
Secure Coding Standards and 

Issues (Selected) in Java

Dr. Natarajan Meghanathan

Associate Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu



Standard-1: Detect or Prevent 
Integer Overflow

• Programs should not permit arithmetic operations to 
exceed the ranges provided by the various primitive 
integer data types.
– In the Java language, the only integer operators that can throw 

an exception are the / and % operators, which throw an 
Arithmetic Exception if the right-hand operand is a 0. In addition, 
the -- or ++ unary operators throw an OutofMemoryError if the 
decrement or increment operation requires insufficient memory.



Vulnerable Program: Integer Overflow



Solution # 1: Pre-condition Testing

• Idea: Check the inputs to each arithmetic 

operator to ensure that overflow cannot 

occur. Throw an ArithmeticException when 

the operation would overflow if it were 

performed; otherwise, perform the 

operation. 



Pre-condition Testing for Addition



Code Segments for Safe Arithmetic

Source: https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow

For the sake of understanding,

Assume Integer.MAX_VALUE = 127

Integer.MIN_VALUE = -128

left = 65; right = 2

left = - 65; right = 2

left = 65; right = -2
left = - 65;

right = -2



Code Segments for Safe Arithmetic

Source: https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow



Solution # 2: Upcasting

• Idea:

– Cast the inputs to the next larger integer type

– Do the arithmetic operation on the larger type

– Check the value of each intermediate result 
and final result to see if it would still fit within 
the range of the original integer type; if not 
raise an ArithmeticException

– Downcast the final result to the original 
smaller type before assigning the result to a 
variable of smaller type and throw an 



Vulnerable Program

How is this possible???



Continued…..

Solution using Upcasting





Solution # 3: Use BigInteger Class

• Idea:
– Convert the inputs into objects of type BigInteger and 

perform all arithmetic using BigInteger methods. 

– Type BigInteger is the standard arbitrary-precision 
integer type provided by the Java standard libraries.

– The arithmetic operations implemented as methods of 
this type cannot overflow; instead, they produce the 
numerically correct result. 

– Consequently, compliant code performs only a single 
range check just before converting the final result to 
the original smaller type and throws 
an ArithmeticException if the final result is outside the 
range of the original smaller type. 



Solution using BigInteger

Continued…..



Solution using BigInteger



Standard 2: Floating Point Values
• When precise computation is necessary, such as when performing 

currency calculations, floating-point types must not be used. Instead, 

use an alternative representation that can completely represent the 

necessary values. 
Vulnerable Code: Program requiring 

Precise Computation



Solution 1: Use Integer types



Solution 2: Use BigDecimal

Note: Do not construct BigDecimal objects from floating point literals like:

BigDecimal dollar = new BigDecimal(1.0);

Instead use string-based BigDecimal constructors.



Standard 3: Do not Attempt 
Comparisons with NaN

• Use of the numerical comparison operators (<, <=, >, >=, ==) with NaN (not 
a number) returns false, if either or both operands are NaN. 

• Use of the inequality operator (!=) returns true, if either operand is NaN.



Solution: Use the 
Double.isNaN(double) Method



Standard 4: Check Floating Point 
Inputs for Exceptional Values

• Floating-point numbers can take on three exceptional 
values: infinity, -infinity, and NaN (not-a-number). These values are 
produced as a result of exceptional or otherwise unresolvable 
floating-point operations, such as division by zero, or can be input by 
the user.



Solution: Check 

Values before 

Use



Standard 5: Do not use Floating 
Point Values as Loop Counters



Solution: Use Integer Loop Counter



Standard 6: Conversions of Numeric 

Types to Narrower Types should not 

result in Lost or Misinterpreted Data



Solution: Range Check the Values 
before Conversion



Issue 1: Handling Number Format 
Exception
Vulnerable Program

Note: Acceptable range of 32-bit integers (considering 2’s complement)

-2147483648 to 2147483647



Code to Handle Number Format 
Exception


