
Virtualization

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University

E-mail: natarajan.meghanathan@jsums.edu

Conventional System Architecture
• The three major components (hardware, operating systems,

application programs) are largely decoupled (from a development
point of view). But, still they work together only in the proper
combinations.

• Application software compiled for a particular ISA will not run on
hardware that implements a different ISA. For e.g., Windows
application binaries will not run on a Power PC (Mac) processor.

Hardware

Instruction Set

Architecture (ISA)

Operating

System

Applications

Conventional System Architecture
Working Combinations

Combinations that are NOT Interoperable Motivation – If a software is

restricted to run on only certain

nodes (OS/ ISAs) in the

network, then a great deal of

flexibility and interoperability

is lost, especially with the

significant growth of the

Internet and the heterogeneity
of the nodes that are part of it.

Virtualization Basics
• Virtualization is a technology that facilitates

running more than one operating systems side-

by-side just on the same processing hardware.

• Virtualization allows processing that would have

been achieved on multiple computers to run on

just one powerful multi-core processor.

• As multi-core processors with 4, 8 and 16 cores

on a chip are becoming common, many

processor cores are likely to be underutilized in

a typical system.

• Most applications will have a finite amount of

parallel tasks that can be executed at a given

time, leaving many processor cores idle.

• Virtualization could be used to allocate groups

of processor cores to individual operating

systems running in parallel.

Core 1

Core 2

Core 3

Core 4

OS 1 OS 2

Virtualization Basics
• To virtualize a given computer,

a piece of software called the
Virtual Machine Monitor - VMM
(also commonly referred to as a
hypervisor) must be installed.

• VMM enables running multiple
operating systems (OS) to run
in parallel on the same
hardware

• Each instance of an OS is
called a virtual machine (VM).

• Each VM can run on its own
operating system (called guest
operating system), applications,
etc.

• The objective of virtualization is
to make each VM act like a
standalone machine would.

Hardware

Virtual Machine Monitor

VMM / Hypervisor

Virtual

Machine 3

Virtual

Machine 1

Virtual

Machine 2

Applications Applications Applications

Virtualization Architectures
• There are two major

virtualization architectures
that can be used when
installing virtualization
software: hosted and bare-
metal.

• Hosted: A VMM is installed
on top of a host OS

• Bare-metal: A VMM is
installed directly on the
computer hardware for
more low-level access and
relying on host OS is not
much desirable.

• Both architectures differ in
installation, access to I/O
devices for data acquisition
and performance

Hosted

Architecture

Bare-metal

Architecture

Use Cases for Hosted Virtualization
Architecture

• The hosted architecture is typically used during the development

process.

• For example, a hosted VM architecture could be used for testing alpha

and beta software as each individual VM is isolated from each other. If

one VM (may be a VM running beta software) corrupts the operating

system – it will not affect any other VM OS and the host OS.

• Other Use Cases

• The hosted architecture could be used to run applications written for

legacy applications preventing the need of a dedicated computer to run

an older software.

• The hosted architecture enables running applications written for

several different operating systems on one computer. One VM may be

used for running Windows applications and another VM for running

Linux applications and so on.

• Example for Hosted Virtualization Architecture: VMWare Workstation

Use Case for Bare-metal
Virtualization Architecture

• The low-level nature of bare-metal

architectures makes them useful for

deployed applications that use multiple

operating systems.

• Imagine building a medical imaging device

that needs to process medical data in real-

time and also simultaneously provide an

interactive GUI to users. Both the real-time

OS and general purpose can be run

simultaneously.

• The VMM (Hypervisor) for a Base-is rather

“thin” (less code, lightly-loaded) compared to

the Hypervisors of a Hosted architecture

where they have to do a lot of work!!

• Bare-metal architectures are mainly

preferred for real-time embedded

applications where we need the I/O latency

to be within deterministic limits.

Examples of Hypervisors:

VMWare ESX Server,

WindRiver Hypervisor,

LynuxWorks LynxSecure

Benefits of Virtualization
• Save hardware cost and footprint

– No need of separate computer for multiple operating systems

– Reduced system footprint (total resources exclusively allocated) for
deployed applications

• Take advantage of the capabilities offered by different operating
systems on just one set of hardware.
– For example, one can use the graphics services provided by Windows in

conjunction with the deterministic processing provided by a real-time OS.

• Make use of multi-core processors
– More cores can be assigned to the different OS on a need-basis

• Test Beta software and maintain legacy applications

• Virtual machines are freely portable across different physical machines
– A VM may have an OS, instruction set, or both, that differ from those

implemented on the underlying real hardware.

• Increase system security
– One can create multiple VMs at different security levels and operate them in

parallel. A compromise or failure of one VM will not drastically affect the
other VMs.

– If needed (for e.g., in military applications), the VMM/ Hypervisor can isolate
certain virtual machines and their data from being accessed by the peer
virtual machines.

Hosted Virtualization – Detailed View

Physical Hardware

Host OS

VM Driver

Applications

VM Appl

For example, the VM Application running on the host OS could be VMWorkstation

Host world

Guest OS

Applications

VM world VM world

VM Monitor (VMM)

Guest OS

Applications

VM 1 VM 2

VM Workstation – Hosted Virtualization

• VMware Workstation installs like a normal application on

the host operating system.

• The application portion (VMApp) of VM Workstation uses a

driver (VMDriver) loaded into the host operating system to

establish the privileged Virtual Machine Monitor (VMM) –

running with the same privilege as the host OS – that runs

directly on the hardware.

• From now on, the physical hardware is either in the host

world or the VM world, with the VMDriver facilitating the

transfer of control between the two worlds.

• Switching between the host and VM worlds involves

saving and restoring all user and system visible state on

the CPU, and is hence more resource consuming (heavy-

weight) than a normal process switch.

Virtualization Techniques
• The VMM for the hosted and bare-metal architectures may use one of

the following techniques to isolate the individual virtual machines from

computer hardware.

– Binary Translation (Full Virtualization)

– Para Virtualization

– Hardware Assist

• All of the above techniques have the same end goal: to intercept any

virtual machine instruction that could affect system state (shared

resources) in any way. The techniques differ in the way they achieve

this goal.

• The Binary Translation approach is the most common of the three

techniques and Virtualization realized through this technique is

referred to as Full Virtualization, a common approach for most of the

well-known Hosted Virtualization architectures such as VM

Workstation.

Example for Full Virtualization
• When a user application running on a virtual machine attempts to

access the host hardware in non-privileged mode, the VMM gets out
of the way and allows the virtual machine to execute directly on the
hardware – providing CPU virtualization.

• Whenever the compiled code at a virtual machine contains a
privileged instruction (e.g., accessing an I/O device) and the code is
about to be executed, the underlying VMM traps the code, uses binary
translation to dynamically alters the executing code (to avoid affecting
the system state) and appropriately redirects the I/O request to the
host OS to prevent conflicts between individual VMs.

• The VMM translates the instructions to match to the ISA of the host
hardware and transfers control to the host world to the VMApp
(running on the host OS) through the VMDriver.

• The VMApp will perform the I/O on behalf of the VM through
appropriate system calls issued through the host OS.

• There is more work for the VMM (to translate the code) and the host
OS (for switching between the VM world and the host world), leading
to degradation in performance. To minimize the number of such
switches and reduce the performance impact suffered by a user,
VMMs typically inspects and translates groups of instructions at a
time.

Full Virtualization and its Weakness
• The weakness of the binary

translation approach of full

virtualization is the potential

degradation in I/O

performance due to

excessive CPU overhead.

Because I/O emulation is

done in the host world, a

VM executing an I/O

intensive workload will

have to incur additional

CPU time frequently

switching between the VM

and host worlds, as well as

significant time in the host

world performing I/O to the

native hardware. Control Flow for Processing I/O Request

from an Application Running in the VM

Para Virtualization
• The Binary Translation approach keeps the guest OS out of the picture and

overburdens the VMM and the VMApp running in the host world to do all the
emulation of the underlying hardware for each of the VMs running on the
host.

• With Para Virtualization, the code for each of the guest OS in a specific VM is
modified statically (i.e., before running the applications) to coincide with the
ISA of the underlying hardware and hence would be able to directly handle
the privileged instructions of the applications running in the VM.

• The guest OS would be updated with the necessary drivers and the ISA to be
able to directly access the underlying physical hardware.

• Since the guest OS implemented as part of each VM can do this virtualization
in parallel, the technique is referred to as Parallel Virtualization – in short,
widely called as Para Virtualization.

• The objective of Para Virtualization is to minimize the number of times the
VMM is called and the switch between the host world and VM world occurs to
execute the privileged instructions of the applications running in the VM.

• Limitations: Certain OS like Windows are not open source and cannot be
modified.

• Para Virtualization is mostly still in research stage.

• The Para Virtualization is mainly focused on only open source OS.

• Example for Para Virtualization: Xen virtualization software

Hardware Assisted Virtualization
• Rather than requiring hardware emulation (binary translation) or

operating system modifications (para virtualization), an alternative

technique is to develop the hardware that is virtualization-aware and

hence would directly allow multiple operating systems to simultaneous

share the resources in a safe and efficient manner.

• Intel-VT and AMD-V are hardware technologies developed to be

virtualization-aware.

• Hardware-assisted virtualization is mainly used with the bare-metal

virtualization architecture; whereas, the binary translation-based full

virtualization and para virtualization techniques are mainly used with

the hosted virtualization architectures.

Networking Issues with VMs
• There are three popular methods to connect a VM to the host PC and the

Internet.

• Bridged: Under the Bridged method, the VM will directly contact the
DHCP server of the local network and apply for a unique local IP address
in the LAN. The VM will be then able to directly access the Internet and
all available resources on the LAN; other PCs and resources on the LAN
can also directly access the VM using its IP address. This is the preferred
connection method, if we run any server on the VM.

• NAT (Network Address Translation): Under this method, the VM
accesses the Internet and the local LAN using the IP address of the host
PC and internally, we have a virtual private network involving the host PC
and the VMs running on it. The other PCs on the LAN cannot directly
access the VM and they have to go through the NAT process at the host
PC. In other words, the host PC acts as the first-stop gateway router for
the VM.

• Host-only: This method is same as the NAT except the VMs cannot
access the Internet. The VMs running on the same host PC and using
the same host-only method can access each other’s services.

Strategies for Performance Improvement

of Virtualized Environment
• In multi-core machines, the VMM/ Hypervisor can schedule the

different VMs to run on separate cores so that there is minimal

intervention from the VMM to access hardware resources that are

dedicated to each of the cores.

• Computation-intensive and real-time VMs could be assigned multiple

cores where as more user-interactive general purpose OS could be

assigned fewer cores.

General Purpose
OS

Real-time OS

Core 1 Core 2 Core 3 Core 4

Virtualization with Quad-Core Processor

Strategies for Performance Improvement

of Virtualized Environment

• Partitioning of Resources across VMs: If we know that certain devices

are to be exclusively used for specific OSs, then it is better to statically

set access permissions to these resources at the VMM and all it has to

worry about at run-time is to check whether the access request for a

specific resource is coming from the appropriate VM.

