
Number Theory and RSA

Public-Key Encryption

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University

E-mail: natarajan.meghanathan@jsums.edu

CIA Triad: Three Fundamental
Concepts of Information Security

• Confidentiality – Preserving
authorized restrictions on access
and disclosure, including means
for protecting personal privacy and
proprietary information

• Integrity – Guarding against
improper information modification
or destruction, and includes
ensuring
– information non-repudiation

(actions of an entity are to be
traced back uniquely to that entity)

– authenticity (verifying that users
are who they say they are and that
each input arriving at the system
came from a trusted source)

• Availability – Ensuring timely and
reliable access to and use of
information.

Source: Figure 1.2 from William Stallings –

Cryptography and Network Security,

5th Edition

Cryptography Algorithms in Use

• Confidentiality – Public-key encryption algorithms to
exchange a secret key and Symmetric key algorithms for
encrypting the actual data.

• Integrity – Hashing algorithms to compute a hash value of
the message and public-key encryption algorithms to
encrypt the hash value with the private key (to form a
digital signature).

• Non-repudiation – Public-key encryption algorithms used
to digitally sign a message with the sender’s private key.

• Authentication – Passwords, {Public-key certificates and
digital signatures} and Biometrics are typically preferred
for authentication. Symmetric encryption is also OK; but,
not preferred.

Public Key Encryption

• Motivation: Key distribution problem of symmetric encryption system

• Let KPRIV and KPUB be the private key and public key of a user. Then,

– P = D(KPRIV, E(KPUB, P))

– With some, public key encryption algorithms like RSA, the following is

also true: P = D(KPUB, E(KPRIV, P))

• In a system of n users, the number of secret keys for point-to-point

communication is n(n-1)/2 = O(n2). With the public key encryption

system, we need 2 keys (one public and one private key) per user.

Hence, the total number of keys needed is 2n = O(n).

Modular Arithmetic

• Given any positive integer n and any integer a, if we divide a by n,

we get a quotient q and a remainder r that obey the following

relationship:

– a = q * n + r, 0 ≤ r < n and r is the remainder, q is the quotient

– Example:

• a = 59; n = 7; 59 = (8)*7 + 3 r = 3; q = 8

• a = -59; n = 7; -59 = (-9)*7 + 4 r = 4; q = -9

• 59 mod 7 = 3

• -59 mod 7 = 4

0 1 2 qn (q+1)n

n

a
r

When a is positive

When a is negative

2 1 0(q-1)n(q)n

n

a

r

n 2n 3n

n2n3n

(q-1)n

All the numbers marked on the line are actually negative with respect to sign

Modular Arithmetic

• Two integers a and b are said to be congruent modulo n, if a mod n =
b mod n. This is written as a ≡ b mod n.

– We say “a and b are equivalent to each other in class modulo n”

• Example:

– 73 ≡ 4 mod 23, because 73 mod 23 = 4 = 4 mod 23

– 21 ≡ -9 mod 10, because 21 mod 10 = 1 = -9 mod 10

• Properties of the Modulo Operator

– If a ≡ b mod n, then (a – b) mod n = 0

– If a ≡ b mod n, then b ≡ a mod n

– If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n

• Example:

– 73 ≡ 4 mod 23, then (73 – 4) mod 23 = 0

– 73 ≡ 4 mod 23, then 4 ≡ 73 mod 23, because 4 mod 23 = 73 mod 23

– 73 ≡ 4 mod 23 and 4 ≡ 96 mod 23, then 73 ≡ 96 mod 23.

Modular Arithmetic

• Now, that we have studied the meaning of “equivalency” or

“congruent modulo n”, it is see that the “mod n” operator maps “all

integers” (negative and positive) into the set of integers [0, 1, …., n-

1].

• Example: Class of modulo 15

• From the above table, we could say things like

– -38 ≡ 22 mod 15 24 ≡ 54 mod 15

– -38 mod 15 = 7 [-38 = (-3)*15 + 7] 24 mod 15 = 9 [24 = (1)*15 + 9]

– 22 mod 15 = 7 [22 = (1)*15 + 7] 54 mod 15 = 9 [54 = (3)*15 + 9]

Modular Arithmetic

• Properties:

– (x + y) mod n = (x mod n + y mod n) mod n

– Example:

• Compute: (54 + 49) mod 15

– (54 + 49) mod 15 = 103 mod 15 = 13

– 54 mod 15 = 9

– 49 mod 15 = 4

– (54 mod 15 + 49 mod 15) = 9 + 4 = 13

– (54 mod 15 + 49 mod 15) mod 15 = 13 mod 15 = 13

– Example:

• Compute (42 + 52) mod 15

– (42 + 52) mod 15 = 94 mod 15 = 4

– 42 mod 15 = 12

– 52 mod 15 = 7

– (42 mod 15 + 52 mod 15) = 12 + 7 = 19

– (42 mod 15 + 52 mod 15) mod 15 = 19 mod 15 = 4

Modular Arithmetic

• Properties:

– (x * y) mod n = (x mod n * y mod n) mod n

– Example:

• Compute: (54 * 49) mod 15

– (54 * 49) mod 15 = 2646 mod 15 = 6

– 54 mod 15 = 9

– 49 mod 15 = 4

– (54 mod 15 * 49 mod 15) = 9 * 4 = 36

– (54 mod 15 * 49 mod 15) mod 15 = 36 mod 15 = 6

– Example:

• Compute (42 * 52) mod 15

– (42 * 52) mod 15 = 2184 mod 15 = 9

– 42 mod 15 = 12

– 52 mod 15 = 7

– (42 mod 15 * 52 mod 15) = 12 * 7 = 84

– (42 mod 15 * 52 mod 15) mod 15 = 84 mod 15 = 9

Modular Arithmetic

• Properties:

– (a * b * c) mod n = ((a mod n) * (b mod n) * (c mod n)) mod n

– (a * b * c) mod n = ((((a mod n) * (b mod n)) mod n) * (c mod n)) mod n

– (a * b * c * d) mod n = ((a mod n) * (b mod n) * (c mod n) * (d mod n)) mod

n

– Similarly, (a * b * c * d * e) mod n….

– Example:

• Compute (42 * 56 * 98 * 108) mod 15

• Straightforward approach: (42 * 56 * 98 * 108) mod 15 = (24893568) mod 15 = 3

• Optimum approach 1 Optimum approach 2

Modular Arithmetic

• Modular Exponentiation

– The Right-to-Left Binary Algorithm

Example for Modular Exponentiation
• To compute 541 mod 9

– Straightforward approach:

• 541 mod 9 = (45474735088646411895751953125) mod 9 = 2

• Number of multiplications - 40

– Using the Right-to-Left Binary Algorithm

• Write 41 in binary: 101001

• 541 = 532 * 58 * 51

• 541 mod 9 = (532 * 58 * 51) mod 9

Example for Modular Exponentiation
• To compute 361 mod 8

– Straightforward approach:

• 361 mod 8 = (12717347825648619542883299603) mod 8 = 3

• Number of multiplications - 60

– Using the Right-to-Left Binary Algorithm

• Write 61 in binary: 111101

• 341 = 332 * 316 * 38 * 34 * 31

• 541 mod 9 = (532 * 58 * 51) mod 9

Multiplicative Inverse Modulo n
• If (a * b) modulo n = 1, then

– a is said to be the multiplicative inverse of b in class modulo n

– b is said to be the multiplicative inverse of a in class modulo n

• Example:

– Find the multiplicative inverse of 7 in class modulo 15

– Straightforward approach:

• Multiply 7 with all the integers [0, 1, …, 14] in class modulo 15

• There will be only one integer x for which (7*x) modulo 15 = 1

– Find the multiplicative inverse of 9 in class modulo 13

• Multiply 9 with all the integers [0, 1, …, 12] in class modulo 13

• There will be only one integer x for which (9*x) modulo 13 = 1

• A more efficient approach to find multiplicative inverse in class
modulo n is to use the Extended Euclid Algorithm

Euclid’s Algorithm to find the GCD

• Given two integers m and n (say m > n), then

– GCD (m, n) = GCD (n, m mod n)

– One can continue using the above recursion until the second term

becomes 0. The GCD (m, n) will be then the value of the first term,

because GCD (k, 0) = k

• Example: GCD (120, 45)

– GCD (120, 45) = GCD (45, 30) = GCD (30, 15) = GCD (15, 0) = 15

• Example: GCD (45, 12)

– GCD (45, 12) = GCD (12, 9) = GCD (9, 3) = GCD (3, 0) = 3

• Example: GCD (53, 30)

– GCD (53, 30) = GCD (30, 23) = GCD (23, 7) = GCD (7, 2) = GCD (2, 1)

= GCD (1, 0) = 1

• Note: Two numbers m and n are said to be relatively prime if

– GCD (m, n) = 1.

Property of GCD

• For any two integers m and n,

– We can write m * x + n * y = GCD (m, n)

• x and y are also integers

• We find x and y through the Extended Euclid algorithm

• If m and n are relatively prime, then

– there exists two integers x and y such that m * x + n * y = 1

• x is the multiplicative inverse of m modulo n

• y is the multiplicative inverse of n modulo m

• We could find x and y through the Extended Euclid algorithm

Extended Euclid Algorithm

• Theorem Statement

– Let m and n be positive integers. Define

• a[0] = m, a[1] = n

• x[0] = 1, x[1] = 0, y[0] = 0, y[1] = 1,

• q[k] = Floor(a[k-1]/ a[k]) for k > 0

• a[k] = a[k-2] – (a[k-1]*q[k-1]) for k > 1

• x[k] = x[k-2] – (q[k-1] * x[k-1]) for k > 1

• y[k] = y[k-2] – (q[k-1] * y[k-1]) for k > 1

– If a[p] is the last non-zero a[k], then

• a[p] = GCD (m, n) = x[p] * m + y[p] * n

• x[p] is the multiplicative inverse of m modulo n

• y[p] is the multiplicative inverse of n modulo m

Example for Extended Euclid Algorithm
• Find the multiplicative inverse of 30 modulo 53

– The larger of the two numbers is our m and the smaller is n

– Initial Setup of the computation table

m

n

Iteration 1

Iteration 2

We want to find the x and y

such that 53x + 30y = 1

Example for Extended Euclid Algorithm
Iteration 3

Iteration 4

Iteration 5 -13*53+30*23 = 1 = GCD

23 is the multiplicative

inverse of 30 modulo 53

STOP!

-13 ≡ 17 is the

Multiplicative inverse

of 53 modulo 30

Example for Extended Euclid Algorithm
• Find the multiplicative inverse of 17 modulo 89

– The larger of the two numbers is our m and the smaller is n

– Initial Setup of the computation table

m

n

Iteration 1

Iteration 2

We want to find the x and y

such that 89x + 17y = 1

Example for Extended Euclid Algorithm

Iteration 3

-4*89 + 21*17 = 1 = GCD

21 is the multiplicative inverse of 17 modulo 89

STOP!

- 4 ≡ 13 is the multiplicative inverse of 89 modulo 17

RSA Algorithm
• The RSA algorithm uses two keys, d and e, which work in pairs, for

decryption and encryption, respectively.

• A plaintext message P is encrypted to ciphertext by:

– C = Pe mod n

• The plaintext is recovered by:

– P = Cd mod n

• Because of symmetry in modular arithmetic, encryption and
decryption are mutual inverses and commutative. Therefore,

– P = Cd mod n = (Pe)d mod n = (Pd)e mod n

• Thus, one can apply the encrypting transformation first and then the
decrypting one, or the decrypting transformation first followed by the
encrypting one.

• On the complexity of RSA: It is very difficult to factorize a large
integer into two prime factors. The number of prime numbers
between 2 and n is (n/(ln n)).

• Euler’s Phi Function for Positive Prime Integers: For any positive
prime integer p, (p-1) is the number of positive integers less than p
and relatively prime to p.

Key Choice for RSA Algorithm
• The encryption key consists of the pair of integers (e, n) and the

decryption key consists of the pair of integers (d, n).

• Finding the value of n:

– Choose two large prime numbers p and q (approximately at least 100

digits each)

– The value of n is p * q, and hence n is also very large (approximately at

least 200 digits).

– Trump card of RSA: A large value of n inhibits us to find
the prime factors p and q.

• Choosing e:

– Choose e to be a very large integer that is relatively prime to (p-1)*(q-1).

– To guarantee the above requirement, choose e to be greater than both

p-1 and q-1

• Choosing d:

– Select d such that (e * d) mod ((p-1)*(q-1)) = 1

– In other words, d is the multiplicative inverse of e in class modulo

(p-1)*(q-1)

Example for RSA Algorithm
• Let p = 11 and q = 13. Find the encryption and decryption keys.

Choose your encryption key to be at least 10. Show the encryption
and decryption for Plaintext 7

Solution:

• The value of n = p*q = 11*13 = 143

• (p-1)*(q-1) = 10*12 = 120

• Choose the encryption key e = 11, which is relatively prime to 120 =
(p-1)*(q-1).

• The decryption key d is the multiplicative inverse of 11 modulo 120.

• Run the Extended Euclid algorithm with m = 120 and n = 11.

• We find the decryption key d to be also 11 (the multiplicative inverse
of 11 in class modulo 120)

• The encryption key is (11, 143)

• The decryption key is (11, 143)

Example for RSA Algorithm
• Encryption for Plaintext P = 7

• Ciphertext C = Pe mod n

= 711 mod 143

Ciphertext is 106

Example for RSA Algorithm
• Decryption for Ciphertext C = 106

• Plaintext P = Cd mod n

= 10611 mod 143

Plaintext is 7

Another Example for RSA Algorithm
• Let p = 17 and q = 23. Find the encryption and decryption keys.

Choose your encryption key to be at least 10. Show the encryption
and decryption for Plaintext 127

Solution:

• The value of n = p*q = 17*23 = 391

• (p-1)*(q-1) = 16*22 = 352

• Choose the encryption key e = 13, which is relatively prime to 352 =
(p-1)*(q-1).

• The decryption key d is the multiplicative inverse of 13 modulo 352.

• Run the Extended Euclid algorithm with m = 352 and n = 13.

• The multiplicative inverse is -27 ≡ (-27 + 352) = 325

• We find the decryption key d to be 325 (the multiplicative inverse of
13 in class modulo 352)

• The encryption key is (13, 391)

• The decryption key is (325, 391)

Another Example for RSA Algorithm
• Encryption for Plaintext P = 127

• Ciphertext C = Pe mod n

= 12713 mod 391

Ciphertext is 213

Another Example for RSA Algorithm
• Decryption for Ciphertext C = 213

• Plaintext P = Cd mod n

= 213325 mod 391

Plaintext is 127

Applications of Encryption

• Exchange of Shared Key using Asymmetric Encryption

– Let KPUB-S, KPRI-S denote the public and private keys of Sender S.

Similarly, let KPUB-R and KPRI-R be the public and private key of Receiver

R. Let K be the secret key to be shared between only S and R.

– S sends to R the following:

• E (KPUB-R E(KPRI-S, K))

– The inner encryption guarantees that the secret key K came from S and

the outer encryption guarantees that only the receiver R could open the

outer encryption of the message and get access to the inner encryption.

Applications of Encryption

• Diffie-Hellman Key Exchange

– Used to allow two parties that have to establish a shared secret key over an

insecure communication channel.

– Alice and Bob agree on a field size n and a starting number g.

– Alice generates a secret integer a and sends ga mod n to Bob. Alice sends

this encrypted using its private key, so that Bob can decrypt it using Alice’s

public key, thereby authenticating that the message came from Alice. E(KPRI-

ALICE, ga mod n)

– At the same time, Bob generates a secret integer b and sends gb mod n to

Alice. Bob sends this encrypted using its private key, thereby authenticating

to Alice that the message came from Bob. E(KPRI-Bob, g
b mod n)

– When Bob gets Alice’s message, it computes (ga)b mod n and uses it as the

secret key.

– Similarly, when Alice gets Bob’s message, it computes (gb)a mod n and uses

it as the secret key.

– According to Modular arithmetic, (ga)b mod n = (gb)a mod n. Hence, both Alice

and Bob have agreed on a shared secret key.

Applications of Encryption

• Digital Signatures

– A digital signature is a protocol that produces the same effect as a real

signature.

– It is a mark that only the sender can make, but other people can easily

recognize as it of being made by the sender.

– Just like a real signature, a digital signature indicates the sender’s

agreement to the message.

– Properties of a digital signature:

• It must be unforgeable: If person P signs a message M with signature S(P,
M), it is impossible for any one else to produce the pair [M, S(P, M)].

• It must be authentic: If person R receives the pair [M, S(P, M)] from P, R can
check that the signature is really from P. Only P could have created this
signature, and the signature is firmly attached to M.

• It is not alterable: After being transmitted, M cannot be changed by S, R or an

interceptor.

• It is not reusable: A previous message presented again will be instantly
detected by R.

– Public Key Protocol: S sends R E (KPUB-R E(KPRI-S, M))

