char |Read line from standard input into str
*str)

sprintt  (char |Create siraccording to supplied format
*str, char and variables

*format)

strcat Append contents of string src to string
(char *dest, dest

char *src)

strcpy Copy contents of string src to string dest
(char *dest,

char *src)

Source: Table 10.2: W. Stallings: Computer Security: Principles and Practice: 2" Ed.




Protection Schemes

« Stack Canaries

— A small integer called “canary” (the value of the integer is randomly
chosen at the start of the program), is placed in memory just before
the return address.

— As most of the buffer overflows overwrite memory from lower to
higher memory addresses, in order to overwrite the return address,
the canary value must also be overwritten.

— The value of the “canary” integer is checked to make sure it has not
changed before passing the control to the return address.

Normal (safe) stack configuration:

Other local | canary | Return
Bufier variables | (random) | address Other data
Buffer overflow attack attempt:
Corrupt
Buffer Overflow data return Attack code
address

Source: Figure 3.16 from Introduction to Computer Security, M. Goodrich & R. Tamassia, Addison-Wesley
(2011)



Protection Schemes

* Non-executable Stack

— Execution from the stack is disallowed.

— In order to execute the malicious code, the attacker must
either find a way to disable the execution protection from
stack or find a way to put the code in a non-protected
region of the memory like the heap.

» Built-in bound checking schemes in the
programming languages

— Mostly all the interpreted programming languages like
Java have very tight boundary checking mechanism.

* In C/C++, the new STL library functions enforce
strict boundary-checking




Format String Attacks

« The printf function in C is typically passed arguments
containing the message to be printed along with a format
string that denotes how this message should be displayed.

— Example: printf(“a has value %d and b has value %s”, a, b); where a
is an integer and b is a string

 When a programmer does not supply a format string, the
input argument to the printf function controls the format of
the output. If this argument is user-supplied, then an attacker
can carefully craft an input that uses format strings,
including:

— %ax that reads data from the stack
— %s that reads data from the process’ memory

— %n that writes an integer (the number of bytes output so far) to the
memory address of the first argument to the function.



Format String Attacks

Source: Code Fragment 3.9 from Introduction to Computer

f*'ncmqe _{:Std'o'h} i Security, M. Goodrich & R. Tamassia, Addison-Wesley (2011)
int main(int argc, char * argv|])

{

| printf("Your argument is:\n");
// Does not specify a format string, allowing the user to supply one
printf(argv[1]);
}

« If argv[1] is passed “%08x %08x %08x %08x %08x\n”, then printf-
function will retrieve five parameters from the stack (based on where the
stack pointer is currently pointing to) and display them as 8-digit padded
hexadecimal numbers.

— A possible output will be: 40012980 080628c4 bffff/7a4 00000005 08059c04

« If argv[1] is passed “\x10\x01\x48\x08 %s”, then the printf-function will
display the contents of the memory location pointed by the address
0x10014808.

 If the printf function in the above code was called like this: printf(argv[1],
&i) where i is an integer variable, and the value of argv[1] is passed
“12345%n”, then the value of i will be stored as 5.



T|me of Check to Time of Use Attacks

TOCTOU (Time of Check/Time of Use) attacks occur if the operations
of checking whether a process has access to an object and actually
letting the process to access the object are not performed atomically,
l.e., if they are not performed as a single uninterruptible operation.

« We now illustrate TOCTOU attacks using a classic example that
makes use of C functions open( ) and access( ):

— The open( ) function opens the file using the effective user id (euid) of the
calling process to check for permissions

— The access( ) function checks whether the real user (i.e., the user running
the program, uid) has access to the specified file.

« Note that in UNIX, each process at any time has two ids — the real
user id (uid) and effective user id (euid). The uid is the id of the owner
of the process (who developed that program) and the euid is the uid of
the user who invokes the process.

 If the setuid bit of a process P (owned by user X) is set, then when the
process is invoked by a user Y (say X and Y are different users), then
the euid of the process P is set to that of X instead of Y.

 |f the setuid bit of a process P is not set, then when it is invoked by a
user Y, the euid is set to that of Y.

« A user can run a process P with privileges based on the euid of P at
run-time.



Time of Check to Time of Use Attacks

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <fcntl.h>
int main(int argc, char * argv[])
{
int file;
char buf[1024];
memset(buf, 0, 1024);
if(argc < 2) {
printf("Usage: printer [filename]\n");
exit(—1);
}
if(access(argv[1], R_.OK) != 0) {
printf("Cannot access file.\n");
exit(—1);
}
file = open(argv[1], O_RDONLY);
read(file, buf, 1023);
close(file);
printf("%s\n", buf);
return 0;

Assume the file reader program
to the left is a SUID program
whose owner is the root.

Since, file reader program is a
SUID program, the euid of the
calling process gets elevated to
that of the file reader program
when the user process runs the
file reader program.

The file reader program first
uses the access( ) function to
make sure that the user
process has read permissions
to the file, as a real user (using
his uid).

Then, the file reader program
opens the file for reading.




Race Condition: TOCTOU Attacks

« There is a race condition in the implementation: There is a tiny,
almost unnoticeable delay, between the calls to the access( ) and

the open( ) functions.

— If the user turns malicious and during this small gap of time,
manages to change the contents of the file to be read to a symbolic
link that points to the system password file, then the user will be able
to read the contents of the password file, because the euid of the file
reader program is that of the root.

It may not be humanly possible to accomplish the above in one
trial.

— The malicious user has to repeatedly run the vulnerable file reader
program as well as run another process in the background and this
process should repeatedly change back and forth the contents of the
file to be read from its legitimate original contents to the symbolic link
to the password file and vice-versa.

— If the switch between the contents of the file to read occurs exactly
during the time gap between the calls to the access( ) and open( )
functions, then the malicious user will be able to read the contents of
the password file.



Solution to the Race Condition Problem

* Do the following changes
to the file reader program:

— Drop the privileges of the
user process — set the euid

of the file reader program to

the uid of the user process

— Remove the code that uses
the access( ) function and
directly open the file to be

read returns the uid of
— After reading the file, he user process
restore the privileges thatinvoked the
(actually, elevate the file reader program |

privileges because it is a
SUID program) by setting
the euid of the file reader
program to the euid value
that existed before the
privileges of the user
process was dropped.

L, uid = getuid();

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <fcntl.h>
int main(int argc, char * argv|[])
{
int file;
char buf[1024];
uid_t uid, euid;
memset(buf, 0, 1024);
if(argc < 2) {
printf("Usage: printer [filename]\n");

exit(—1); returns the uid of

+ — .
L . 4 the file reader program as
euid = geteuid(); itis a SUID program

/* Drop privileges */
seteuid(uid);

file = open(argv[1], O_RDONLY);
read(file, buf, 1023);

close(file);

/* Restore privileges */
seteuid({euid);

printf("%s\n". buf);

return 0O;




