Number Theory and RSA Public-Key Encryption

Dr. Natarajan Meghanathan
Associate Professor of Computer Science Jackson State University
E-mail: natarajan.meghanathan@jsums.edu

CIA Triad: Three Fundamental Concepts of Information Security

- Confidentiality - Preserving authorized restrictions on access and disclosure, including means for protecting personal privacy and proprietary information
- Integrity - Guarding against improper information modification or destruction, and includes ensuring
- information non-repudiation (actions of an entity are to be traced back uniquely to that entity)
- authenticity (verifying that users are who they say they are and that each input arriving at the system came from a trusted source)
- Availability - Ensuring timely and reliable access to and use of information.

Source: Figure 1.2 from William Stallings Cryptography and Network Security, $5^{\text {th }}$ Edition

Cryptography Algorithms in Use

- Confidentiality - Public-key encryption algorithms to exchange a secret key and Symmetric key algorithms for encrypting the actual data.
- Integrity - Hashing algorithms to compute a hash value of the message and public-key encryption algorithms to encrypt the hash value with the private key (to form a digital signature).
- Non-repudiation - Public-key encryption algorithms used to digitally sign a message with the sender's private key.
- Authentication - Passwords, \{Public-key certificates and digital signatures\} and Biometrics are typically preferred for authentication. Symmetric encryption is also OK; but, not preferred.

Public Key Encryption

- Motivation: Key distribution problem of symmetric encryption system
- Let $K_{\text {PRIV }}$ and $K_{\text {PUB }}$ be the private key and public key of a user. Then,
$-\mathrm{P}=\mathrm{D}\left(\mathrm{K}_{\text {PRIV }}, \mathrm{E}\left(\mathrm{K}_{\text {PUB }}, \mathrm{P}\right)\right)$
- With some, public key encryption algorithms like RSA, the following is also true: $\mathrm{P}=\mathrm{D}\left(\mathrm{K}_{\text {PUB }}, \mathrm{E}\left(\mathrm{K}_{\text {PRIV }}, \mathrm{P}\right)\right)$
- In a system of n users, the number of secret keys for point-to-point communication is $n(n-1) / 2=O\left(n^{2}\right)$. With the public key encryption system, we need 2 keys (one public and one private key) per user. Hence, the total number of keys needed is $2 n=O(n)$.

	Secret Key (Symmetric)	Public Key (Asymmetric)
Number of Keys	1	2
Protection of Key	Must be secret	One key must be secret; the key can be publicly exposed
Best uses	Cryptographic workhorse; secrecy and integrity of data	Key exchange, authentication
Key distribution	Must be out-of-band	Public key can be used to distribute other keys
Speed	Fast	Slow

Modular Arithmetic

- Given any positive integer n and any integer a, if we divide a by n , we get a quotient q and a remainder r that obey the following relationship:
$-a=q^{*} n+r, \quad 0 \leq r<n$ and r is the remainder, q is the quotient

- Example:
- $\mathrm{a}=59 ; \mathrm{n}=7 ; 59=(8)^{*} 7+3$

$$
\begin{aligned}
& r=3 ; q=8 \\
& r=4 ; q=-9
\end{aligned}
$$

- $\mathrm{a}=-59 ; \mathrm{n}=7 ;-59=(-9)^{*} 7+4$
- $59 \bmod 7=3$
- $-59 \bmod 7=4$

Modular Arithmetic

- Two integers a and b are said to be congruent modulo n, if a $\bmod n=$ $\mathrm{b} \bmod \mathrm{n}$. This is written as a $\equiv \mathrm{b} \bmod \mathrm{n}$.
- We say " a and b are equivalent to each other in class modulo n "
- Example:
$-73 \equiv 4 \bmod 23$, because $73 \bmod 23=4=4 \bmod 23$
$-21 \equiv-9 \bmod 10$, because $21 \bmod 10=1=-9 \bmod 10$
- Properties of the Modulo Operator
- If $\mathrm{a} \equiv \mathrm{b}$ mod n , then $(\mathrm{a}-\mathrm{b}) \bmod \mathrm{n}=0$
- If $a \equiv b \bmod n$, then $b \equiv a \bmod n$
- If $\mathrm{a} \equiv \mathrm{b} \bmod \mathrm{n}$ and $\mathrm{b} \equiv \mathrm{c} \bmod \mathrm{n}$, then $\mathrm{a} \equiv \mathrm{c} \bmod \mathrm{n}$
- Example:
$-73 \equiv 4 \bmod 23$, then $(73-4) \bmod 23=0$
$-73 \equiv 4 \bmod 23$, then $4 \equiv 73 \bmod 23$, because $4 \bmod 23=73 \bmod 23$
$-73 \equiv 4 \bmod 23$ and $4 \equiv 96 \bmod 23$, then $73 \equiv 96 \bmod 23$.

Modular Arithmetic

- Now, that we have studied the meaning of "equivalency" or "congruent modulo n ", it is see that the "mod n" operator maps "all integers" (negative and positive) into the set of integers [0, $1, \ldots, n$. 1].
- Example: Class of modulo 15

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\ldots														
-60	-59	-58	-57	-56	-55	-54	-53	-52	-51	-50	-49	-48	-47	-46
-45	-44	-43	-42	-41	-40	-39	-38	-37	-36	-35	-34	-33	-32	-31
-30	-29	-28	-27	-26	-25	-24	-23	-22	-21	-20	-19	-18	-17	-16
-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
\ldots														

- From the above table, we could say things like
$--38 \equiv 22 \bmod 15$ $24 \equiv 54 \bmod 15$
$--38 \bmod 15=7 \quad\left[-38=(-3)^{*} 15+7\right]$
$24 \bmod 15=9\left[24=(1)^{*} 15+9\right]$
$-22 \bmod 15=7 \quad\left[22=(1)^{*} 15+7\right]$
$54 \bmod 15=9\left[54=(3)^{*} 15+9\right]$

Modular Arithmetic

- Properties:
$-(x+y) \bmod n=(x \bmod n+y \bmod n) \bmod n$
- Example:
- Compute: $(54+49) \bmod 15$
$-(54+49) \bmod 15=103 \bmod 15=\underline{13}$
- $54 \bmod 15=9$
- $49 \bmod 15=4$
$-(54 \bmod 15+49 \bmod 15)=9+4=13$
$-(54 \bmod 15+49 \bmod 15) \bmod 15=13 \bmod 15=\underline{13}$
- Example:
- Compute $(42+52) \bmod 15$
$-(42+52) \bmod 15=94 \bmod 15=\underline{4}$
$-42 \bmod 15=12$
- $52 \bmod 15=7$
$-(42 \bmod 15+52 \bmod 15)=12+7=19$
$-(42 \bmod 15+52 \bmod 15) \bmod 15=19 \bmod 15=\underline{4}$

Modular Arithmetic

- Properties:
$-\left(x^{*} y\right) \bmod n=(x \bmod n * y \bmod n) \bmod n$
- Example:
- Compute: (54 * 49) mod 15
- $(54$ * 49$) \bmod 15=2646 \bmod 15=\underline{6}$
- $54 \bmod 15=9$
- $49 \bmod 15=4$
$-(54 \bmod 15 * 49 \bmod 15)=9 * 4=36$
$-(54 \bmod 15 * 49 \bmod 15) \bmod 15=36 \bmod 15=\underline{6}$
- Example:
- Compute (42 * 52) mod 15
$-(42 * 52) \bmod 15=2184 \bmod 15=\underline{9}$
- $42 \bmod 15=12$
- $52 \bmod 15=7$
- $(42 \bmod 15 * 52 \bmod 15)=12$ * $7=84$
- $(42 \bmod 15 * 52 \bmod 15) \bmod 15=84 \bmod 15=\underline{9}$

Modular Arithmetic

- Properties:
$-\left(a^{*} b^{*} c\right) \bmod n=((a \bmod n) *(b \bmod n) *(c \bmod n)) \bmod n$
$-\left(a^{*} b^{*} c\right) \bmod n=((((a \bmod n) *(b \bmod n)) \bmod n) *(c \bmod n)) \bmod n$
$-\left(a^{*} b^{*} c^{*} d\right) \bmod n=((a \bmod n) *(b \bmod n) *(c \bmod n) *(d \bmod n)) \bmod$ n
- Similarly, (a* $\left.{ }^{*} c^{*} d^{*} e\right) \bmod n . .$.
- Example:
- Compute (42 * 56 * 98 * 108) mod 15
- Straightforward approach: (42 * 56 * 98 * 108$) \bmod 15=(24893568) \bmod 15=3$
- Optimum approach 1
- $42 \bmod 15=12$
- $56 \bmod 15=11$
- $98 \bmod 15=8$
- $108 \bmod 15=3$
- $(42 * 56 * 98 * 108) \bmod 15$ $=(12 * 11 * 8 * 3) \bmod 15$ $=(3168) \bmod 15=3$
- First Compute (42 * 56) mod 15
- $(42 * 56) \bmod 15=(12 * 11) \bmod 15=12$
- Then, compute $(42 * 56 * 98)$ mod 15
- $(42 * 56 * 98) \bmod 15=(12 * 98) \bmod 15=(12 * 8) \bmod 15=6$
- Now, compute ($42 * 56 * 98 * 108) \bmod 15$
- $(42 * 56 * 98 * 108) \bmod 15=(6 * 108) \bmod 15=(6 * 3) \bmod 15=3$

Modular Arithmetic

- Modular Exponentiation
- The Right-to-Left Binary Algorithm

To compute $b^{e} \bmod n$

First, write the exponent e in binary notation.
$e=\sum_{i=0}^{m-1} a_{i} 2^{i}$
In this notation, the length of e is m bits. For any i, such that $0 \leq i<m-1$, the a_{i} take the value of 0 or 1 . By definition, $a_{m-1}=1$.
$b^{e}=b^{\left(\sum_{i=0}^{m-1} a_{i} 2^{i}\right)}=\prod_{i=0}^{m-1}\left(b^{2^{i}}\right)^{a_{i}}$
Solution for $\mathbf{b}^{\mathbf{e}} \bmod \mathbf{n}=\prod_{i=0}^{m-1}\left(b^{2^{i}}\right)^{a_{\mathrm{i}}} \operatorname{modn}$

Example for Modular Exponentiation

- To compute $5^{41} \bmod 9$
- Straightforward approach:
- $5^{41} \bmod 9=(45474735088646411895751953125) \bmod 9=2$
- Number of multiplications - 40
- Using the Right-to-Left Binary Algorithm
- Write 41 in binary: 101001
- $5^{41}=5^{32} * 5^{8} * 5^{1}$

32	16	8	4	2	1
1	0	1	0	0	1

$5^{1} \bmod 9=5 \bmod 9=5$
$5^{2} \bmod 9=\left(5^{1} * 5^{1}\right) \bmod 9=(5 \bmod 9 * 5 \bmod 9) \bmod 9=(5 * 5) \bmod 9=25 \bmod 9=7$
$5^{4} \bmod 9=\left(5^{2} * 5^{2}\right) \bmod 9=\left(5^{2} \bmod 9 * 5^{2} \bmod 9\right) \bmod 9=(7 * 7) \bmod 9=49 \bmod 9=4$
$5^{8} \bmod 9=\left(5^{4}{ }^{*} 5^{4}\right) \bmod 9=\left(5^{4} \bmod 9 * 5^{4} \bmod 9\right) \bmod 9=(4 * 4) \bmod 9=16 \bmod 9=7$
$5^{16} \bmod 9=\left(5^{8 *} 5^{8}\right) \bmod 9=\left(5^{8} \bmod 9 * 5^{8} \bmod 9\right) \bmod 9=\left(7^{*} 7\right) \bmod 9=49 \bmod 9=4$
$5^{32} \bmod 9=\left(5^{16} * 5^{16}\right) \bmod 9=\left(5^{16} \bmod 9 * 5^{16} \bmod 9\right) \bmod 9=(4 * 4) \bmod 9=16 \bmod 9=7$
$5^{41} \bmod 9=\left(5^{32 *} * 5^{8 *} 5^{1}\right) \bmod 9$
$=(7 * 7 * 5) \bmod 9$
$=((49 \bmod 9) *(5 \bmod 9)) \bmod 9$
$=(4 * 5) \bmod 9$
$=20 \bmod 9$
$=2$
Number of multiplications: $5+2=7$

Example for Modular Exponentiation

- To compute $3^{61} \bmod 8$
- Straightforward approach:
- $3^{61} \bmod 8=(12717347825648619542883299603) \bmod 8=3$
- Number of multiplications - 60
- Using the Right-to-Left Binary Algorithm
- Write 61 in binary: 111101

32	16	8	4	2	1
1	1	1	1	0	1

- $3^{41}=3^{32 *} 3^{16 *} 3^{8 *} 3^{4 *} 3^{1}$

$$
\begin{aligned}
3^{1} \bmod 8 & =3 \bmod 8=3 \\
3^{2} \bmod 8 & =\left(3^{1 *} 3^{1}\right) \bmod 8=(3 \bmod 8 * 3 \bmod 8) \bmod 8=(3 * 3) \bmod 8=9 \bmod 8=1 \\
3^{4} \bmod 8 & =\left(3^{2} 3^{2}\right) \bmod 8=\left(3^{2} \bmod 8 * 3^{2} \bmod 8\right) \bmod 8=\left(1^{*} 1\right) \bmod 8=1 \bmod 8=1 \\
3^{8} \bmod 8 & =\left(3^{4 *} 3^{4}\right) \bmod 8=\left(3^{4} \bmod 8 * 3^{4} \bmod 8\right) \bmod 8=\left(1^{*} 1\right) \bmod 8=1 \bmod 8=1 \\
3^{16} \bmod 8 & =\left(3^{8 *} 3^{8}\right) \bmod 8=\left(3^{8} \bmod 8^{*} 3^{8} \bmod 8\right) \bmod 8=(1 * 1) \bmod 8=1 \bmod 8=1 \\
3^{32} \bmod 8 & =\left(3^{\left.16 * 3^{16}\right) \bmod 8=\left(3^{16} \bmod 8 * 3^{16} \bmod 8\right) \bmod 8=(1 * 1) \bmod 8=1 \bmod 8=1}\right. \\
3^{61} \bmod 8 & =\left(3^{32 *} 3^{16 *} 3^{8 *} 3^{4 *} 3^{1}\right) \bmod 8 \\
& =\left(1^{*} 1^{*} 1 * 1 * 3\right) \bmod 8 \\
& =\left((1 \bmod 8) *\left(1^{*} 1^{*} 3 \bmod 9\right)\right) \bmod 8 \\
& =\left(\left(1^{*} 1\right) \bmod 8^{*}(1 * 3)\right) \bmod 8 \\
& =\left(\left(1^{*} 1\right) \bmod 8 *(3)\right) \bmod 8 \\
& =\left(1^{*} 3\right) \bmod 8 \\
& =3 \bmod 8=3
\end{aligned}
$$

Number of multiplications: $5+4=9$

Multiplicative Inverse Modulo n

- If (a * b) modulo $\mathrm{n}=1$, then
- a is said to be the multiplicative inverse of b in class modulo n
- b is said to be the multiplicative inverse of a in class modulo n
- Example:
- Find the multiplicative inverse of 7 in class modulo 15
- Straightforward approach:
- Multiply 7 with all the integers $[0,1, \ldots, 14]$ in class modulo 15
- There will be only one integer x for which $\left(7^{*} x\right)$ modulo $15=1$

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\left(7^{\star} \mathrm{X}\right)$ modulo 15	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8

- Find the multiplicative inverse of 9 in class modulo 13
- Multiply 9 with all the integers $[0,1, \ldots, 12]$ in class modulo 13
- There will be only one integer x for which $\left(9^{*} x\right)$ modulo $13=1$

X	0	1	2	3	4	5	6	7	8	9	10	11	12
$\left(9^{*} \mathrm{X}\right)$ modulo 13	0	9	5	1	10	6	2	11	7	3	12	8	4

- A more efficient approach to find multiplicative inverse in class modulo n is to use the Extended Euclid Algorithm

Euclid's Algorithm to find the GCD

- Given two integers m and $n($ say $m>n)$, then
- GCD (m, n) = GCD ($\mathrm{n}, \mathrm{m} \bmod \mathrm{n}$)
- One can continue using the above recursion until the second term becomes 0 . The GCD (m, n) will be then the value of the first term, because GCD $(k, 0)=k$
- Example: GCD $(120,45)$
$-\operatorname{GCD}(120,45)=\operatorname{GCD}(45,30)=\operatorname{GCD}(30,15)=\operatorname{GCD}(15,0)=15$
- Example: GCD $(45,12)$
$-\operatorname{GCD}(45,12)=\operatorname{GCD}(12,9)=\operatorname{GCD}(9,3)=\operatorname{GCD}(3,0)=3$
- Example: GCD $(53,30)$
- $\operatorname{GCD}(53,30)=\operatorname{GCD}(30,23)=\operatorname{GCD}(23,7)=\operatorname{GCD}(7,2)=\operatorname{GCD}(2,1)$ $=\operatorname{GCD}(1,0)=1$
- Note: Two numbers m and n are said to be relatively prime if
$-\operatorname{GCD}(\mathrm{m}, \mathrm{n})=1$.

Property of GCD

- For any two integers m and n,
- We can write m * $x+n$ * $y=\operatorname{GCD}(m, n)$
- x and y are also integers
- We find x and y through the Extended Euclid algorithm
- If m and n are relatively prime, then
- there exists two integers x and y such that $m * x+n * y=1$
- x is the multiplicative inverse of m modulo n
- y is the multiplicative inverse of n modulo m
- We could find x and y through the Extended Euclid algorithm

Extended Euclid Algorithm

- Theorem Statement
- Let m and n be positive integers. Define
- $a[0]=m, a[1]=n$
- $x[0]=1, x[1]=0, y[0]=0, y[1]=1$,
- $q[k]=\operatorname{Floor}(a[k-1] / a[k])$ for $k>0$
- $a[k]=a[k-2]-\left(a[k-1]^{*} q[k-1]\right)$ for $k>1$
- $x[k]=x[k-2]-(q[k-1] * x[k-1])$ for $k>1$
- $y[k]=y[k-2]-(q[k-1] * y[k-1])$ for $k>1$
- If $a[p]$ is the last non-zero $a[k]$, then
- $a[p]=\operatorname{GCD}(m, n)=x[p]$ * $m+y[p]^{*} n$
- $x[p]$ is the multiplicative inverse of m modulo n
- $y[p]$ is the multiplicative inverse of n modulo m

Example for Extended Euclid Algorithm

- Find the multiplicative inverse of 30 modulo 53
- The larger of the two numbers is our m and the smaller is n
- Initial Setup of the computation table

We want to find the x and y such that $53 x+30 y=1$

Iteration 1

\mathbf{a}	\mathbf{q}	\mathbf{x}	y
53	-	1	0
30	1	0	1

\mathbf{a}	\mathbf{q}	x	y
53	-	1	0
30	1	0	1
23		1	-1

Iteration 2

a	q	x	y
53	-	1	0
30	1	0	1
23	1	1	-1

a	q	x	y
53	-	1	0
30	1	0	1
23	1	1	-1
7			

a	q	x	y
53	-	1	0
30	1	0	1
23	1	1	-1
7		-1	

	\mathbf{c}	\mathbf{q}	x
\mathbf{y}	y		
53	-	1	0
30	1	0	1
23	1	1	-1
7		-1	2

Example for Extended Euclid Algorithm

Iteration 3

	\mathbf{c}	\mathbf{q}	\mathbf{x}
53	-	\mathbf{y}	
30	1	0	$\mathbf{0}$
23	1	1	-1
7	3	-1	2

a	q	x	y
53	-	1	0
30	1	0	1
23	1	1	-1
7	3	-1	2
2			

| | q | q | x |
| :---: | :---: | :---: | :---: | y (

\mathbf{a}	\mathbf{q}	x	y
53	-	1	0
30	1	0	1
23	1	1	-1
7	3	-1	2
2		4	-7

Iteration 4

	\mathbf{a}	\mathbf{q}	\mathbf{y}
53	-	1	$\mathbf{0}$
30	1	0	1
23	1	1	-1
7	3	-1	2
2	3	4	-7

\mathbf{a}	\mathbf{q}	\mathbf{x}	\mathbf{y}
53	-	1	0
30	1	0	1
23	1	1	-1
7	3	-1	2
2	3	4	-7
1			

		\mathbf{q}	x
5	y		
53	-	1	0
30	1	0	1
23	1	1	-1
7	3	-1	2
2	3	4	-7
1		-13	

	x		
\mathbf{c}	y		
53	-	1	0
30	1	0	1
23	1	1	-1
7	3	-1	2
2	3	4	-7
1		-13	23

Iteration 5

a	q	x	y
53	-	1	0
30	1	0	1
23	1	1	-1
7	3	-1	2
2	3	4	-7
1	2	-13	23

a	q	x	y
53	-	1	0
30	1	0	1
23	1	1	-1
7	3	-1	2
2	3	4	-7
1	2	-13	23
0			

\mathbf{a}	\mathbf{q}	\mathbf{x}	\mathbf{y}
53	-	1	0
30	1	0	1
23	1	1	-1
7	3	-1	2
2	3	4	-7
1	2	-13	23

$-13 * 53+30 * 23=1=$ GCD
23 is the multiplicative inverse of 30 modulo 53
$-13 \equiv 17$ is the Multiplicative inverse of 53 modulo 30

Example for Extended Euclid Algorithm

- Find the multiplicative inverse of 17 modulo 89
- The larger of the two numbers is our m and the smaller is n
- Initial Setup of the computation table

m$\mathrm{n} \rightarrow$	a	q	x	y
	89	-	1	0
	17		0	1

We want to find the x and y such that $89 x+17 y=1$

Iteration 1

\mathbf{a}	\mathbf{q}	\mathbf{x}	y
89	-	$\mathbf{1}$	0
17	5	0	1

\mathbf{a}	q		
89	-	\mathbf{x}	y
17	5	0	$\mathbf{0}$
4			

	q	x	y
89	-	1	0
17	5	0	1
4		1	

\mathbf{a}	\mathbf{q}	\mathbf{x}	\mathbf{y}
89	-	$\mathbf{1}$	0
17	5	0	1
4		1	-5

Iteration 2

	q		
89	-		1

a	q	x	y
89	-	1	0
17	5	0	1
4	4	1	-5
1			

	q		
89	-	1	0
17	5	0	1
4	4	1	-5
1			

	q		
89	-	1	y
17	5	0	1
4	4	1	-5
1		-4	21

Example for Extended Euclid Algorithm

Iteration 3

a	q	x	y
89	-	1	0
17	5	0	1
4	4	1	-5
1	4	-4	21

	q				y	
89	-	1	0			
17	5	0	1			
4	4	1	-5			
1	4	-4	21			
0						

89			
89	-	1	0
17	5	0	1
4	4	1	-5
1	4	-4	21

STOP!

$$
-4 * 89+21^{*} 17=1=\text { GCD }
$$

21 is the multiplicative inverse of 17 modulo 89

- $4 \equiv 13$ is the multiplicative inverse of 89 modulo 17

RSA Algorithm

- The RSA algorithm uses two keys, d and e, which work in pairs, for decryption and encryption, respectively.
- A plaintext message P is encrypted to ciphertext by:
$-\mathrm{C}=\mathrm{P}^{e} \bmod n$
- The plaintext is recovered by:
- $\mathrm{P}=\mathrm{C}^{d} \bmod n$
- Because of symmetry in modular arithmetic, encryption and decryption are mutual inverses and commutative. Therefore,
- $\mathrm{P}=\mathrm{C}^{d} \bmod n=\left(\mathrm{P}^{e}\right)^{d} \bmod n=\left(\mathrm{P}^{d}\right)^{e} \bmod n$
- Thus, one can apply the encrypting transformation first and then the decrypting one, or the decrypting transformation first followed by the encrypting one.
- On the complexity of RSA: It is very difficult to factorize a large integer into two prime factors. The number of prime numbers between 2 and n is ($n /(\ln n)$).
- Euler's Phi Function for Positive Prime Integers: For any positive prime integer $p,(p-1)$ is the number of positive integers less than p and relatively prime to p.

Key Choice for RSA Algorithm

- The encryption key consists of the pair of integers (e,n) and the decryption key consists of the pair of integers (d, n).
- Finding the value of n :
- Choose two large prime numbers p and q (approximately at least 100 digits each)
- The value of n is $\mathrm{p}^{*} \mathrm{q}$, and hence n is also very large (approximately at least 200 digits).
- Trump card of RSA: A large value of n inhibits us to find the prime factors p and q.
- Choosing e:
- Choose e to be a very large integer that is relatively prime to $(p-1)^{*}(q-1)$.
- To guarantee the above requirement, choose e to be greater than both $\mathrm{p}-1$ and $\mathrm{q}-1$
- Choosing d:
- Select d such that $\left(e^{*} d\right) \bmod \left((p-1)^{*}(q-1)\right)=1$
- In other words, d is the multiplicative inverse of e in class modulo $(p-1)^{\star}(q-1)$

Example for RSA Algorithm

- Let $p=11$ and $q=13$. Find the encryption and decryption keys. Choose your encryption key to be at least 10. Show the encryption and decryption for Plaintext 7

Solution:

- The value of $n=p^{*} q=11^{*} 13=143$
- $(p-1)^{*}(q-1)=10 * 12=120$

120	-	1	0
11	10	0	1
10	1	1	-10
1	10	-1	11
0			

- Choose the encryption key $e=11$, which is relatively prime to $120=$ $(p-1)^{*}(q-1)$.
- The decryption key d is the multiplicative inverse of 11 modulo 120.
- Run the Extended Euclid algorithm with $m=120$ and $n=11$.
- We find the decryption key d to be also 11 (the multiplicative inverse of 11 in class modulo 120)
- The encryption key is $(11,143)$
- The decryption key is $(11,143)$

Example for RSA Algorithm

- Encryption for Plaintext $\mathrm{P}=7$
- Ciphertext $C=P^{e} \bmod n$

$$
=7^{11} \bmod 143
$$

8	4	2	1
1	0	1	1

$7^{1} \bmod 143=7 \bmod 143=7$
$7^{2} \bmod 143=\left(7^{1 *} 7^{1}\right) \bmod 143=(7 \bmod 143 * 7 \bmod 143) \bmod 143=(7 * 7) \bmod 143=49$ $\bmod 143=49$
$7^{4} \bmod 143=\left(7^{2} * 7^{2}\right) \bmod 143=\left(7^{2} \bmod 143 * 7^{2} \bmod 143\right) \bmod 143=(49 * 49) \bmod 143=$ $2401 \bmod 143=113$
$7^{8} \bmod 143=\left(7^{4 *} 7^{4}\right) \bmod 143=\left(7^{4} \bmod 143 * 7^{4} \bmod 143\right) \bmod 143=(113 * 113) \bmod 143$ $=12769 \bmod 143=42$
$7^{11} \bmod 143=\left(7^{8} * 7^{2} * 7^{1}\right) \bmod 143$
$=(42 * 49 * 7) \bmod 143$
$=(((42 * 49) \bmod 143) *(7)) \bmod 143$
$=(((2058) \bmod 143) *(7)) \bmod 143$
$=((56) *(7)) \bmod 143$
$=(392) \bmod 143$
$=106$
Ciphertext is 106

Example for RSA Algorithm

- Decryption for Ciphertext C = 106
- Plaintext $P=C^{d} \bmod n$

$$
=106^{11} \bmod 143
$$

8	4	2	1
1	0	1	1

```
106}
1062}\operatorname{mod 143=(106'* 1061})\operatorname{mod}143=(106\operatorname{mod 143 * 106 mod 143) mod 143 = (106 *
106) mod 143 = 49 mod 143=82
1064}\operatorname{mod}143=(10\mp@subsup{6}{}{2}*10\mp@subsup{6}{}{2})\operatorname{mod}143=(10\mp@subsup{6}{}{2}\operatorname{mod}143* 1062 mod 143) mod 143=(82 * 82)
mod 143=6724 mod 143=3
1068}\operatorname{mod}143=(1064* 1064) mod 143 = (1064 mod 143 * 1064 mod 143) mod 143 = (3 * 3)
mod 143=9 mod 143=9
106 11 mod 143 = (1068 * 106 * * 1061) mod 143
    = (9*82* 106) mod 143
    =(((9*82) mod 143)* (106)) mod 143
    =(((738) mod 143)* (106) ) mod 143
    =((23)** (106)) mod 143
    =(2438) mod 143
    = 7
```

Plaintext is 7

Another Example for RSA Algorithm

- Let $p=17$ and $q=23$. Find the encryption and decryption keys. Choose your encryption key to be at least 10. Show the encryption and decryption for Plaintext 127

Solution:

- The value of $n=p^{*} q=17^{*} 23=391$

\mathbf{a}	\mathbf{q}		
352	-	$\mathbf{1}$	\mathbf{y}
13	27	0	1
1	13	1	-27
0			

- $(p-1)^{\star}(q-1)=16^{*} 22=352$
- Choose the encryption key $e=13$, which is relatively prime to $352=$ $(p-1)^{*}(q-1)$.
- The decryption key d is the multiplicative inverse of 13 modulo 352.
- Run the Extended Euclid algorithm with $m=352$ and $n=13$.
- The multiplicative inverse is $-27 \equiv(-27+352)=325$
- We find the decryption key d to be 325 (the multiplicative inverse of 13 in class modulo 352)
- The encryption key is $(13,391)$
- The decryption key is $(325,391)$

Another Example for RSA Algorithm

- Encryption for Plaintext P=127
- Ciphertext $\mathrm{C}=\mathrm{Pe}^{\mathrm{e}} \operatorname{modn}$

8	4	2	1
1	1	0	1

$$
=127^{13} \bmod 391
$$

$127^{1} \bmod 391=127 \bmod 391=127$
$127^{2} \bmod 391=\left(127^{1} * 127^{1}\right) \bmod 391=(127 \bmod 391 * 127 \bmod 391) \bmod 391=(127$ *
127) $\bmod 391=16129 \bmod 391=98$
$127^{4} \bmod 391=\left(127^{2} * 127^{2}\right) \bmod 391=\left(127^{2} \bmod 391 * 127^{2} \bmod 391\right) \bmod 391=(98 * 98)$ $\bmod 391=9604 \bmod 391=220$
$127^{8} \bmod 391=\left(127^{4} * 127^{4}\right) \bmod 391=\left(127^{4} \bmod 391 * 127^{4} \bmod 391\right) \bmod 391=(220 *$ $220) \bmod 391=48400 \bmod 391=307$

```
12713}\operatorname{mod 391}=(12\mp@subsup{7}{}{8*}12\mp@subsup{7}{}{4*}12\mp@subsup{7}{}{1})\operatorname{mod}39
    = (307*220 * 127) mod 391
    =(((307 * 220) mod 391) * (127) ) mod 391
    =(((67540) mod 391)* (127) ) mod 391
    =( (288)* (127) ) mod 391
    = (36576 ) mod 391
    =213
```

Ciphertext is 213

Another Example for RSA Algorithm

- Decryption for Ciphertext C = 213
- Plaintext $\mathrm{P}=\mathrm{C}^{\mathrm{d}} \bmod \mathrm{n}$

$$
=213^{325} \bmod 391
$$

256	128	64	32	16	8	4	2	1
1	0	1	0	0	0	1	0	1

$$
\begin{aligned}
& 213^{1} \mathrm{mod} 391=213 \mathrm{mod} 391=213 \\
& 213^{2} \bmod 391=(213 * 213) \bmod 391=45369 \bmod 391=13 \\
& 213^{4} \text { mod } 391=(13 * 13) \bmod 391=169 \bmod 391=169 \\
& 213^{8} \bmod 391=(169 * 169) \bmod 391=28561 \bmod 391=18 \\
& 213^{16} \bmod 391=\left(18^{*} 18\right) \bmod 391=324 \mathrm{mod} 391=324 \\
& 213^{32} \bmod 391=(324 * 324) \bmod 391=104976 \mathrm{mod} 391=188 \\
& 213^{64} \mathrm{mod} 391=(188 \text { * } 188) \bmod 391=35344 \mathrm{mod} 391=154 \\
& 213^{128} \bmod 391=(154 * 154) \bmod 391=23716 \bmod 391=256 \\
& 213^{256} \bmod 391=(256 * 256) \bmod 391=65536 \bmod 391=239 \\
& 213^{325} \bmod 391=\left(213^{256} * 213^{64} * 213^{4} * 213^{1}\right) \bmod 391 \\
& =(239 * 154 * 169 * 213) \bmod 391 \\
& =(52 * 169 * 213) \bmod 391 \\
& =(186 * 213) \text { mod } 391 \\
& =127
\end{aligned}
$$

Plaintext is 127

Applications of Encryption

- Exchange of Shared Key using Asymmetric Encryption
- Let $\mathrm{K}_{\text {PUB-S }}, \mathrm{K}_{\text {PRI-S }}$ denote the public and private keys of Sender S. Similarly, let $\mathrm{K}_{\text {PUB-R }}$ and $\mathrm{K}_{\text {PRI-R }}$ be the public and private key of Receiver R. Let K be the secret key to be shared between only S and R.
- S sends to R the following:
- E (K $\mathrm{K}_{\text {PUB-R }} \mathrm{E}\left(\mathrm{K}_{\text {PRI-S }}, \mathrm{K}\right)$)
- The inner encryption guarantees that the secret key K came from S and the outer encryption guarantees that only the receiver R could open the outer encryption of the message and get access to the inner encryption.

Applications of Encryption

- Diffie-Hellman Key Exchange
- Used to allow two parties that have to establish a shared secret key over an insecure communication channel.
- Alice and Bob agree on a field size n and a starting number g .
- Alice generates a secret integer a and sends $g^{a} \bmod n$ to Bob. Alice sends this encrypted using its private key, so that Bob can decrypt it using Alice's public key, thereby authenticating that the message came from Alice. $\mathrm{E}\left(\mathrm{K}_{\text {PRI- }}\right.$ ALICE, $g^{a} \bmod n$)
- At the same time, Bob generates a secret integer b and sends $g^{b} \bmod n$ to Alice. Bob sends this encrypted using its private key, thereby authenticating to Alice that the message came from Bob. $\mathrm{E}\left(\mathrm{K}_{\text {PRI-Bob }}, \mathrm{g}^{\mathrm{b}} \bmod \mathrm{n}\right)$
- When Bob gets Alice's message, it computes $\left(g^{\mathrm{a}}\right)^{\mathrm{b}}$ mod n and uses it as the secret key.
- Similarly, when Alice gets Bob's message, it computes ($\left.\mathrm{g}^{\mathrm{b}}\right)^{\text {a }}$ mod n and uses it as the secret key.
- According to Modular arithmetic, $\left(g^{a}\right)^{b} \bmod n=\left(g^{b}\right)^{\mathrm{a}} \bmod \mathrm{n}$. Hence, both Alice and Bob have agreed on a shared secret key.

Applications of Encryption

- Digital Signatures
- A digital signature is a protocol that produces the same effect as a real signature.
- It is a mark that only the sender can make, but other people can easily recognize as it of being made by the sender.
- Just like a real signature, a digital signature indicates the sender's agreement to the message.
- Properties of a digital signature:
- It must be unforgeable: If person P signs a message M with signature $S(P$, $\mathrm{M})$, it is impossible for any one else to produce the pair $[\mathrm{M}, \mathrm{S}(\mathrm{P}, \mathrm{M})]$.
- It must be authentic: If person R receives the pair [M, S(P, M)] from P, R can check that the signature is really from P. Only P could have created this signature, and the signature is firmly attached to M .
- It is not alterable: After being transmitted, M cannot be changed by S, R or an interceptor.
- It is not reusable: A previous message presented again will be instantly detected by R.
- Public Key Protocol: S sends R E (K $\mathrm{K}_{\text {PUB-R }} \mathrm{E}\left(\mathrm{K}_{\text {PRI-S }}, \mathrm{M}\right)$)

