
Secure Software Development 

Lifecycle

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University

E-mail: natarajan.meghanathan@jsums.edu



Secure SDLC

SSDLC

1.Security Guidelines,

Rules and Regulations

2.
 S

ec
urit

y 

R
eq

uire
m

en
ts

3. A
rchitectural R

eview
s

Threat M
odeling

4. Secure Coding

Guidelines
5
. 
W

h
it

e
/ 
G

ra
y
/ 
B

la
c
k
 

B
o

x
 T

e
s
ti
n

g

6. Final Security 

Review (Determine

Exploitability)

Patch Management

Patch Management

P
a

tc
h

 M
a

n
a

g
e

m
e
n

t

P
a

tc
h

 M
a

n
a

g
e

m
e
n

t

Infrastructure Security, Firewalls, IDSs, DMZs, and etc

Infrastructure Security, Firewalls, IDSs, DMZs, and etc

Deployment



Phase 1: Security Guidelines,
Rules and Regulations

• Become aware of the security guidelines, 
models, rules and regulations (collectively called 
sometimes as security policies) to be adopted.

– Even though some security experts can be hired for 

software development, the entire development 

process has to be still conducted by professionals 

who are not much exposed to security-related design 
and development in their career. So, this phase is 

essential at least for the time being in a secure 

software lifecycle. 



Phase 2: Security Requirements
• Each functional requirement description for the software should 

contain a section titled: “Security Requirements” documenting any 
security-specific needs of that particular requirement and without 
incorporating it, the software will deviate from the system-wide 
security policy or specification.

• Misuse cases are one of the most preferred ways to document 
security requirements in conjunction with the use cases 
documenting the functional requirements.

• Security defect prevention during the requirements phase will help to 
detect and avoid security errors before they propagate to the later 
phases of the SDLC. It is cheaper to fix the defect in the 
requirements phase.

• Requirements traceability should be documented for each security 
requirement so that they can be associated with all parts of the
system where it is used; any impact of changes in the security 
requirement can be later traced back to these parts and appropriate 
adjustments could be made.

• The security requirements and misuse cases later evolve to test 
cases to evaluate the software with respect to security.



Use Case and Misuse Case
• A use case describes the system’s behavior as a response to a request 

originating from (an actor) outside of the system in consideration.

• Misuse case – use case from a hacker’s point of view

• A misuse case diagram is created together with a corresponding use 
case diagram. The model introduces two new important entities (in 
addition to those from the traditional use case model): 

– Misuse case – a sequence of actions that can be performed by any person 
or entity in order to harm the system

– Misuser – the actor that initiates the misuse case. This can either be done 
intentionally or inadvertently.

• The misuse case model makes use of those relation types found in the 
use case model: include, extend, generalize, and association. In 
addition, it introduces two new relations to be used in the diagram:

– Mitigates – A use case can mitigate the chance that a misuse case will 
complete successfully.

– Threatens – A misuse case can threaten a use case by exploiting it or 
hindering it.



Misuse Case
• A misuse case describes scenarios of malicious acts against a system.

• A misuse case leads to the identification of negative scenarios or threats 
posted to the system, often leading to new requirements, which again 
may be expressed in new use cases to mitigate the misuse cases and 
so on.

– Creating misuse cases will often trigger a chain reaction that makes it easier 
to identify both functional and non-functional security requirements.

Source: M. Imran Daud, “Secure Software Development Model: A Guide for Secure Software Life Cycle,”

Proceedings of the International Multi Conference on Engineers and Computer Scientists, vol. I, March 2010.

Steal the car

Short the ignition



Regular User

Send Information in

Plaintext
in

c
lu

d
e
s

Encrypt all data and 

Send the Ciphertext

Attacker

Hack the communication 

Channel and read plaintext

Embed the Ciphertext in 

an Image and send the 

StegoImage

threaten

mitig
ate

e
x
te

n
d

s

Capture the ciphertext 

and do cryptanalysis to

extract the plaintext

threaten

mitig
ate

The attacker has to now do a

Steganalysis to detect the 

presence of secretly hidden 

Info (ciphertext) and then do a 

Cryptanalysis on the extracted 

ciphertext to extract the plaintext

Example 1: Use Case – Misuse Case 
Diagram for Secure Communication



Regular User

Send a benign message 

for posting to the Forum
in

c
lu

d
e
s

The message gets 

posted to the Forum

Attacker

Send a Message loaded with 

XSS Script to post to the Forum

Sanitize the message for any 

potential script to trigger

XSS attack and then post 
to the Forum

e
x
te

n
d
s

threaten

m
iti

g
a
te

Example 2: Use Case – Misuse Case 
Diagram for Web Forum Design

Administrator

includes



Sample Security Requirements
• Scenario 1: Application stores sensitive information that must be 

protected for HIPAA compliance

• Sec. Req: Strong encryption must be used to protect sensitive 

information wherever stored.

• Scenario 2: The application transmits sensitive user information across 

potentially untrusted or unsecured networks

• Sec. Req: The communication channels must incorporate encryption to 

prevent snooping (to protect the confidentiality of the data) and mutual 

cryptographic authentication must be employed to prevent man-in-the-

middle attacks (for integrity and authenticity of communication)

• Scenario 3: The application must remain available to legitimate users.

• Sec. Req: Resource utilization by remote users must be monitored and 

limited to prevent or mitigate denial-of-service attacks.



Sample Security Requirements
• Scenario 4: The application supports multiple users with different levels 

of privilege. 

• Sec. Req: The application should define the actions that users at each 
privilege level is authorized to perform. The various privilege levels 
assigned to users should be tested. Mitigations for authorization bypass 
attacks need to be defined.

• Scenario 5: The application takes user input and uses SQL.

• Sec. Req: SQL injection mitigations need to be defined.

• Scenario 6: The application manages sessions for a logged-in user.

• Sec. Req: Session hijacking mitigations should be in place.

• Scenario 7: The system needs to keep track of individual users and 
authentication must be enforced.

• Sec. Req: User passwords should be securely stored and mitigations to 
combat dictionary attacks must be in place.



Sample Security Requirements
• Scenario 8: The application is written in C or C++. 

• Sec. Req: The code must be written in such a way that buffer sizes are 
always tracked and checked; format strings should not be modified by 
user input; and integer values should not be allowed to overflow. If the 
compiler supports the use of stack canaries, use them.

• Scenario 9: The application presents user-generated data in HTML.

• Sec. Req: Mitigations for XSS attacks must be in place.

• Scenario 10: The application requires an audit log.

• Sec. Req: Define all functions that need to be logged; Verify that the 
audit log is secure.

• Scenario 11: The application uses cryptography 

• Sec. Req: The generated secrets must use a secure random-number 
generator.

• Scenario 12: The application opens files that are typically exchanged 
over untrusted links such as a media file over the Internet.

• Sec. Req: The application must validate all data read from the file and 
not trust it.



Phase 3: Secure Software Design
• The first stage of secure software design is related to identifying the 

potential threats to an application and finding ways to minimize the risk 
of those threats

– This is accomplished by conducting activities that approach the design from 
an adversary’s perspective that includes identifying the pathways (attack 
surface) that could be used to conduct an attack.

• Attack Surface Evaluation

• Attack Surface – Entry and exit points of an application that are 
accessible to users and attackers.

• Entry points – are the inputs to the application through interfaces, 
services, protocols and code

• Exit points – are the outputs from the application, including error 
messages produced by the application, in response to user interaction.

• The entry and exit points should be accessible only to users who
possess the required level of trust.

• Attack surface evaluation is aimed at analyzing and reducing the attack 
surface of a software application.

• A smaller attack surface mitigates security risk by making the 
exploitation harder and by lowering the exploitation’s damage.



Accessibility Increases Attack Surface
• Requiring authentication and limiting access to entry points and exit 

points in the application significantly reduces the attack surface.

• For example, an entry point that is restricted to local access by an 

administrator has a smaller attack surface than an entry point exposed 

to remote access by an anonymous user.

Admin-only
Access

Typical User
Access

Anonymous
Access

Local

Access

Restricted

Access

Remote

Access

Increasing Atta
ck Surfa

ce

Source: M. Howard and S. Lipner,
“The Security Development Lifecycle, 

SDL: A Process for Developing 

Demonstrably More Secure Software,” 2006.



UDP vs. TCP: Impact on Attack Surface

• UDP has a larger attack surface than TCP

– UDP is a connectionless protocol that is used to send a datagram to 

a destination without prior arrangement. Hence, it is possible to “fire 

and forget” multiple UDP datagrams to a destination from spoofed IP 

addresses.

– TCP is a connection-oriented protocol wherein the source and 

destination go through a three-way handshake before the actual data 

transfer. Hence, once a connection is formed, it is not possible to 

“fire and forget” datagrams from randomly spoofed IP addresses.

– Also, the connection establishment process of TCP can be made 

more secure, if the communication is done on the top of IPSec – this 

way, denial-of-service attacks by spoofing the connection requests 

can be avoided.

• Support for UDP in an application should be removed, if not 

needed.



Design Principles: Smaller Attack Surface

• Economy of Mechanism
– Keep the design as simple and small as 

possible.

– Complexity in the design leads to more 
errors in the code, affecting its quality, and 
the security implications get difficult to 
understand

– To apply the economy of mechanism to 
secure software design, we need to 
determine the minimum amount of 
functionality required by the application to 
perform its tasks and provide only the 
features that implement that functionality.

– If the software must provide a number of 
features to a large and diverse set of 
users, it should be possible for a user to 
turn off those features or disable them if 
they are not necessary.

Source:
http://www.cs.cmu.edu/~pratyus/tse10.pdf



Principles of Secure Software Design
• Principles define effective practices that are applicable primarily to 

design architecture-level software decisions and are recommended 

regardless of the platform or the language of the software

– Sometimes, the principles may exist in opposition to each other, so 

appropriate tradeoffs must be made, if required.

• Principles

– Securing the weakest link

– Defense in depth

– Failing securely

– Least privilege

– Separation of privilege

– Economy of mechanism

– Reluctance to trust

– Never assume that your secrets are safe

– Complete mediation

– Promoting privacy



Principles of Secure Software Design
• Securing the weakest link: Attackers are more likely to attack a weak 

spot (for e.g., servers – endpoints of communication) in a software 
system and follow the path of least resistance, than to penetrate a 
heavily fortified component (e.g., cryptographic algorithms, firewalls, 
etc).
– Note: All the links are essential; attackers target the weakest link.

– If a bad guy wants access to secret data sent from point A to point B, a 
clever attacker will target one of the endpoints, try to find a flaw like a buffer 
overflow, and then look at the data before it gets encrypted, or after it gets 
decrypted.

• Defense in depth: Defending an application with multiple overlapping 
layers can prevent a single point of failure that compromises the 
security of the application.
– Note: All the links are not essential. However, presence of more than 

one layer of defense increases the security.

– Use of a packet-filtering router in conjunction with an application 
gateway and an intrusion detection system along with good password 
controls (a strong authentication system) and an adequate user training 
increase the work of an attacker.



Principles of Secure Software Design
• Fail securely: Secure systems should have a well-defined status after 

failure, either to a secure failure state or via a recovery procedure to a 
known secure state.
– The default configuration settings for an application should be the most 

secure settings possible. Such a design is called secure-by-default.

• Least Privilege: A user should be assigned only the minimum 
necessary rights needed to access a requested resource and these
rights should be in effect for the shortest duration necessary (remember 
to relinquish privileges).
– The function of the subject (as opposed to its identity) should control the 

assignment of rights. Role-based access control may be more appropriate.

– If the subject does not need access to an object (even if it is entitled to) to 
perform its task, it should not have the right to access that object. For 
example, if a subject needs to append to an object, but not alter the 
information already contained in the object, it should be given only “append”
rights and not “write” rights.

– Reduce Privilege Escalations: Do not run a program as a member of the 
local administrators group, unless elevated privileges are needed. If a 
security vulnerability is found in the code and an attacker can inject code 
into the process, make the code perform sensitive tasks, or run a Trojan 
horse or virus, the malicious code will run with the same privileges as a 
compromised process. If the process is running as an administrator, the 
malicious code runs as an administrator.



Principles of Secure Software Design
• Separation of Privilege: A system should not grant permission based 

upon a single condition.
– A protection mechanism that requires two keys (validated by two physically 

distinct programs) to unlock it is more robust and flexible than one that 
allows access to the presenter of only a single key.

• Reluctance to Trust: Developers should assume that the environment in 
which their system resides is insecure.
– Unless proven to be trustworthy, all external stimuli have the potential to be 

an attack and assuming external systems are insecure would increase the 
defense in depth.

• Never assume that your secrets are safe: Always assume that an 
attacker knows everything (including source code and design) that you 
know.
– Tools such as decompilers and disassemblers allow attackers to obtain 

sensitive information that may be stored in binary files.

• Do not cache access control decisions: Every access to every object 
must be checked for authority.
– Operating systems typically validate user requests for a file descriptors at 

the time of their creation to make sure the user has the required access. 
However, if the owner of the object revokes the permission granted to the 
user, and the file descriptor is still in use, the user can continue to access 
the object despite the revocation.


