
Steganography

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University, Jackson MS 39217

E-mail: natarajan.meghanathan@jsums.edu



Steganography
• Steganography is the science of hiding information by embedding 

the hidden (secret) message within a cover media (for example, an 
image, audio or video carrier file) in such a way that the hidden 
information cannot be easily perceived to exist for the unintended 
recipients of the cover media.

• Steganography hides the fact that the secret communication does 
not exist.

• Different from Cryptography:

– Cryptography techniques have been widely used to encrypt the plaintext 
data, transfer the ciphertext over the Internet and decrypt the ciphertext
to extract the plaintext at the receiver side.

– However, with the ciphertext not really making much sense when 
interpreted as it is, a hacker or an intruder can easily perceive that the 
information being sent on the channel has been encrypted and is not 
the plaintext. 

– This can naturally raise the curiosity level of a malicious hacker or 
intruder to conduct cryptanalysis attacks on the ciphertext (i.e., analyze 
the ciphertext vis-à-vis the encryption algorithms and decrypt the 
ciphertext completely or partially).



Steganography: Hiding Model
• Steganography takes advantage of the redundancy of 

data in the cover media to insert the “extra” information 
so that there could be no perceptible change to the cover 

media.

Steganography

Embedding 

Algorithm

Cover Media

Encryption Key, 

other keys

Information to 
Hide

Stego Media



Steganography: Extraction Model

• The extraction process should be possible without the cover.

• The extraction algorithm can also be applied on any cover, whether 

or not it contains a secret message.

Steganography

Extraction

Algorithm

Cover Media

Encryption Key, 

other keys

Information to 
Hide

Stego Media



Information Hiding in Noisy Data

• The cover media (images or digital sound) typically has 
redundancies in the form of a noise component (i.e., insignificant 
parts) and the general principle underlying most steganographic
methods is to place the secret message in the noise component of
the signal.

• The cover can be typically considered as a sequence of bits

– In the case of a digital sound, this sequence is the sequence of samples 
over time 

– In the case of a digital image, a sequence can be obtained by 
vectorizing the image (i.e., by lining up the gray-scale or color values in 
a left-to-right and top-to-bottom order)

• A simple way to hide information in a sequence of binary numbers
(bytes) is to replace the least significant bit (LSB) of each byte with a 
bit of the secret message or replace the LSB of bytes according to a 
sequence of pseudo random numbers generated at both sides.

• For better security, the embedding algorithm should not significantly 
alter the statistical profile of the cover.



Random Access Cover vs. Stream Cover
• A cover is called a random access cover if the sender has access to 

the entire sequence of elements, a priori, in the embedding process.

• A cover is called a stream cover if the sender has no access to the 

entire sequence of numbers in the embedding process – for 

example, an application that stores information in digital audio files 

while they are being recorded.

• With a stream cover, it may be difficult to evenly spread the secret 

information all over the cover and one has to insert the secret info 

into the stream as it is transmitted; whereas, with a random access 

cover, the cover bits used to hide the secret information can be

evenly selected with a suitable pseudo random selection function

from all parts of the cover.

• The main drawback with random access covers is that the cover 

size is often shorter than that of stream covers; there could be

chances of collisions if the same cover bit is repeatedly selected for 

hiding the secret information.



Types of Steganography
• Secret Key Steganography

– The sender chooses a cover and embeds the secret message 

into the cover using a secret key (for example: the seed for the

pseudo random number generator for the byte sequence) known 

only to the sender and receiver.

– The receiver can only extract the hidden message if he knows 

the secret key.

– Anyone who does not know the secret key should not be able to 

obtain evidence of the encoded information.

– The cover and the stego-objects can be perceptually similar.

– Secret key steganography requires the prior exchange of a 

secret key before the actual communication (subverts the 

original intention of invisible communication!!)

– Solution: Send the secret key using public-key cryptography



Public Key Steganography
• Alice (sender), Bob (receiver), Wendy (attacker)

• Alice encrypts the secret message with Bob’s public key to obtain a 
random-looking ciphertext and embeds it in the cover and transmits 
the same as the stego media.

• Bob will first extract the hidden ciphertext from the stego media 
received and then decrypt the ciphertext using his private key.

• The embedding/extraction algorithms and the encryption/decryption 
algorithms are assumed to be publicly known.

• If Wendy happens to receive the Stego media, she can extract the 
hidden ciphertext, which will merely appear as some random bits; 
but, she will not be able to decrypt it.

• Steganographic Key Exchange Protocol

• If the public key of Bob is not known to Alice, Bob can send his
public key to Alice embedded in a cover. However, this could be 
prone to Man-in-the-Middle attacks and to avoid such attacks, the 
public-key certificate of Bob has to be sent instead. 

• Alice could generate a session key and send it as the secret 
message to Bob through public key steganography. The session key 
could be later used for embedding the actual secret information 
through secret key steganography.



Security of Steganography Systems

• A steganography system is insecure if an attacker is able to prove 
the existence of a secret message.

• To analyze the security of a steganography system, we must 
assume that an attacker has unlimited computation power and is 
able and willing to perform a variety of attacks.

• If he cannot confirm his hypothesis that a secret a message is 
embedded in a cover, then a system is theoretically secure.

• Perfect Security:

• If the selection of a cover is represented as a random variable C, a 
steganography system is (theoretically) perfectly secure if the 
process of embedding a secret message in a cover does not alter 
the probability distribution of C.

• The relative entropy (measure of the difference) between the 
probability distributions of the cover and the stego should be zero for 
a perfectly secure steganography system.

• If the relative entropy between the two probability distributions is ≤ ε, 
then the steganography system is said to be ε-secure (ε > 0). 



Security of Steganography Systems
• Detecting Secret Messages

• Type-I error: An attacker falsely detects a hidden message in a cover 
that does not actually contain information.

• Type-II error: An attacker fails to detect a hidden message.

• For a perfectly secure steganography system, the probability that an 
attacker makes a Type-II error is 1.

• For a ε-secure steganography system with the probabilities α and β
that a passive attacker makes a Type-I and Type-II error respectively, 
the following relationship holds. Note that for a ε-secure system, α + β
need not be 1.

• For ε-secure systems with no Type-I errors (i.e., α = 0), β ≥ 2-ε

• If ε = 0 (i.e., perfectly secure systems for which α + β = 1), β = 1

• As ε increases, β decreases (i.e., as the probability distributions of the 
cover and stego become increasing dissimilar, the probability that an 
attacker fails to detect a hidden message decreases).

ε
β

α
α

β

α
α ≤







 −
−+

−

1
log)1(

1
log 22



Security of Steganography Systems

ε
β

α
α

β

α
α ≤







 −
−+

−

1
log)1(

1
log 22

If α + β > 1 or α + β < 1, then ε > 0. This is because either of the two terms is > 0.

If α + β = 1, then ε ≥ 0. Thus, for a perfectly secure steganography system, we need

the probability of a Type-1 error and probability of a Type-2 error to add up to 1.



Least Significant Bit (LSB)-based 
Substitution

• The embedding process consists of choosing a subset 

{j1,…, jl(m)} of cover elements and performing the substitution 

operation LSB(cji) = mi (mi can be either 1 or 0).
– One can also change more than one bit of the cover-element – for example, 

by storing two message bits in the two least significant bits of one cover-

element.

• In the extraction process, the LSB of the selected cover-elements are 

extracted and used to reconstruct the secret message.

A Generic LSB-based Embedding Algorithm



(LSB)-based Substitution

• Embedding Strategies

– Use every cover-element starting from the first one. Since, the 

number of bits in the secret message is typically less than the length 

of the cover, the strategy would lead to a situation where the 

embedding process will be finished long before the end of the cover 

and the first part of the cover will have different statistical properties 

than the second part, where no modifications have been made.

A Generic LSB-based Extraction Algorithm



Embedding Strategies for LSB-
based Substitution

• Random Interval Method
• Both communication partners share a stego-key K that would be used 

as a seed for a pseudorandom number generator that can create a 

random sequence k1, …, kl(m) and use the cover-elements with 

indices j1 = k1; ji = ji-1 + ki, for 2 ≤ i ≤ Length(m)

Embedding Algorithm Extraction Algorithm



Problem of Collisions with the 
Random Interval Method-based LSB
• Collision – One index (jk) could appear more than once in the 

pseudorandom sequence as the output of the pseudorandom number 

generator is not restricted in any way.

• If a collision occurs, the sender will possibly try to insert more than one 

message bit into a cover-element, leading to corruption of the 

message. 

• If the message is quite short compared with the number of cover-

elements, the probability of collisions is negligible and the corrupted 

bits could be reconstructed using an error-correcting code.

• This is however feasible only for quite a short secret message, as the 

probability of a collision, p, increases rapidly as the length of the 

secret message to be embedded increases.

Length(c)      Length(m)         p

600 x 600           200            0.05

pixels             600            0.4



Handling Collisions with the Random 
Interval Method-based LSB

• Tracking the Pseudorandom sequence
• The sender could keep track of all the cover-element indices, that 

have already been used for the communication, in a set B.

• If during the embedding process, one specific index generated 
according to the pseudorandom sequence has not been used before 
(i.e., is not in the set B), then the sender adds the index to B and 
continues to use it. If the index generated is already in B, the sender 
discards the index and chooses another index pseudorandomly. 

• At the receiver side, a similar technique is applied.

• Using a Pseudorandom Permutation of Cover-bit Indices
• Instead of embedding the message bits sequentially in the increasing 

order of the index values for the cover, each element in the 
pseudorandom number sequence could be generated anywhere from 
1 to Length(c), where c is the cover and the secret message bits could 
be embedded at the cover-bits corresponding to the index values 
generated. 

• Collisions are handled similar to the approach suggested above.



Cover-Regions and Parity-bits
• A cover-region is any non-empty subset of the cover c = {c1, …, cl(c)}

• The idea is to generate a pseudorandom sequence of disjoint cover-
regions, using a stego-key as the seed, and store only one bit of the 
secret message in a whole cover-region rather than in a single 
element.

• The secret bit to be hidden inside a cover-region is embedded as 
the parity-bit p(I) for the cover-region I chosen.

• During the embedding step, l(m) disjoint cover-regions Ii (1 ≤ i ≤ l(m)) 
are selected, each encoding one secret bit mi in the parity bit p(Ii). 

• If the parity bit of the cover-region Ii does not match with the secret 
bit mi to encode, one LSB of a randomly chosen cover-element in Ii
is flipped. This will result in p(Ii) = mi .

• During the extraction process at the receiver, the parity bits of all the 
selected cover-regions (generated according to the pseudorandom 
sequence) are calculated and lined up to reconstruct the message.



Pixel
• A pixel (picture element) represents a single point, the 

smallest unique element, in an image.

• Each pixel has its own address and the address 
correspond to its co-ordinates.

• Pixels are typically arranged in a two-dimensional grid, 
and are often represented using dots or squares.

• Each pixel is a sample of the original image; the larger 
the number of pixels, the greater the resolution.
– A 6 MP camera captures the image and stores it via 6 Million 

pixels.

• The number of distinct colors that can be represented by 
a pixel depends on the number of bits per pixel (bpp).

• Commonly used coloring models: 
– 8-bit monochromatic model – 28 = 256 colors (gray-scale model) 

– A value of 0 indicates black and 255 indicates white color. 

– 24-bit RGB model that can represent 224 = 16.8 million colors; 
Used in BMP (Bitmap), JPEG, TIFF image formats.



24-bits per Pixel - RGB Model
• 24 bits per pixel - Three 8-bit unsigned integer (0 through 255) 

represent the intensities of red, green, and blue (R, G, B).

• An (R, G, B) value of (0, 0, 0) represents Black and an (R, G, B) 

value of (255, 255, 255) represents White.

• (255, 0, 0) – Red; (0, 255, 0) – Green; (0, 0, 255) - Blue



Palette-based Images
• In a palette-based image, only a subset of the colors 

from a specific color space is used to colorize the image.

• Every palette-based image consists of two parts: (I) a 
palette specifying the N colors as a list of indexed pairs 
(i, ci), assigning a color vector ci to every index i and (II) 
the actual image with its pixels identified with the palette 
index values corresponding to the color value they 
represent.

• The above approach can significantly reduce the file size 
if only a small number of colors are used throughout the 
image.

• Examples: Graphics Interchange Format (GIF) and 
Bitmap (BMP) format.



Information Hiding in 
Palette-based Images

• Information is typically encoded in the image data and not the 

palette as there are only limited entries in the latter.

• Note that the image data has only the index values for the color

representing the pixel and not its RGB values. The index values for 

neighboring pixels (that may have perceptually similar colors) may 

not be closer to each other. Hence, a simple LSB encoding of the

index values will lead to perceptually different colors in the stego-

object and an attacker may quiet easily determine the presence of 

hidden information.

000 255, 0, 0

001 125, 0, 0

010 75, 0, 0

011 100, 0, 0

100 200, 0, 0

101 150, 0, 0

110 25, 0, 0

111 225, 0, 0

000 111

�Palette Table

(not sorted)

Original

Image Data

Before LSB-based Information Hiding After LSB-based Information Hiding

001 110

LSB-encoded 

Image Data

110001

The underlined bits are the LSBs

Assume data to be hidden is: 1 0



Information Hiding in 
Palette-based Images

• Solution-1: “Sort” the colors in the palette so that the adjacent pixels 

are still perceptually similar after the embedding process. 

– Sort according to the Euclidean distance in the RGB space

– Sort according to the Luminance

222
BGRd ++=

000 255, 0, 0

001 225, 0, 0

010 200, 0, 0

011 150, 0, 0

100 125, 0, 0

101 100, 0, 0

110 75, 0, 0

111 25, 0, 0

000 001

�Palette Table

(Sorted)

Original

Image Data

Before LSB-based Information Hiding After LSB-based Information Hiding

001 000

LSB-encoded 

Image Data

The underlined bits are the LSBs

Assume data to be hidden is: 1 0

BGRY 114.0587.0299.0 ++=



Information Hiding in 
Palette-based Images

• Solution-2: For every pixel (or a pixel chosen for information hiding), 

the index value corresponds to the color of the pixel if its parity value 

[(R + G + B)/mod 2] matches with the secret bit to encode; otherwise 

the index value will correspond to that of the next-closest color, in the 

Euclidean space (assume ties are broken based on the index values; 

in our case – the larger index value is assumed to be the next-closest 

color), whose parity value matches with the secret bit to encode. 

000 001

�Palette Table

(Sorted)

Original

Image Data

Before Information Hiding After Information Hiding

Assume data to be hidden is: 1 0

000 255, 0, 0

001 225, 0, 0

010 200, 0, 0

011 150, 0, 0

100 125, 0, 0

101 100, 0, 0

110 75, 0, 0

111 25, 0, 0

000 � (255 + 0 + 0) mod 2 = 1

matches with the first secret bit ‘1’

001 � (225 + 0 + 0) mod 2 = 1; the

Next closest color whose parity 

matches with the second secret bit ‘0’

is (200, 0, 0) � 010

000 010



Quantization of Continuous Signals 
using Pulse Code Modulation

• Continuous signals, such as audio signals, could be quantized to

discrete signals using techniques like Pulse Code Modulation (PCM) 

and Predictive coding. 

3

3

6

4

2
1

PCM – Approximating (“Mapping”) a continuous range of 

values to a relatively small discrete set of values. In the example

below, we quantize the strength of the analog continuous signal to 

8 discrete values.

The quantized signal may be transmitted as a sequence of integers:

011 011 110 100 010 001

3       3 6     4     2     1



Quantization of Continuous Signals 
using Predictive Coding

• With Predictive Coding, we quantize the difference between the 

signal strengths of the successive samples (xi – xi-1) and transmit the 

difference as a discrete value, rounded to the nearest integer.

2.5
2.9

6.4

4.0

1.8
1.0

The discrete approximation of the difference signal, ∆i, may be transmitted as a 

sequence of signed integers:

+3 0 +4 -2 -2 -1

(2.5-0)    (2.9-2.5)   (6.4-2.9)   (4-6.4)    (1.8-4)   (1-1.8)

Advantage: The range of values for

∆i is likely to be shorter than the

range of values for the absolute 

discrete signal strengths.



Steganography through Quantization 
using Predictive Coding

• The stego-key could consist of a table which assigns a 

specific bit to every possible value of the quantized 
difference signal, ∆i. 

• An example Stego-key table

• In order to store the ith message bit in the cover-signal, the 

quantized difference signal ∆i is computed. If ∆i does not 
match (according to the secret table) with the secret bit to 

be encoded, ∆i is replaced by the nearest ∆j where the 

associated bit equals the secret message bit.

• At the receiver side, the message is decoded according to 
the difference signal ∆i and the stego-key table.



Example for Steganography through 
Quantization using Predictive Coding

• Stego-key table

• Let the secret message to be hidden be: 1 1 0 1 0 1

• Rule: Check the entry for the ∆i value in the Stego-key table. If the 

associated bit does not match with the secret message bit, then look at 

the entries for (∆i ±1, ∆i ± 2 and so on) until there is a match. The ‘+’

could be assumed to be given preference over ‘-’ and vice-versa (i.e., 

alternatively – to balance out) in the ±, where ever possible. The 

transmitted quantized difference signals, in the above example, would 

be:

The discrete approximation of the difference signal, ∆i, may be transmitted as a 

sequence of signed integers:

+3 0 +4 -2 -2 -1

(2.5-0)    (2.9-2.5)   (6.4-2.9)   (4-6.4)    (1.8-4)   (1-1.8)

+4 0 +3 -1 -2 -1 

Secret bits:        1               1              0            1           0            1



Example for Steganography through 
Quantization using Predictive Coding

Discrete

Signal (before

Embedding)

Discrete

Signal (after

Embedding)

+3 0

+4

-2

-2

-1

+4 0

+3

-1

-2

-1



Information Hiding through Cover 
Generation

• All of the embedding methods discussed so far, hide the secret 
information in a specific cover by applying an embedding algorithm.

• There exists steganographic applications that generate a digital object 
only for the purpose of being a cover for secret communication. We will 
see one such application that is based on context-free grammars.

• Review of Context-free Grammar (CFG)

• Let G = <V, Σ, Π, S> be a CFG, where V is the set of variables, Σ the set 
of terminal symbols, Π V x (V U Σ)* the set of productions; S ε V the 
start symbol.

• The productions can be seen as a substitution rule; they convert a 
variable into a string containing terminal or variable symbols.

• A string s ε L(G) is a sequence of terminal symbols produced 
successively from the start symbol S by substituting variables by 
sequences of terminal or variable symbols according to Π.

• If for every string s ε L(G), there exists only one way s can be generated 
from the start symbol, the grammar G is said to be unambiguous.

• Note that a grammar is context-free if the left hand side of a production 
rule is a single non-terminal symbol.

⊆



Example for Context-free Grammar

• CFG G = < {S, A, B, C}, {A, …., Z, a, …, z}, Π, S} >

• Example 1 for Derivation of Sentence: I am lazy

• S � I A

• S � I am lazy

• Example 2 for Derivation of Sentence: Alice is reading

• S � Alice B

• S � Alice is C

• S � Alice is reading



Steganography through Automated 
Generation of English Texts using CFG 

• Unambiguous grammars can be used as a steganographic tool.

• Given a set of productions (used as stego-key), we assign a probability to each 
possible production for variable Vi.

• The sender and receiver, each, could construct a Huffman tree for the set of all 
productions associated with variable Vi.

• For a given secret message to be sent, a sequence of English sentences are 
generated using the CFG and the Huffman tree.

• The bits of the secret message are scanned from left to right and an English 
sentence is derived by traversing the Huffman tree according to the next bits of 
the secret message until a node of the tree is reached. The start symbol is then 
substituted by the production which can be found at this node of the tree. This 
process is repeated until all the message bits are used and the string consists 
only of terminal symbols.

• The receiver would be able to decode the secret message by iteratively parsing 
through the Huffman trees of the production rules (beginning from that of the 
Start symbol), according to the sequence of sentences received.

• Important: The size of the secret message is assumed to be known to the 
receiver so that it can terminate the excess bits that get encoded due to the 
structure of the Huffman tree.



Example for Automated Generation of 
English Texts using CFG 

0.5

Alice B

0.3

Bob B

0.1

Eve B

0.1

I A

0.5

is C

0.5

can cook

1.0

10

S B

0.2

0.5

1.00

1
0

1

0 1



Example for Automated Generation of 
English Texts using CFG 

0.3

am working

0.4

am lazy

0.3

am tired

0.6

1.0

0.1

sleeping

0.5

reading

0.4

working

1.0
A C

0

1

0 1

0.5

0

1

0 1



Example: Derivation of Sentence for 110101

S ���� Alice B (1); B ����can cook (1): 11

S ���� Bob B (01); B ���� is C (0); C ���� reading (1)

Example 1

0.5

Alice B

0.3

Bob B

0.1

Eve B

0.1

I A

0.5

is C

0.5

can cook

1.0

10

S

B
0.2

0.5

1.0
0

1
0

1

0 1

0.3

am working

0.4

am lazy

0.3

am tired

0.6

1.0

0.1

sleeping

0.5

reading

0.4

working

1.0
A

C

0

1

0 1

0.5

0

1

0 1



Example 2

0.5

Alice B

0.3

Bob B

0.1

Eve B

0.1

I A

0.5

is C

0.5

can cook

1.0

10

S

B

0.2

0.5

1.0
0

1
0

1

0 1

0.3

am working

0.4

am lazy

0.3

am tired

0.6

1.0

0.1

sleeping

0.5

reading

0.4

working

1.0
A

C

0

1

0 1

0.5

0

1

0 1

Secret Message: 1011010001110

Sequence of Sentences Generated
Alice is reading (101)

Alice is reading (101)

Eve can cook (0001)

Alice can cook (11)

Eve can cook (0001)

001 are dummy bits

Receiver knows message size



Example 3

0.5

Alice B

0.3

Bob B

0.1

Eve B

0.1

I A

0.5

is C

0.5

can cook

1.0

10

S

B

0.2

0.5

1.0
0

1
0

1

0 1

0.3

am working

0.4

am lazy

0.3

am tired

0.6

1.0

0.1

sleeping

0.5

reading

0.4

working

1.0
A

C

0

1

0 1

0.5

0

1

0 1

Secret Message: 011101010010001
Sequence of Sentences Generated

Bob can cook (011)

Alice is reading (101)

Bob is working (01001)

Eve can cook (0001)



Steganography vs. Watermarking
• Steganography focuses covert (hidden) point-to-point 

communication between two parties.

• Steganographic methods are usually not robust against modification 
of the data, or have only limited robustness and cannot protect the 
embedded information against technical modifications that may 
occur during transmission.

• Watermarking has the additional notion of resilience against 
attempts to remove the hidden data.
– Even if the existence of the hidden information is known, it should be 

hard for an attacker to destroy the embedded watermark (could be a 
number, text or image) without knowledge of a key.

• A popular application of watermarking is to give proof of ownership 
of digital data by embedding copyright statements.
– For this application, the embedded information should be robust against 

manipulations that may attempt to remove it.

• A practical implication of the robustness requirement is that 
watermarking methods can typically embed much less information 
into cover-data than steganographic methods.

• Desired Characteristics of a Watermarking System: Imperceptibility, 
Robustness (cannot be modified), Noninvertibility (cannot be 
removed), Ability to recover with or without the original data


