

 1

TABLE OF CONTENTS

MODULE I: A TUTORIAL ON JAVA SOCKET PROGRAMMING …… 3

1 Introduction ………………………………………………………. 3

2 Types of Sockets …………………………………………………. 5

3 The Connectionless Datagram Socket ………………………….... 6

 3.1
Example Program to Send and Receive a Message using
Connectionless Sockets …………………………………………… 9

 3.2
Example Program to Send and Receive a Message in both
Directions (Duplex Communication) using Connectionless
Sockets…………………………………………………………….. 11

4 The Connection-Oriented (Stream Mode) Socket ………………... 14

 4.1
Example Program to Send a Message from Server to Client when
Contacted …………………………………………………………. 17

 4.2
Example Program to Illustrate Duplex Nature of Stream-mode
Socket Connections ……………………………………………….. 20

 4.3
Example Program to Illustrate the Server can Run in Infinite Loop
handling Multiple Client Requests, one at a time ………………… 21

 4.4
Example Program to Send Objects of User-defined Classes using
Stream-mode Sockets ……………………………………………... 23

 4.5
Example Program to Illustrate Sending and Receiving of Integers
across a Stream-mode Socket …………………………………….. 26

 4.6 Iterative Server vs. Concurrent Server ……………………………. 27

5 Multicast Sockets …………………………………………………. 33

 5.1
Example Program to Illustrate an Application in which a Message
Sent by a Process Reaches all the Processes Constituting the
Multicast Group …………………………………………………... 34

 5.2
Example Program to Illustrate an Application in which each
Process of the Multicast Group Sends a Message that is Received
by all the Processes Constituting the Group ……………………… 36

6 Exercises ………………………………………………………….. 39

 2

MODULE II: A TUTORIAL ON SOURCE CODE ANALYSIS OF JAVA
PROGRAMS …………………………………………………………………

43

1 Introduction ………………………………………………………... 43

2
 Case Study on a Connection-Oriented File Reader Server Socket

Program ...

48

 2.1 Resource Injection Vulnerability ………………………………….. 49

 2.2 Path Manipulation Vulnerability …………………………………... 53

 2.3 System Information Leak Vulnerability …………………………… 55

 2.4 Denial of Service Vulnerability ……………………………………. 57

 2.5 Unreleased Resource Vulnerability ………………………………... 59

3 Conclusions and Future Work ……………………………………... 63

4 Acknowledgments ………………………………………………..... 65

5 Exercises …………………………………………………………… 65

 3

MODULE I

A TUTORIAL ON JAVA SOCKET PROGRAMMING

1. Introduction

Interprocess communication (IPC) is the backbone of distributed computing.

Processes are runtime representations of a program. IPC refers to the ability for

separate, independent processes to communicate among themselves to collaborate

on a task. The following figure illustrates basic IPC:

Figure 1: Interprocess Communication

Two or more processes engage in a protocol – a set of rules to be observed by

the participants for data communication. A process can be a sender at some instant

of the communication and can be a receiver of the data at another instant of the

communication. When data is sent from one process to another single process, the

communication is said to be unicast. When data is sent from one process to more

than one process at the same time, the communication is said to be multicast. Note

that multicast is not multiple unicasts.

Most of the operating systems (OS) like UNIX and Windows provide facilities

for IPC. The system-level IPC facilities include message queues, semaphores and

shared memory. It is possible to directly develop network software using these

system-level facilities. Examples are network device drivers and system evaluation

programs. On the other hand, the complexities of the applications require the use of

Process 1 Process 2

Sender Receiver

Data

 4

some form of abstraction to spare the programmer of the system-level details. An

IPC application programming interface (API) abstracts the details and intricacies

of the system-level facilities and allows the programmer to concentrate on the

application logic.

Figure 2: Unicast Vs. Multicast

The Socket API is a low-level programming facility for implementing IPC. The

upper-layer facilities are built on top of the operations provided by the Socket API.

The Socket API was originally provided as part of the Berkeley UNIX OS, but has

been later ported to all operating systems including Sun Solaris and Windows

systems. The Socket API provides a programming construct called a “socket”. A

process wishing to communicate with another process must create an instance or

instantiate a socket. Two processes wishing to communicate can instantiate sockets

and then issue operations provided by the API to send and receive data. Note that

in network parlance, a packet is the unit of data transmitted over the network. Each

packet contains the data (payload) and some control information (header) that

includes the destination address.

A socket is uniquely identified by the IP address of the machine and the port

number at which the socket is opened (i.e. bound to). Port numbers are allocated 16

bits in the packet headers and thus can be at most 66535. Well-known processes

m

P1

P2

m

P1

P3

m

P2 P4

m

 5

like FTP, HTTP and etc., have their sockets opened on dedicated port numbers

(less than or equal to 1024). Hence, sockets corresponding to user-defined

processes have to be run on port numbers greater than 1024.

In this chapter, we will discuss two types of sockets – “connectionless” and

“connection-oriented” for unicast communication, multicast sockets and several

programming examples to illustrate different types of communication using these

sockets. All of the programming examples are illustrated in Java.

2. Types of Sockets

The User Datagram Protocol (UDP) transports packets in a connectionless manner

[1]. In a connectionless communication, each data packet (also called datagram) is

addressed and routed individually and may arrive at the receiver in any order. For

example, if process 1 on host A sends datagrams m1 and m2 successively to

process 2 on host B, the datagrams may be transported on the network through

different routes and may arrive at the destination in any of the two orders: m1, m2

or m2, m1.

The Transmission Control Protocol (TCP) is connection-oriented and transports

a stream of data over a logical connection established between the sender and the

receiver [1]. As a result, data sent from a sender to a receiver is guaranteed to be

received in the order they were sent. In the above example, messages m1 and m2

are delivered to process 2 on host B in the same order they were sent from process

1 on host A.

A socket programming construct can use either UDP or TCP transport protocols.

Sockets that use UDP for transport of packets are called “datagram” sockets and

sockets that use TCP for transport are called “stream” sockets.

 6

3. The Connectionless Datagram Socket

In Java, two classes are provided for the datagram socket API: (a) The

DatagramSocket class for the sockets (b) The DatagramPacket class for the packets

exchanged. A process wishing to send or receive data using the datagram socket

API must instantiate a DatagramSocket object, which is bound to a UDP port of

the machine and local to the process.

To send a datagram to another process, the sender process must instantiate a

DatagramPacket object that carries the following information: (1) a reference to a

byte array that contains the payload data and (2) the destination address (the host

ID and port number to which the receiver process’ DatagramSocket object is

bound).

Figure 3: Program flow in the sender and receiver process (adapted from [2])

At the receiving process, a DatagramSocket object must be instantiated and

bound to a local port – this port should correspond to the port number carried in the

Sender Program

Create a DatagramSocket object

and bind it to any local port;

Place the data to send in a byte

array;

Create a DatagramPacket object,

specifying the data array and the

receiver’s address;

Invoke the send method of the

DatagramSocket object and pass as

argument, a reference to the

DatagramPacket object.

Receiver Program

Create a DatagramSocket object

and bind it to a specific local port;

Create a byte array for receiving

the data;

Create a DatagramPacket object,

specifying the data array.

Invoke the receive method of the

socket with a reference to the

DatagramPacket object.

 7

datagram packet of the sender. To receive datagrams sent to the socket, the

receiving process must instantiate a DatagramPacket object that references a byte

array and call the receive method of the DatagramSocket object, specifying as

argument, a reference to the DatagramPacket object. The program flow in the

sender and receiver process is illustrated in Figure 3 and the key methods used for

communication using connectionless sockets are summarized in Table 1.

Table 1: Key Methods of the DatagramSocket API (adapted from [3])

No. Constructor/ Method Description

DatagramSocket class

1 DatagramSocket()
Constructs an object of class DatagramSocket and binds the

object to any available port on the local host machine

2 DatagramSocket(int port)
Constructs an object of class DatagramSocket and binds it to

the specified port on the local host machine

3
DatagramSocket (int port, InetAddress

addr)

Constructs an object of class DatagramSocket and binds it to

the specified local address and port

4 void close() Closes the datagram socket

5
void connect(InetAddress address, int

port)

Connects the datagram socket to the specified remote address

and port number on the machine with that address

6 InetAddress getLocalAddress()
Returns the local InetAddress to which the socket is

connected.

7 int getLocalPort()
Returns the port number on the local host to which the

datagram socket is bound

8
InetAddress getInetAddress() Returns the IP address to which the datagram socket is

connected to at the remote side.

9 int getPort() Returns the port number at the remote side of the socket

10 void receive(DatagramPacket packet) Receives a datagram packet object from this socket

11 void send(DatagramPacket packet) Sends a datagram packet object from this socket

12 void setSoTimeout(int timeout) Set the timeout value for the socket, in milliseconds

DatagramPacket class

13
DatagramPacket(byte[] buf, int length,

InetAddress, int port)

Constructs a datagram packet object with the contents stored

in a byte array, buf, of specified length to a machine with the

specified IP address and port number

14 InetAddress getAddress()

Returns the IP address of the machine at the remote side to

which the datagram is being sent or from which the datagram

was received

15 byte [] getData() Returns the data buffer stored in the packet as a byte array

16 int getLength() Returns the length of the data buffer in the datagram packet

 8

sent or received

17 int getPort()

Returns the port number to which the datagram socket is

bound to which the datagram is being sent or from which the

datagram is received

18 void setData(byte []) Sets the data buffer for the datagram packet

19 void setAddress(InetAddress iaddr)
Sets the datagram packet with the IP address of the remote

machine to which the packet is being sent

20 void setPort(int port)
Sets the datagram packet with the port number of the

datagram socket at the remote host to which the packet is sent

With connectionless sockets, a DatagramSocket object bound to a process can

be used to send datagrams to different destinations. Also, multiple processes can

simultaneously send datagrams to the same socket bound to a receiving process. In

such a situation, the order of the arrival of the datagrams may not be consistent

with the order they were sent from the different processes. Note that in connection-

oriented or connectionless Socket APIs, the send operations are non-blocking and

the receive operations are blocking. A process continues its execution after the

issuance of a send method call. On the other hand, once a process calls the receive

method on a socket, the process is suspended until a datagram is received. To

avoid indefinite blocking, the setSoTimeout method can be called on the

DatagramSocket object.

We now present several sample programs to illustrate the use of the

DatagramSocket and DatagramPacket API. Note that in all these exercises, the

receiver programs should be started first before starting the sender program. This is

analogous to the fact that in any conversation, a receiver should be tuned and

willing to hear and receive the information spoken (sent) by the sender. If the

receiver is not turned on, then whatever the message was sent will be dropped at

the receiving side. The following code segments illustrate the code to send to a

datagram packet from one host IP address and port number and receive the same

packet at another IP address and port number. Though the sender and receiver

 9

programs are normally run at two different hosts, sometimes one can test the

correctness of their code by running the two programs on the same host using

‘localhost’ as the name of the host at remote side. This is the approach we use in

this book chapter. For all socket programs, the package java.net should be

imported; and very often we need to also import the java.io package to do any

input/output with the sockets. Of course, for any file access, we also need to import

the java.io package. Also, since many of the methods (for both the Connectionless

and Stream-mode API) could raise exceptions, it is recommended to put the entire

code inside a try-catch block.

3.1 Example Program to Send and Receive a Message using Connectionless

Sockets

--
import java.net.*;
import java.io.*;
class datagramReceiver{
 public static void main(String[] args){
 try{
 int MAX_LEN = 40;
 int localPortNum = Integer.parseInt(args[0]);
 DatagramSocket mySocket = new DatagramSocket(localPortNum);
 byte[] buffer = new byte[MAX_LEN];
 DatagramPacket packet = new DatagramPacket(buffer, MAX_LEN);
 mySocket.receive(packet);
 String message = new String(buffer);
 System.out.println(message);
 mySocket.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 4: Program to Receive a Single Datagram Packet

 10

import java.net.*;
import java.io.*;

class datagramSender{
 public static void main(String[] args){
 try{
 InetAddress receiverHost = InetAddress.getByName(args[0]);
 int receiverPort = Integer.parseInt(args[1]);
 String message = args[2];
 DatagramSocket mySocket = new DatagramSocket();
 byte[] buffer = message.getBytes();
 DatagramPacket packet = new DatagramPacket(buffer, buffer.length, receiverHost,
 receiverPort);
 mySocket.send(packet);
 mySocket.close();
 }
 catch(Exception e){ e.printStackTrace(); }
 }
}

Figure 5: Program to Send a Single Datagram Packet

The datagram receiver (datagramReceiver.java) program illustrated below can

receive a datagram packet of size at most 40 bytes. As explained before, the

receive() method call on the

DatagramSocket is a binding call. Once a datagram packet arrives at the host at the

specified local port number at which the socket is opened, the receiver program

will proceed further – extract the bytes stored in the datagram packet and prints the

contents as a String. The local port number at which the receiver should open its

datagram socket is passed as an input command-line parameter and this port

number should also be known to the sender so that the message can be sent to the

same port number. The datagram sender (datagramSender.java) program creates a

DatagramPacket object and sets its destination IP address to the IP address of the

 11

remote host, the port number at which the message is expected to receive and the

actual message. The sender program has nothing much to do after sending the

message and hence the socket is closed. Similarly, the socket at the receiver side is

also closed after receiving and printing the message. Figure 6 is a screenshot of the

execution and output obtained for the code segments illustrated in Figures 4 and 5.

Note that the datagramReceiver program should be started first. The maximum size

of the message that could be received is 40 bytes (characters) as set by the

datagramReceiver.

Figure 6: Screenshots of the Execution of datagramSender.java and
datagramReceiver.java

3.2 Example Program to Send and Receive a Message in both Directions

(Duplex Communication) using Connectionless Sockets

The program illustrated in this example is an extension of the program in Section

3.1. Here, we describe two programs – datagramSenderReceiver.java (refer Figure

7) and datagramReceiverSender.java (refer Figure 8). The sender-receiver program

will first send a message and then wait for a response for the message.

Accordingly, the first half of the sender-receiver program would be to send a

message and the second half of the program would be to receive a response. Note

that to get the response, the sender-receiver program should invoke the receive()

 12

method on the same DatagramSocket object and port number that were used to

send the message. The receiver-sender program will have to first receive the

message and then respond to the sender of the message. It extracts the sender

information from the Datagram Packet object received and uses the sender IP

address and port number retrieved from the Datagram Packet received as the

destination IP address and port number for the response Datagram Packet sent.

This is analogous to replying to a mail or an email using the sender information in

the mail (i.e., reply to the same address from which the message was sent). The

above logic could be used to develop chatting programs using connectionless

sockets. The maximum size of the messages that could be sent and received is 60

bytes in this example.

--
import java.net.*;
import java.io.*;

class datagramSenderReceiver{
 public static void main(String[] args){
 try{
 InetAddress receiverHost = InetAddress.getByName(args[0]);
 int receiverPort = Integer.parseInt(args[1]);
 String message = args[2];

 DatagramSocket mySocket = new DatagramSocket();
 byte[] sendBuffer = message.getBytes();
 DatagramPacket packet = new DatagramPacket(sendBuffer, sendBuffer.length,
 receiverHost, receiverPort);
 mySocket.send(packet);

 // to receive a message

 int MESSAGE_LEN = 60;
 byte[] recvBuffer = new byte[MESSAGE_LEN];

 13

 DatagramPacket datagram = new DatagramPacket(recvBuffer, MESSAGE_LEN);
 mySocket.receive(datagram);
 String recvdString = new String(recvBuffer);
 System.out.println(“\n”+recvdString);

 mySocket.close();
 }
 catch(Exception e){ e.printStackTrace(); }
 }
}

Figure 7: Datagram Sender and Receiver Program (Sends First, Receives Next)

import java.net.*;
import java.io.*;

class datagramReceiverSender{
 public static void main(String[] args){
 try{
 int MAX_LEN = 60;
 int localPortNum = Integer.parseInt(args[0]);
 DatagramSocket mySocket = new DatagramSocket(Integer.parseInt(localPortNum);
 byte[] recvBuffer = new byte[MAX_LEN];
 DatagramPacket packet = new DatagramPacket(recvBuffer, MAX_LEN);
 mySocket.receive(packet);
 String message = new String(recvBuffer);

 System.out.println(“\n”+message);

 // to reply back to sender
 InetAddress senderAddress = packet.getAddress();
 int senderPort = packet.getPort();
 String messageToSend = args[1];
 byte[] sendBuffer = messageToSend.getBytes();
 DatagramPacket datagram = new DatagramPacket(sendBuffer, sendBuffer.length,
 senderAddress, senderPort);

 14

 mySocket.send(datagram);
 mySocket.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 8: Datagram Receiver and Sender Program (Receives First, Sends Next)

Figure 9: Screenshots of the Execution of datagramSenderReceiver.java and
datagramReceiverSender.java

In the above example, the datagramReceiverSender.java program is waiting at a

local port number of 4567 to greet with a message “Welcome to the world of Java

Socket Programming” for an incoming connection request message from any host.

When the datagramSenderReceiver.java program attempts to connect at port

number 4567 with a “Trying to Connect” request, it gets the welcome message as

the response from the other end.

4 The Connection-Oriented (Stream-Mode) Socket

The Connection-Oriented Sockets are based on the stream-mode I/O model of the

UNIX Operating System – data is transferred using the concept of a continuous

data stream flowing from a source to a destination (program flow is illustrated in

Figure 10). Data is inserted into the stream by a sender process usually called the

 15

server and is extracted from the stream by the receiver process usually called the

client. The server process establishes a connection socket and then listens for

connection requests from other processes. Connection requests are accepted one at

a time. When the connection request is accepted, a data socket is created using

which the server process can write or read from/to the data stream. When the

communication session between the two processes is over, the data socket is closed

and the server process is free to accept another connection request. Note that the

server process is blocked when it is listening or waiting for incoming connection

requests. This problem could be alleviated by spawning threads, one for each

incoming client connection request and a thread would then individually handle the

particular client.

Figure 10: Program Flow in the Connection Listener (Server) and Connection
Requester (Client) Processes – adapted from [2]

In the next few sections, we illustrate examples to illustrate the use of Stream-

mode sockets to send and receive messages. These sockets are typically used for

 16

connection-oriented communication during which a sequence of bytes (not discrete

messages) need to be transferred in one or both directions. The connection listener

program (Server program) should be started first and ServerSocket object should

be the first to be created to accept an incoming client connection request. The

connection requester program (Client program) should be then started.

Table 2: Key Methods of the Stream-Mode Socket API (adapted from [3])

No. Constructor/ Method Description

ServerSocket class

1 ServerSocket(int port)
Constructs an object of class ServerSocket and binds the object to

the specified port – to which all clients attempt to connect

2 accept()

This is a blocking method call – the server listens (waits) for any

incoming client connection request and cannot proceed further

unless contacted by a client. When a client contacts, the method is

unblocked and returns a Socket object to the server program to

communicate with the client.

3 close() Closes the ServerSocket object

4 void setSoTimeout(int timeout)

The ServerSocket object is set to listen for an incoming client

request, under a particular invocation of the accept () method on

the object, for at most the milliseconds specified in “timeout”.

When the timeout expires, a java.net.SocketTimeoutException is

raised. The timeout value must be > 0; a timeout value of 0

indicates infinite timeout.

Socket class

5 Socket(InetAddress host, int port)
Creates a stream socket and connects it to the specified port

number at the specified IP address

6 InetAddress getInetAddress() Returns the IP address at the remote side of the socket

7 InetAddress getLocalAddress() Returns the IP address of the local machine bound by the socket

8 int getPort() Returns the remote port number to which this socket is connected

9 int getLocalPort() Returns the local port number to which this socket is bound

10 InputStream getInputStream()
Returns an input stream for this socket to read data sent from the

other end of the connection

11 OutputStream getOutputStream()
Returns an output stream for this socket to send data to the other

end of the connection

12 close() Closes this socket

13 void setSoTimeout(int timeout)

Sets a timeout value to block on any read() call on the

InputStream associated with this socket object. When the timeout

expires, a java.net.SocketTimeoutException is raised. The timeout

value must be > 0; a timeout value of 0 indicates infinite timeout.

 17

4.1 Example Program to Send a Message from Server to Client when Contacted

Here, the connectionServer.java program creates a ServerSocket object bound to

port 3456 and waits for an incoming client connection request. When a client

contacts the server program, the accept() method is unblocked and returns a

Socket object for the server to communicate with the particular client that

contacted. The server program then creates a PrintStream object through the output

stream extracted from this socket and uses it to send a welcome message to the

contacting client. The client program runs as follows: The client creates a Socket

object to connect to the server running at the specified IP address or hostname and

at the port number 3456. The client creates a BufferedReader object through the

input stream extracted from this socket and waits for an incoming line of message

from the other end. The readLine() method of the BufferedReader object blocks

the client from proceeding further unless a line of message is received. The

purpose of the flush() method of the PrintStream class is to write any buffered

output bytes to the underlying output stream and then flush that stream to send out

the bytes. Note that the server program in our example sends a welcome message

to an incoming client request and then stops.

import java.net.*;
import java.io.*;

class connectionServer{
 public static void main(String[] args){
 try{
 String message = args[0];
 int serverPortNumber = Integer.parseInt(args[1]);
 ServerSocket connectionSocket = new ServerSocket(serverPortNumber);
 Socket dataSocket = connectionSocket.accept();
 PrintStream socketOutput = new PrintStream(dataSocket.getOutputStream());

 18

 socketOutput.println(message);
 System.out.println(“sent response to client…”);
 socketOutput.flush();
 dataSocket.close();
 connectionSocket.close();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
 }

Figure 11: Connection Server Program to Respond to a Connecting Client
--

import java.net.*;
import java.io.*;

class connectionClient{
 public static void main(String[] args){
 try{
 InetAddress acceptorHost = InetAddress.getByName(args[0]);
 int serverPortNum = Integer.parseInt(args[1]);
 Socket clientSocket = new Socket(acceptorHost, serverPortNum);
 BufferedReader br = new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));
 System.out.println(br.readLine());
 clientSocket.close();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
 }

Figure 12: Connection Client Program to Connect to a Server Program

 19

Figure 13: Screenshots of the Execution of the Programs to Send a Message to a
Client from a Server when Contacted

import java.net.*;
import java.io.*;

class connectionClient{
 public static void main(String[] args){
 try{
 InetAddress acceptorHost = InetAddress.getByName(args[0]);
 int serverPortNum = Integer.parseInt(args[1]);
 Socket clientSocket = new Socket(acceptorHost, serverPortNum);
 BufferedReader br = new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));
 System.out.println(br.readLine());
 PrintStream ps = new PrintStream(clientSocket.getOutputStream());
 ps.println("received your message.. Thanks");
 ps.flush();
 clientSocket.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
 }

Figure 14: Code for the Client Program for Duplex Connection Communication

 20

4.2 Example Program to Illustrate Duplex Nature of Stream-mode Socket
Connections

This program is an extension of the program illustrated in Section 4.1. Here, we

illustrate that the communication using stream-mode sockets could occur in both

directions. When the client receives a response for its connection request from the

server, the client responds back with an acknowledgement that the server response

was received. The server waits to receive such a response from the client. All of

these communication occur using the Socket object returned by the accept()

method call on the ServerSocket object at the server side and using the Socket

object originally created by the client program to connect to the server. It is always

recommended to close the Socket objects at both sides after their use. Even though

server programs typically run without being stopped, our example server program

terminates after one duplex communication with the client. Before the server

program terminates, the ServerSocket object should be closed.

import java.net.*;
import java.io.*;

class connectionServer{
 public static void main(String[] args){
 try{
 String message = args[0];
 int serverPortNum = Integer.parseInt(args[1]);
 ServerSocket connectionSocket = new ServerSocket(serverPortNum);
 Socket dataSocket = connectionSocket.accept();
 PrintStream socketOutput = new PrintStream(dataSocket.getOutputStream());
 socketOutput.println(message);
 socketOutput.flush();
 BufferedReader br = new BufferedReader(new
 InputStreamReader(dataSocket.getInputStream()));
 System.out.println(br.readLine());

 21

 dataSocket.close();
 connectionSocket.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
 }

Figure 15: Code for the Server Program for Duplex Connection Communication

Figure 16: Screenshots of the Execution of the Programs for Duplex
Communication

4.3 Example Program to Illustrate the Server can Run in Infinite Loop handling

Multiple Client Requests, one at a time

In this example, we illustrate a server program (an iterative server) that can service

multiple clients, though, one at a time. The server waits for incoming client

requests. When a connection request is received, the accept () method returns a

Socket object that will be used to handle all the communication with the client.

During this time, if any connection requests from any other client reach the server,

these requests have to wait before the server has completed its communication with

the current client. To stop a server program that runs in an infinite loop, we press

Ctrl+C. This terminates the program as well as closes the ServerSocket object.

 22

import java.net.*;
import java.io.*;

class connectionServer{
 public static void main(String[] args){
 try{
 String message = args[0];
 int serverPortNum = Integer.parseInt(args[1]);
 ServerSocket connectionSocket = new ServerSocket(serverPortNum);

 while (true){
 Socket dataSocket = connectionSocket.accept();
 PrintStream socketOutput = new PrintStream(dataSocket.getOutputStream());
 socketOutput.println(message);
 socketOutput.flush();
 dataSocket.close();
 }
 }
 catch(Exception e){e.printStackTrace();}
 }
 }

Figure 17: Iterative Server Program to Send a Message to each of its Clients

Figure 18: Screenshots of the Execution of an Iterative Server along with its
Multiple Clients

 23

Note that the client code need not be modified to communicate with the iterative

server. The same client code that was used in Section 4.1 or 4.2 could be used here,

depending on the case. In this example (illustrated in Figure 17), the iterative

server just responds back with a welcome message and does not wait for the client

response. Hence, one would have to use a client program, like the one shown in

Section 4.1, to communicate with this iterative server program.

4.4 Example Program to Send Objects of User-defined Classes using Stream-

mode Sockets

In this example, we illustrate how objects of user-defined classes could be sent

using stream-mode sockets. An important requirement of classes whose objects

needs to be transmitted across sockets is that these classes should implement the

Serializable interface defined in the java.io. package. Figure 19 shows the code for

an Employee class (that has three member variables – ID, Name and Salary),

implementing the Serializable interface. An object of the Employee class, with all

the member variables set by obtaining inputs from the user, is being sent by the

client program (code in Figure 20) to a server program (code in Figure 21) that

extracts the object from the socket and prints the values of its member variables.

To write an object to a socket, we use the ObjectOutputStream and to extract an

object from a socket, we use the ObjectInputStream.

import java.io.*;

class EmployeeData implements Serializable{
 int empID;
 String empName;
 double empSalary;
 void setID(int id){ empID = id; }

 24

 void setName(String name){ empName = name; }
 void setSalary(double salary){ empSalary = salary; }
 int getID(){ return empID; }
 String getName(){ return empName; }
 double getSalary(){ return empSalary; }
}

Figure 19: Code for the Employee Class, Implementing the Serializable Interface

import java.io.*;
import java.net.*;
import java.util.*;

class connectionClient{
 public static void main(String[] args){
 try{
 InetAddress serverHost = InetAddress.getByName(args[0]);
 int serverPortNum = Integer.parseInt(args[1]);
 Socket clientSocket = new Socket(serverHost, serverPortNum);
 EmployeeData empData = new EmployeeData();
 Scanner input = new Scanner(System.in);
 System.out.print("Enter employee id: ");
 int id = input.nextInt();
 System.out.print("Enter employee name: ");
 String name = input.next();
 System.out.print("Enter employee salary: ");
 double salary = input.nextDouble();
 empData.setID(id);
 empData.setName(name);
 empData.setSalary(salary);
 ObjectOutputStream oos = new ObjectOutputStream(clientSocket.getOutputStream());
 oos.writeObject(empData);
 oos.flush();
 clientSocket.close();
 }
 catch(Exception e){e.printStackTrace();}
 }

 25

}

Figure 20: Client Program to Send an Object of User-defined Class across Stream-

mode Socket

import java.io.*;
import java.net.*;

class connectionServer{
 public static void main(String[] args){
 try{
 int serverListenPortNum = Integer.parseInt(args[0]);
 ServerSocket connectionSocket = new ServerSocket(serverListenPortNum);
 Socket dataSocket = connectionSocket.accept();
 ObjectInputStream ois = new ObjectInputStream(dataSocket.getInputStream());
 EmployeeData eData = (EmployeeData) ois.readObject();
 System.out.println("Employee id : "+eData.getID());
 System.out.println("Employee name : "+eData.getName());
 System.out.println("Employee salary : "+eData.getSalary());
 dataSocket.close();
 connectionSocket.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 21: Server Program to Receive an Object of User-defined Class across a

Stream-mode Socket

 26

Figure 22: Screenshots of the Client-Server Program to Send and Receive Object
of User-defined Class across Stream-mode Sockets

4.5 Example Program to Illustrate Sending and Receiving of Integers across a

Stream-mode Socket

In this example program, we illustrate the sending and receiving of integers across

a stream-mode socket. The client program sends two integers using the

PrintStream object; the server program receives them, computes and prints their

sum.

import java.io.*;
import java.net.*;
import java.util.*;

class connectionClient{
 public static void main(String[] args){
 try{
 InetAddress serverHost = InetAddress.getByName(args[0]);
 int serverPortNum = Integer.parseInt(args[1]);
 Socket clientSocket = new Socket(serverHost, serverPortNum);
 PrintStream ps = new PrintStream(clientSocket.getOutputStream());
 ps.println(2);
 ps.flush();
 ps.println(3);
 ps.flush();
 clientSocket.close();
 }
catch(Exception e){e.printStackTrace();}
 }

 27

}

Figure 23: Client Program to Send Two Integers across a Stream-mode Socket

import java.io.*;
import java.net.*;

class connectionServer{
 public static void main(String[] args){
 try{
 int serverListenPortNum = Integer.parseInt(args[0]);
 ServerSocket connectionSocket = new ServerSocket(serverListenPortNum);
 Socket dataSocket = connectionSocket.accept();
 BufferedReader br = new BufferedReader(new
 InputStreamReader(dataSocket.getInputStream()));
 int num1 = Integer.parseInt(br.readLine());
 int num2 = Integer.parseInt(br.readLine());
 System.out.println(num1+" + "+num2+" = "+(num1+num2));
 dataSocket.close();
 connectionSocket.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 23: Server to Receive Integers across a Stream-mode Socket

4.6 Iterative Server vs. Concurrent Server

4.6.1 Iterative Server

As illustrated in Section 4.3, an iterative server is a server program that handles

one client at a time. If one or more client connection requests reach the server

while the latter is in communication with a client, these requests have to wait for

the existing communication to be completed. The pending client connection

requests are handled on a First-in-First-Serve basis. However, such a design is not

 28

efficient. Clients may have to sometime wait for excessive amount of time for the

requests ahead of theirs in the waiting queue to be processed. When the client

requests differ in the amount of time they take to be handled by the server, it would

then lead to a situation where a client with a lower execution time for its request at

the server may have to wait for the requests (ahead in the queue) that have a

relatively longer execution time to be completed first. The code in Figure 25

illustrates one such example of an iterative server that has to add integers from 1 to

a “count” value (i.e., 1+2+…+count) sent by a client program (Figure 24) and

return the sum of these integers to the requesting client. In order to simulate the

effect of time-consuming client requests, we make the server program to sleep for

200 milliseconds after performing each addition. As iterative servers are single-

threaded programs, the whole program sleeps when we invoke the sleep() static

function of the Thread class. The execution screenshots illustrated in Figure 26

show that a client with a request to add integers from 1 to 5 will have to wait for

19500 milliseconds (i.e., 19.5 seconds) as the client’s request reached the server

while the latter was processing a request from another client to add integers from 1

to 100, which takes 20031 milliseconds (i.e., 20.031 seconds).

import java.io.*;
import java.net.*;

class summationClient{
 public static void main(String[] args){
 try{
 InetAddress serverHost = InetAddress.getByName(args[0]);
 int serverPort = Integer.parseInt(args[1]);
 long startTime = System.currentTimeMillis();
 int count = Integer.parseInt(args[2]);

 Socket clientSocket = new Socket(serverHost, serverPort);

 29

 PrintStream ps = new PrintStream(clientSocket.getOutputStream());
 ps.println(count);
 BufferedReader br = new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 int sum = Integer.parseInt(br.readLine());
 System.out.println(" sum = "+sum);

 long endTime = System.currentTimeMillis();

 System.out.println(" Time consumed for receiving the feedback from the server:
 "+(endTime-startTime)+" milliseconds");
 clientSocket.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 24: Code for a Client Program that Requests a Server to Add Integers

(from 1 to a Count value) and Return the Sum

import java.io.*;
import java.net.*;

class summationServer{
 public static void main(String[] args){
 try{
 int serverPort = Integer.parseInt(args[0]);
 ServerSocket calcServer = new ServerSocket(serverPort);
 while (true){
 Socket clientSocket = calcServer.accept();
 BufferedReader br = new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));
 int count = Integer.parseInt(br.readLine());

 int sum = 0;

 30

 for (int ctr = 1; ctr <= count; ctr++){
 sum += ctr;
 Thread.sleep(200);
 }

 PrintStream ps = new PrintStream(clientSocket.getOutputStream());
 ps.println(sum);
 ps.flush();
 clientSocket.close();

 }
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 25: Code for an Iterative Server that Adds (from 1 to a Count value) and

Returns the Sum

Figure 26: Screenshots of Execution of an Iterative Summation Server and its
Clients

4.6.2 Concurrent Server

An alternative design is the idea of using a concurrent server, especially to process

client requests with variable service time. When a client request is received, the

 31

server process spawns a separate thread, which is exclusively meant to handle the

particular client. So, if a program has to sleep after each addition, it would be the

particular thread (doing the addition) that will sleep and not the whole server

process, which was the case with an iterative server. While a thread of a process is

sleeping, the operating system could schedule the other threads of this process to

run. With such a design, the waiting time of client requests, especially for those

with a relatively shorter processing time, could be significantly reduced. Note that

the code for the client program is independent of the design choice for the server.

In other words, one should be able to use the same client program with either an

iterative server or a concurrent server.

import java.io.*;
import java.net.*;

class summationThread extends Thread{
 Socket clientSocket;
 summationThread(Socket cs){ clientSocket = cs; }

 public void run(){
 try{
 BufferedReader br = new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));
 int count = Integer.parseInt(br.readLine());
 int sum = 0;
 for (int ctr = 1; ctr <= count; ctr++){
 sum += ctr;
 Thread.sleep(200);
 }

 PrintStream ps = new PrintStream(clientSocket.getOutputStream());
 ps.println(sum);
 ps.flush();
 clientSocket.close();

 32

 }
 catch(Exception e){e.printStackTrace();}
 }
}

class summationServer{
 public static void main(String[] args){
 try{
 int serverPort = Integer.parseInt(args[0]);
 ServerSocket calcServer = new ServerSocket(serverPort);
 while (true){
 Socket clientSocket = calcServer.accept();
 summationThread thread = new summationThread(clientSocket);
 thread.start();
 }
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 27: Concurrent Server Program and the Implementation of a Summation

Thread

Figure 28: Screenshots of Execution of a Concurrent Summation Server and its
Clients

 33

Figure 27 presents the code for a concurrent server. We implement the addition

module inside the run() function of the SummationThread class, an object of

which is spawned (i.e., a server thread) for each incoming client connection

requests. From then on, the server thread handles the communication with the

particular client through the Socket object returned by the accept() method of the

ServerSocket class and passed as an argument to the constructor of the

SummationThread class. The effectiveness of using a concurrent server (illustrated

in Figure 28) can be validated through the reduction in the processing time for a

client whose request to add integers from 1 to 5 sent to the server after the latter

started to process a client request to add integers from 1 to 100. The result at the

client that requests to add integers 1 to 5 (it takes only 1000 milliseconds – i.e., 1

second) would actually appear well ahead of that at the other client (it takes 20031

milliseconds – i.e. 20.031 seconds).

5 Multicast Sockets

Multicasting is the process of sending messages from one process to several other

processes concurrently. It supports one-to-many Inter Process Communication

(IPC). Multicasting is useful for applications like groupware, online conferences

and interactive learning, etc. In applications or network services that make use of

multicasting, we have a set of processes that form a group called multicast group.

Each process in the group can send and receive messages. A message sent by any

process in the group will be received by each participating process in the group.

A Multicast API should support the following primitive operations:

(1) Join – allows a process to join a specific multicast group. A process may be a

member of one or more multicast groups at the same time.

(2) Leave – allows the process to stop participating in a multicast group.

 34

(3) Send – allows a process to send a message to all the processes of a multicast

group.

(4) Receive – allows a process to receive messages sent to a multicast group.

At the transport layer, the basic multicast supported by Java is an extension of

UDP, which is connectionless and unreliable. There are four major classes in the

API: (1) InetAddress (2) DatagramPacket (3) DatagramSocket and (4)

MulticastSocket. The MulticastSocket class is an extension of the DatagramSocket

class and provides capabilities for joining and leaving a multicast group. The

constructor of the MulticastSocket class takes an integer argument that corresponds

to the port number to which the object of this class would be bound to. The

receive() method of the MulticastSocket class is a blocking-method, which when

invoked on a MulticastSocket object will block the execution of the receiver until a

message arrives to the port to which the object is bound to.

An IP multicast datagram must be received by all the processes that are

currently members of a particular multicast group. Hence, each multicast datagram

needs to be addressed to a specific multicast group instead of an individual

process. In IPv4, a multicast group is specified by a class D IP address combined

with a standard port number. In this chapter, we will use the static address

224.0.0.1, with an equivalent domain name ALL-SYSTTEMS.MCAST.NET, for

processes running on all machines on the local area network.

5.1 Example Program to Illustrate an Application in which a Message Sent by a

Process Reaches all the Processes Constituting the Multicast Group

In this example, we illustrate an application wherein there are two types of

processes: (i) multicast sender – that can only send a message to a multicast group

and (ii) multicast receiver – that can only receive a message sent to the multicast

group. Similar to the case of connection-oriented and connectionless sockets, the

 35

multicast receiver (Figure 30) should be started first and should be ready to receive

messages sent to the port number to which the multicast socket is bound to. We

then start the multicast sender (Figure 29).

To keep it simple, the multicast sender program stops after sending one message

to the multicast group and the multicast receiver program stops after receiving one

message for the group. The maximum size of the message that can be received in

this example is 100 bytes.

import java.io.*;
import java.net.*;

class multicastSender{
 public static void main(String[] args){
 try{
 InetAddress group = InetAddress.getByName("224.0.0.1");
 MulticastSocket multicastSock = new MulticastSocket(3456);
 String msg = "Hello How are you?";
 DatagramPacket packet = new DatagramPacket(msg.getBytes(), msg.length(), group,
 3456);
 multicastSock.send(packet);
 multicastSock.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 29: Code for Multicast Sender Program

import java.io.*;
import java.net.*;

class multicastReceiver{
 public static void main(String[] args){
 try{

 36

 InetAddress group = InetAddress.getByName("224.0.0.1");
 MulticastSocket multicastSock = new MulticastSocket(3456);
 multicastSock.joinGroup(group);
 byte[] buffer = new byte[100];
 DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
 multicastSock.receive(packet);
 System.out.println(new String(buffer));
 multicastSock.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 30: Code for Multicast Receiver Program

Figure 31: Screenshots of Execution of a Multicast Sender and Receiver Program

5.2 Example Program to Illustrate an Application in which each Process of the

Multicast Group Sends a Message that is Received by all the Processes

Constituting the Group

In this example, each process should be both a multicast sender as well as a

receiver such that the process can send only one message (to the multicast group);

but, should be able to receive several messages. Since a process can send only one

message, the number of messages received by a process would equal the number of

 37

processes that are part of the multicast group. Since a process should have both the

sending and receiving functionality built-in to its code, we implement the relatively

simpler sending module in the main() function; whereas, the receiving

functionality is implemented as a thread (readThread class in Figure 32). The

readThread object is spawned and starts to run before the sending module begins

its execution. In order to facilitate this, the code in Figure 32 will require all the

processes to be started first. After all the processes have begun to run (i.e., the

readThread has been spawned), we then press the Enter-key in each process

command window. This will trigger the sending of a message by each process. The

readThread displays the received message (refer to Figure 33).

import java.net.*;
import java.io.*;

class readThread extends Thread{
 InetAddress group;
 int multicastPort;
 int MAX_MSG_LEN = 100;

 readThread(InetAddress g, int port){
 group = g;
 multicastPort = port;
 }

 public void run(){

 try{

 MulticastSocket readSocket = new MulticastSocket(multicastPort);
 readSocket.joinGroup(group);

 while (true){
 byte[] message = new byte[MAX_MSG_LEN];

 38

 DatagramPacket packet = new DatagramPacket(message, message.length, group,
 multicastPort);
 readSocket.receive(packet);
 String msg = new String(packet.getData());
 System.out.println(msg);
 }
 }
 catch(Exception e){e.printStackTrace();}
 }
}

class multicastSenderReceiver{
 public static void main(String[] args){

 try{

 int multicastPort = 3456;
 InetAddress group = InetAddress.getByName("224.0.0.1");
 MulticastSocket socket = new MulticastSocket(multicastPort);
 readThread rt = new readThread(group, multicastPort);
 rt.start();

 String message = args[0];
 byte[] msg = message.getBytes();
 DatagramPacket packet = new DatagramPacket(msg, msg.length, group,
 multicastPort);
 System.out.print("Hit return to send message\n\n");
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 br.readLine();
 socket.send(packet);
 socket.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
}

Figure 32: Code for the Multicast Sender and Receiver Program that can both
Send and Receive

 39

Figure 33: Execution of Multicast Sender and Receiver Program that can both
Send and Receive

6 Exercises

1. Implement a simple file transfer protocol (FTP) using connection-oriented and

connectionless sockets. The connection-oriented FTP works as follows: At the

client side, the file to be transferred is divided into units of 100 bytes (and may

be less than 100 bytes for the last unit depending on the size of the file). The

client transfers each unit of the file to the server and expects an

acknowledgment from the server. Only after receiving an acknowledgment

from the server, the client transmits the next unit of the file. If the

acknowledgment is not received within a timeout period (choose your own

value depending on your network delay), the client retransmits the unit. The

above process is repeated until all the contents of the file are transferred. The

connectionless FTP works simply as follows: The file is broken down into lines

 40

and the client sends one line at a time as a datagram packet to the server. There

is no acknowledgment required from the server side.

2. Develop a concurrent file server that spawns several threads, one for each client

requesting a specific file. The client program sends the name of the file to be

downloaded to the server. The server creates the thread by passing the name of

the file as the argument for the thread constructor. From then on, the server

thread is responsible for transferring the contents of the requested file. Use

connection-oriented sockets (let the transfer size be at most 1000 bytes per flush

operation). After a flush operation, the server thread sleeps for 200

milliseconds.

3. Develop a “Remote Calculator” application that works as follows: The client

program inputs two integers and an arithmetic operation (‘*’,’/’,’%’,’+’,’-‘)

from the user and sends these three values to the server side. The server does

the binary operation on the two integers and sends backs the result of the

operation to the client. The client displays the result to the user.

4. Develop a streaming client and server application using connectionless sockets

that works as follows: The streaming client contacts the streaming server

requesting a multi-media file (could be an audio or video file) to be sent. The

server then reads the contents of the requested multi-media file in size randomly

distributed between 1000 and 2000 bytes and sends the contents read to the

client as a datagram packet. The last datagram packet that will be transmitted

could be of size less than 1000 bytes, if required. The client reads the bytes,

datagram packets, sent from the server. As soon as a reasonable number of

bytes are received at the client side, the user working at the client side should be

able to launch a media player and view/hear the portions of the received multi-

media file while the downloading is in progress.

 41

5. Develop a simple chatting application using (i) Connection-oriented and (ii)

Connectionless sockets. In each case, when the user presses the “Enter” key,

whatever characters have been typed by the user until then are transferred to the

other end. You can also assume that for every message entered from one end, a

reply must come from the other end, before another message could be sent. In

other words, more than one message cannot be sent from a side before receiving

a response from the other side. For connectionless communication, assume the

maximum number of characters that can be transferred in a message to be 1000.

The chat will be stopped by pressing Ctrl+C on both sides.

6. Extend the single client – single server chatting application developed in Q5

using connection-oriented sockets to a multiple client – single server chatting

application. The single server should be able to chat simultaneously with

multiple clients. In order to do this, you will have to implement the server

program using threads. Once a client program contacts a server, the server

process spawns a thread that will handle the client. The communication between

a client and its server thread will be like a single client-single server chatting

application.

7. Develop a multicast chatting tool that will be used to communicate among a

group of processes. Each process should be able to send and receive any

number of messages. The chat tool should have the following functionalities:

1) Get the message from the user and send it to all the other processes

belonging to the group. A process can receive a copy of the message.

2) Read the messages sent by any other process and display the message

to the user.

8. Develop an election vote casting application as follows: There are two

candidates A and B contesting an election. There are five electorates (processes)

 42

and each electorate can cast their vote only once and for only one of the two

candidates (A or B). The vote cast by an electorate is a character ‘A’ or ‘B’,

sent as a multicast message to all the other electorates. The winner is the

candidate who gets the maximum number of votes. After casting the vote and

also receiving the vote messages from all other electorates, each electorate

should be able to independently determine the winner and display it.

References

[1] D. E. Comer, “Computer Networks and Internets,” 5th Edition, Prentice Hall,

2008.

[2] M. L. Liu, “Distributed Computing: Principles and Applications,” Addison

Wesley, 2004.

[3] Java API: http://download.oracle.com/javase/1.4.2/docs/api/

 43

MODULE II

A TUTORIAL ON SOURCE CODE ANALYSIS OF JAVA
PROGRAMS

1 Introduction

With the phenomenal growth of the Internet, it is imperative to test for the security

of software during its developmental lifecycle and fix the vulnerabilities, if any is

found, before deployment. Until recently, security has been often considered as an

afterthought, and the bugs are mostly detected post-deployment through user

experiences and attacks reported. The bugs are often controlled through patch code

(more formally called ‘security updates’) that is quite often sent to customers via

Internet. Sometimes, patch codes developed to fix one bug may often open several

new vulnerabilities, which if left unattended, can pose a significant risk for the

system (and its associated resources) on which the software is run. It is critical that

software be built-in with security features (starting from the requirement analysis

stage itself, and implemented with appropriate modules as well as tested with

suitable analysis techniques) during its entire development lifecycle.

In this chapter, we focus on testing for software security using source code

analysis (also invariably referred to as static code analysis). Static code analysis

refers to examining a piece of code without actually executing it [1]. The technique

of evaluating software during its execution is referred to as run-time code analysis

(also called dynamic code analysis) [2] – the other commonly used approach to test

for software security. While dynamic code analysis is mainly used to test for

logical errors and stress test the software by running it in an environment with

limited resources, static or source code analysis has been the principal means to

evaluate the software with respect to functional, semantic and structural issues

 44

including, but not limited to, type checking, style checking, program verification,

property checking and bug finding [3]. On the top of these issues, the use of static

code analysis to analyze the security aspects of software is gaining prominence.

Static code analysis helps to identify the potential threats (vulnerabilities)

associated with the software, analyze the complexity involved (in terms of increase

in code size, development time, and code run time, etc) and the impact on user

experiences in fixing these vulnerabilities through appropriate security controls [4].

Static code analysis also facilitates evaluating the risks involved in only mitigating

or just leaving these vulnerabilities unattended – thus, leading to an attack, the

consequences of such attacks and the cost of developing security controls and

integrating them to the software after the attack has occurred [5]. In addition, static

code analysis is also used to analyze the impact of the design and the use of the

underlying platform and technologies on the security of the software [6]. For

example, programs developed in C/Unix platforms may have buffer overflow

vulnerabilities, which are very critical to be identified and mitigated; whereas,

buffer overflow vulnerabilities are not an issue for software developed in Java.

Software developed for J2EE platforms are strictly forbidden from using a main

function as the starting point of a program, whereas the main function is

traditionally considered the starting point of execution of software programs

developed in standard J2SE development kits and other high-level programming

languages. It would be very time consuming and often ineffective to manually

conduct static code analysis on software and analyze the above issues as well as

answer pertinent questions related to the security of software. One also needs to

have a comprehensive knowledge of possible exploits and their solutions to

manually conduct static code analysis.

 45

Figure 1: Command-line Execution of the Source Code Analyzer on a Java

Program and Forwarding the Results to an Audit Workbench Format File

Various automated tools have been recently developed to conduct static code

analysis [7][8]. In this chapter, we illustrate the use of a very effective tool

developed by Fortify Inc., called the Source Code Analyzer (SCA) [9]. The Fortify

SCA can be used to conduct static code analysis on C/C++ or Java code and can be

run in Windows, Linux or Mac platforms. The SCA can analyze individual

program files or entire projects collectively. The analyzer uses criteria that are

embedded into a generic rulepack (a set of rules) to analyze programs developed in

a specific platform/ language. Users may use these generic rulepacks that come

with the SCA or develop their own customized sets of rules.

 46

Figure 2: Audit Workbench Audit Guide Figure 3: List of Issues identified

Figure 4: Audit Workbench: Issues Panel and Code Editor displaying Details of a
Specific Security Issue

The SCA has to be first used in command line (Figure 1) to generate a report, in

.fpr format (as shown in the first command executed in Figure 1), which can be

loaded (second command in Figure 1) into the Audit Workbench utility (screenshot

 47

shown in Figure 2), a graphical-user interface utility, included with the Fortify

suite of tools. The Workbench interface displays a list of the issues that have been

flagged and groups these issues according to their severity (hot, warning, or info).

Figure 3 shows a listing of all the issues identified with the file reader server socket

program of the case study presented in Section 2.

Figure 5: Case Study: Original Java Code for the File Reader Server Program

The Workbench includes an editor that can highlight the troublesome code

identified to be the source of a particular vulnerability listed in the Issues panel,

and also allows users to make changes to the code within the application. Figure 4

shows a comprehensive picture of the Issues panel with the code editor. One

significant use of the Workbench utility is that for each generic issue flagged by

the analyzer, the utility provides a description of the problem and how it may be

averted. If users think that a security issue raised by the analyzer is of no interest to

 48

them (i.e. can be left unattended in the code), then the Workbench utility can be set

to suppress the raising of the issue in subsequent instantiations of running the

analyzer. At any point of time, the suppressed issues can be unchecked and the

issues will be raised if found in the code being analyzed at that time. Note that it is

important to make sure the source code that is being analyzed compiles without

any error prior to running it with the SCA.

2 Case Study on a Connection-Oriented File Reader Server Socket Program

In this section, we present a case study on a file reader server socket program,

based on connection-oriented sockets. For simplicity, the server program is

considered to serve only one client. The file reader server basically lets a client to

read the contents of a file whose name or the path is sent by the client over a socket

and the file is locally stored at the server. The server program (whose original

source code is shown in Figure 5) works as follows: An object of class

ServerSocket is instantiated at a port number input by the user. The ServerSocket is

the class used to open server sockets that wait on a certain port number (publicly

known to the clients) for incoming client requests. Once a client contacts the

server, the ServerSocket is unblocked (through the accept() method) and a Socket

object (in our program the clientSocket object) is created as a reference to

communicate with the client at the other side. The server waits for the client to

send a filename or a pathname through the socket and reads it through a

BufferedReader object (brSocket). Since the server is not sure of the number of

characters that would constitute the filename or the pathname, the server uses the

readLine() method of the BufferedReader class to read the filename/pathname as a

line of characters stored as a String. This String object is directly passed to the

FileReader constructor to load the file the client wishes to read. The contents of the

 49

file are read line-by-line and sent to the client using an object of the PrintStream

class invoked on the ClientSocket object (of class Socket).

We conduct source code analysis of the file reader server socket program (shown

in Figure 5) using the Fortify SCA and the output of all the issues identified are

shown in Figure 3. Note that the poor logging practice warning shown in Figure 3

is due to the use of print statements. We do not bother to remove the print

statements and so neglect those warnings. Similarly, we discard the warning

message appearing related to J2EE Bad Practices: Sockets; J2EE standard

considers socket-based communication in web applications as prone to error, and

permits the use of sockets only for the purpose of communication with legacy

systems when no higher-level protocol is available. The Fortify Source Code

Analyzer subscribes to the J2EE standards and flags some of the commonly used

J2SE features like sockets as something that is vulnerable in the context of

security. As mentioned before, the Audit Workbench does provide the flexibility to

turn off these flags which do not appear relevant to the programming environment.

The goal of the case study is thus to modify the file reader server socket program

(and still does what it is intended to do) to the extent that the source code analyzer

only outputs warnings corresponding to the poor logging practice and the use of

sockets as bad practice, and all the other vulnerabilities and warnings associated

with the program are taken care of (i.e., removed).

2.1 Resource Injection Vulnerability

The Resource Injection vulnerability (a dataflow issue) arises because of the

functionality to let the user (typically the administrator) starting the server program

to open the server socket on any port number of his choice. The vulnerability

allows user input to control resource identifiers enabling an attacker to access or

modify otherwise protected system resources [1]. In the connection server socket

 50

program of Figure 5, a Resource Injection vulnerability exist in line 11, wherein

the program opens a socket on the port number whose value is directly input by the

user. If the server program has privileges to open the socket at any specified port

number and the attacker does not have such a privilege on his own, the Resource

Injection vulnerability allows an attacker to gain capability to open a socket at the

port number of his choice that would not otherwise be permitted. This way, the

program could even give the attacker the ability to transmit sensitive information

to a third-party server.

Figure 6: Modification to the File Reader Server Program to Remove the Resource

Injection Vulnerability (fileReaderServer_1.java)

 51

We present two solution approaches to completely avoid or at least mitigate the

Resource Injection vulnerability: (1) Use a blacklist or white list: Blacklisting

selectively rejects potentially dangerous characters before further processing the

input in a program. However, any such list of unsafe characters is likely to be

incomplete and will almost certainly become out of date with time. A white list of

allowable characters may be a better strategy because it allows only those inputs

whose characters are exclusively listed in the approved set. Due to the difficulty in

coming up with a complete list of allowable or non-allowable characters, the

approaches of using a blacklist or white list can only mitigate the Resource

Injection attack. Nevertheless, if the set of legitimate resource names is too large or

too hard to keep track of, it may be more practical to follow a blacklist or white list

approach. We will use this approach to remove the Path Manipulation vulnerability

in Section 2.2. (2) Use a level of indirection: This approach involves creating a list

of legitimate resource names that a user is allowed to specify, and only allow the

user to select from the list. This approach can help us to completely avoid having

Resource Injection vulnerability in the code, because a user cannot directly specify

the resource name of his choice and can only chose from what is presented to him.

The tradeoff is with the approach of providing a list of port numbers (the resources

in our case) to choose from, we are revealing the available port numbers to a user

(even though he is constrained only to choose from this list). Note that with the

blacklist or white list approach, the user has to merely enter an input of his choice

and the program internally processes the input and filters it (thus not revealing

information regarding acceptable inputs to the user).

 52

Figure 7: Results of the Source Code Analysis of the File Reader Server Program
after the Removal of the Resource Injection Vulnerability

(fileReaderServer_1.java)

In this section, we present the use of the second approach (i.e. using a level of

indirection) to remove the Resource Injection vulnerability (refer to the modified

code, especially lines 9 through 25 and 54-56, in Figure 6). The user starting the

server program is presented with a list of port numbers to choose from. Each valid

port number is presented with a serial number and the user has to choose one

among these serial numbers. If the user choice falls outside the valid range of these

serial numbers, then the server program terminates printing a simple error message.

The limitation is that the user no longer has the liberty to open the server socket at

a port number of his choice. This is quite acceptable because often the server

sockets are run on specific well-defined port numbers (like HTTP on 80, FTP on

21, etc) and not on arbitrary port numbers, even if the administrator wishes to run

the server program on a port number of his choice. Figure 7 presents the results of

the source code analysis on the modified connection server socket program

(fileReaderServer_1.java) to fix the Resource Injection vulnerability. We have also

removed the use of command-line arguments to get inputs and instead use the

Scanner class; thus, taking care of the Leftover debug code warning.

 53

2.2 Path Manipulation Vulnerability

The Path Manipulation vulnerability occurs when user input is directly embedded

to the program statements thereby allowing the user to directly control paths

employed in file system operations [10]. In our file reader server program, the

name or path for the file sent by the client through the socket is received as a String

object at the server side, and directly passed onto the FileReader constructor (line

20 in Figure 5). The practice of directly embedding a file name or a path for the

file name in the program to access the system resources could be cleverly exploited

by a malicious user who may pass an unexpected value for the argument and the

consequences of executing the program, especially if it runs with elevated

privileges, with that argument may turn out to be fatal. Thus, Path Manipulation

vulnerability is a very serious issue and should be definitely not left unattended in

a code. Such a vulnerability may enable an attacker to access or modify otherwise

protected system resources.

Figure 8: Java Code Snippet for the Sanitize Method to Validate the Filename
Received through Socket

As suggested in Section 2.1, we propose to use the approach of filtering user

inputs using the blacklist/white list approach. It would not be rather advisable to

present the list of file names to the client at the remote side – because this would

reveal unnecessary system information to a remote user. It would be rather more

prudent to let the client to send the name or the path for the file he wants to open,

 54

and we validate the input against a set of allowable and non-allowable characters.

In this chapter, we assume the file requested to be read is located in the same

directory from which the server program is run, and that the file is a text file.

Hence, the last four characters of the input received through the socket should be

“.txt” and nothing else (thus, .txt at the end of the String input constitutes a white

list). Also, since the user is not permitted to read a file that is in a directory other

than the one in which the server program is running, the input should not have any

‘/’ character (constituting a blacklist) to indicate a path for the file to be read. In

this chapter, we have implemented the solution of using white list and blacklist

through the sanitize() method, the code for which is illustrated in Figure 8. The

modified file server program that calls the sanitize method to validate the filename

before opening the file for read is shown in Figure 9. The results of the source code

analysis of the modified file reader server program are shown in Figure 10.

Figure 9: Modified File Reader Server Socket Program to Call the Sanitize
Method to Validate the Filename before Opening it to Read

(fileReaderServer_2.java)

 55

Figure 10: Results of the Source Code Analysis of the File Reader Server Program
after the Removal of the Path Manipulation Vulnerability

(fileReaderServer_2.java)

2.3 System Information Leak Vulnerability

The “System Information Leak” vulnerability (a semantic issue) refers to revealing

critical system data, program structure including call stack or debugging

information that may help an adversary to learn about the software and the system,

and form a plan of attack [12]. In our file reader server program (see Figure 6), we

observe that in line 82 (as also indicated by the SCA in Audit Workbench Issues

panel in Figure 10), the printStackTrace() method called on the object of the class

IOException has the vulnerability to leak out sensitive system and program

information including its structure and the call stack. While revealing the

information about the call stack leading to an exception may be useful for

programmers to debug the program and quickly as well as effectively trace out the

cause of an error, the printStackTrace() method needs to be removed from the final

program prior to deployment.

 56

Figure 11: Modified File Reader Server Program to Remove the System
Information Leak Vulnerability (fileReaderServer_3.java)

Figure 12: Results of the Source Code Analyzer of fileReaderServer_3.java after
the Removal of the System Information Leak Vulnerability and Indicating the

Presence of the Denial of Service Vulnerability

A simple fix to this vulnerability is not to reveal much information about the

error, and simply state that an error has occurred. The attacker, if he was

contemplating to leverage the error information to plan for an attack, would not be

able to gain much information from the error message. In this context, we remove

the call to the printStackTrace() method from line 82 and replace it with a print

statement just indicating that an error occurred. The modified version of the file

reader server socket program is shown in Figure 11 and the results of its source

code analysis are shown in Figure 12.

 57

2.4 Denial of Service Vulnerability

A ‘Denial of Service’ vulnerability (a semantic issue) is the one with which an

attacker can cause the program to crash or make it unavailable to legitimate users

[10]. Lines 49 and 61 of the file reader server socket program (as indicated in

Figure 12) contain the Denial of Service vulnerability, and this is attributed to the

use of the readLine() method. It is always not a good idea to read a line of

characters from a file through a program because the line could contain an arbitrary

number of characters, without a prescribed upper limit. An attacker could misuse

this and force the program to read an unbounded amount of input as a line through

the readLine() method. An attacker can take advantage of this code to cause an

OutOfMemoryException or to consume a large amount of memory so that the

program spends more time performing garbage collection or runs out of memory

during some subsequent operation.

Figure 13: Modified Code for the File Reader Server Socket Program to Remove
the Denial of Service Vulnerability by Replacing the readLine() Method with the

read() Method (fileReaderServer_4.java)

 58

The solution we suggest is to impose an upper bound on the number of

characters that can be read from the file and buffered at a time (i.e., in one single

read operation). In this context, we suggest to use the read() method of the

BufferedReader class that takes three arguments: a character array to which the

characters read from the buffer are stored, the starting index in the character array

to begin storing characters and the number of characters to be read from the buffer

stream. In the context of lines 49 through 54 in the fileReaderServer_4.java

program (boxed in Figure 13), we replace the readLine() method with a read()

method to read the name of the file or the pathname. If we do not read sufficient

number of characters, then the name of the file stored in the String object filename

would be incorrect and this could be detected through the current implementation

of the sanitize() method (Figure 8) itself, as the last four characters of the file has

to end in “.txt”. In the context of lines 62 through 71 (boxed in Figure 13), there

would not be a problem in reading certain number of characters (rather than a line

of characters) for every read operation, because – whatever is read is stored as a

String and is sent across the socket.

Figure 14: Results of the Source Code Analysis of the File Reader Server Program
after Removing the Denial of Service Vulnerability (fileReaderServer_4.java)

 59

In order to preserve the structure of the text, we have to simply use the print()

method instead of the println() method of the PrintStream class. If there is a line

break in the text of the file, it would be captured through an embedded ‘\n’ line

break character and sent across the socket.

In this section, we choose to read 20 characters for each read operation at both

the instances and replace the readLine() method with the read() method

accordingly. In the second case, we read every 20 characters from the file, and the

last read operation may read less than 20 characters if there are not sufficient

characters. The subsequent read will return -1 if no character is read. Our logic (as

shown in lines 63-71 of the code in Figure 13) is to check for the return value of

the read operation every time and exit the while loop if the return value is -1,

indicating the entire file has been read.

Note that the length 20 we used here is arbitrary, and could be even set to 100.

The bottom line is there should be a definite upper bound on the number of

characters that can be read into the character buffer, and one should not be allowed

to read an arbitrary number of characters with no defined upper limit. The

modified file reader server socket program is shown in Figure 13 and the results of

the source code analysis are shown in Figure 14.

2.5 Unreleased Resource Vulnerability

The “Unreleased Resource” vulnerability (a control flow issue) occurs if the

program has been coded in such a way that it can potentially fail to release a

system resource [11]. In our file reader server socket program, the vulnerability

arose due to the use of the BufferedReader stream class (lines 48 and 66 of Figure

13) to read the contents from the socket and the text file and the PrintStream class

to send the contents across the socket to the remote side. Even though we have

called the close() methods on the objects of the above two stream classes

 60

immediately after their use is no longer needed, it may be possible that due to

abrupt termination of the program, the close() method calls are not executed (also

listed in the Issues panel of Figure 14). One possible reason for the program

control to skip the execution of the close() method calls could be a file read error,

which could happen if the name of the file read from the socket is not in the

location from which the program is trying to open and read the file. Another reason

(which is very unlikely to happen though, given the smaller size of the file) could

be that there is no sufficient memory in the system to load the contents of the text

file and read them. Similarly, in the case of sending across the socket, there may be

an error if the client abruptly closes the socket while the server attempts to transmit

them across the socket. Either way, if any such buffer reading or sending errors

occur, the program control immediately shifts from the try block to the catch block

and the streams corresponding to the BufferedReader and PrintStream classes will

never be released until the operating system explicitly forces the release of these

resources upon the termination of the program. From a security standpoint, if an

attacker could sense the presence of Unreleased Resource vulnerability in a

program, he can intentionally trigger resource leaks and failures in the operating

environment of the program (like making the file unavailable to be read or closing

the socket from the remote side, if the client is compromised) to cause a depletion

of the resource pool.

The solution we suggest is to add a finally { … } block after the try {…} catch

{…} blocks and release all the resources that were used by the code in the

corresponding try block. Note that in order to do so, the variables associated with

the resources have to be declared outside and before the try block so that they can

be accessed inside the finally block. In our case, we have to declare the stream

objects of the BufferedReader and PrintStream classes outside the try block and

close them explicitly in the finally block. The modified code segment

 61

(fileReaderServre_5.java) is shown in Figure 15. The results generated from

analyzing the fileReaderServer_5.java code with the Source Code Analyzer are

shown in Figure 16. Note that in order to close the two FileReader and

BufferedReader streams in lines 66 and 68 of the finally {...} block, we have to

declare that the main function throws the IOException in line 7.

Note that as shown in Figure 15, the reason why we are insisting on including

the close() method calls on the two stream objects in a finally block instead of a

catch block, even though it is supposed to catch the IOException, is that in case a

try block can generate multiple exceptions – there has to be multiple catch blocks

for the try block, one for each exception, and these catch blocks have to be listed in

the order of increasing scope – i.e., the exception that is the bottommost in the

hierarchy of exceptions has to be caught first, followed by exceptions further up in

the hierarchy. However, if at run-time, an exception higher up in the hierarchy is

generated, the control transfers to the catch block of that particular exception, and

only the subsequent catch blocks are executed, and not the catch blocks prior to it.

This way, if we had included the close() methods in the catch block for the

IOException class and relied on it to be called in case of a file read error, there

might be a situation that another catch block downstream is called due to the

generation of an exception higher up in the exception hierarchy, and the two

stream objects would not be released. Thus, in any situation, we do not recommend

releasing system resources inside catch blocks. The results of the source code

analysis of the final version of the file reader server socket program

(fileReaderServer_5.java) are shown in Figure 16, after removing all the five main

vulnerabilities in the code. The only warnings remaining in Figure 16 are those

corresponding to the poor logging practice and J2EE Bad Practices: Sockets,

which are not critical to be removed for standard Java programming environments.

 62

Figure 15: Modified Code Segment to Remove the Unreleased Resource
Vulnerability (fileReaderServer_5.java)

Figure 16: Results of Source Code Analysis on the Final Version of the File
Reader Server Socket Program with all the Main Vulnerabilities and Warnings

Removed (fileReaderServer_5.java)

Before we conclude, we also argue that it is not advisable to include a finalize()

method for the particular classes of the objects for which the resources allocated

need to be reclaimed. In order for an object’s finalize() method to be invoked, the

 63

garbage collector must first of all determine that the object is eligible for garbage

collection. However, the garbage collector is not required to run unless the Java

Virtual Machine (JVM) is low on memory, and hence there is no guarantee that an

object’s finalize() method will be invoked in an expedient fashion. Even if the

garbage collector gets to run, all the resources will be reclaimed in a short period

of time, and this can lead to “bursty” performance and a reduction in the overall

system throughput. Such an effect is more pronounced as the load on the system

increases. Also, it is possible for the thread executing the finalize() method to hang

if the resource reclamation operation requires communication over a network or a

database connection to complete the operation.

3 Conclusions and Future Work

Software security is a rapidly growing field and is most sought after in both

industry and academics. With the development of automated tools such as Fortify

Source Code Analyzer, it becomes more tenable for a software developer to fix, in-

house, the vulnerabilities associated with the software prior to its release and

reduce the number of patches that need to be applied to the software after its

release. In this chapter, we have discussed the use of an automated tool called the

Source Code Analyzer (SCA), developed by Fortify, Inc., and illustrated the use of

its command line and graphical user interface (Audit Workbench) options to

present and analyze the vulnerabilities identified in a software program. The SCA

could be used in a variety of platforms and several object-oriented programming

languages. We present an exhaustive case study of a file reader server socket

program, developed in Java, which looks fine at the outset; but is analyzed to

contain critical vulnerabilities that could have serious impacts when exploited.

The five different vulnerabilities we have studied in this research are: Resource

Injection vulnerability, Path Manipulation vulnerability, System Information Leak

 64

vulnerability, Denial of Service vulnerability, and Unreleased Resource

vulnerability in the context of streams. We discussed the reasons these

vulnerabilities appeared in the code and how they could be exploited if left

unattended and the consequences of an attack. We have provided detailed solutions

to efficiently and effectively remove each of these vulnerabilities, presented the

appropriate code snippets and the results of source code analysis when the

vulnerabilities are fixed one after the other. The tradeoffs incurred due to the

incorporation of appropriate solutions to fix these vulnerabilities are the increase in

code size and decrease in the comfort level for a naïve authentic user who could

face some initial technical difficulties in getting the program to run as desired.

With generic error messages that are not so detailed, an authentic (but relatively

unfamiliar) user ends up spending more time to run the system as desired. The

original file reader server program had 43 lines of code, and the final version of the

program (fileReaderServer_5.java) contains 114 lines – thus, an increase in the size

of the code by a factor of about 2.65 (i.e., 165% increase). However, the increase

in code size is worth because even if one the above 5 vulnerabilities is exploited by

an attacker, it could be catastrophic for the entire network hosting the server.

As part of future work, we plan to conduct exhaustive source code analysis on

network socket programs developed in C/C++, for Windows and Linux platforms,

and analyze their impacts and develop effective solutions to fix (i.e., completely

remove or mitigate the effects as much as possible) the characteristic

vulnerabilities identified for the specific platform/ programming language. Even

though the code snippets provided as solutions to remove the various software

security vulnerabilities discussed in this chapter are written in Java, the solutions

proposed and implemented here for each of the vulnerabilities are more generic

and can be appropriately modified and applied in other programming language

environments.

 65

4 Acknowledgments

The work leading to this module is partly funded through the U. S. National

Science Foundation (NSF) CCLI/TUES grant (DUE-0941959) on “Incorporating

Systems Security and Software Security in Senior Projects.” The views and

conclusions contained in this document are those of the author and should not be

interpreted as necessarily representing the official policies, either expressed or

implied, of the funding agency.

5 Exercises

1. Conduct source code analysis on the following Java program that is supposed to

read a list of integer scores from a text file (one integer per line in the file) and

compute the average score. The number of integers to compute the average

score is not known a priori and has to be determined based on the number of

integers read from the file. Fix all the vulnerabilities (except the Poor Logging

practice warnings raised due to the System.out.println() statements and the

J2EE Bad Practices due to the use of the main() function) that are identified by

the Sourceanalyzer.

Given Code

import java.util.*;
import java.io.*;

class parseFileAvgScores{

 public static void main(String[] args){

 try{

 FileReader fr = new FileReader(args[0]);
 BufferedReader br = new BufferedReader(fr);

 String line = null;

 int sum = 0;
 int numScores = 0;

 66

 while ((line = br.readLine()) != null){

 StringTokenizer stk = new StringTokenizer(line);
 String strScore = stk.nextToken();
 int score = Integer.parseInt(strScore);
 sum += score;
 numScores++;
 }

 System.out.println("Average Score: "+(((double) sum)/numScores));

 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

The following is the output returned by the sourceanalyzer when run on the given

Java code.

 67

2. Conduct the source code analysis on the following file writer program that is
supposed to accept 5 lines of information from the user and write them out to a
file, line-by-line, as they are input by the user. Fix all the vulnerabilities (except
the Poor Logging practice warnings raised due to the System.out.println()
statements) that are identified by the Sourceanalyzer. Fix the vulnerabilities
one-by-one and show the modified code in each phase.

File Writer Program
import java.io.*;

class fileWriter {

 public static void main(String[] args) throws IOException{

 try{
 FileWriter fw = new FileWriter(args[0]);
 PrintWriter pw = new PrintWriter(fw);
 BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

 for (int lineNum = 1; lineNum <=5; lineNum++){
 System.out.print("Enter line # "+lineNum+" : ");
 String line = br.readLine();
 pw.println(line);
 }

 pw.close();
 fw.close();

 }
 catch(IOException ie){
 ie.printStackTrace();
 }
 }

}

3. Conduct source code analysis on the following Java program that is supposed to

allow a user to write to the file Logfile.dat provided the password entered by the

user (as a command line input captured through args[0]) matches with the

password 3dTAqb.7 that is currently hard coded in the program. Fix all the

vulnerabilities (except the Poor Logging practice warnings raised due to the

System.out.println() statements) that are identified by the Sourceanalyzer.

 68

Given Code

import java.io.*;
import java.util.*;

class SCAExample1
{
 public static void main(String args[])
 {
 try
 {
 File f = new File("Logfile.dat");
 boolean access_granted = false;
 String password = "";
 int integer = 5;

 if (args.length == 1)
 {
 System.out.println("Checking command-line password");
 password = password + args[0];
 if (password.equals("3dTAqb.7"))
 {
 access_granted = true;
 System.out.println("Password matches.");
 }
 else
 System.out.println("Command-line password does
not match");
 }//end if

 if (access_granted)
 {
 System.out.println("Access granted!");
 PrintWriter out = new PrintWriter(new
FileOutputStream(f, true));
 out.println();
 out.print("Updated...");
 out.println();
 out.flush();
 out.close();
 }//end if

 }//end try
 catch (Exception e)
 {
 System.out.println("an error has occured.");
 e.printStackTrace();
 }
 }//end main

}//end class

 69

References

[1] B. Chess, and J. West, Secure Programming with Static Analysis, Addison

Wesley, 1st Edition, Boston, MA, USA, 2008.

[2] M. R. Stytz, and S. B. Banks, “Dynamic Software Security Testing,” IEEE

Security and Privacy, vol. 4, no. 3, pp. 77-79, 2006.

[3] D. Baca, “Static Code Analysis to Detect Software Security Vulnerabilities –

Does Experience Matter?,” Proceedings of the IEEE International Conference

on Availability, Reliability and Security, pp. 804-810, 2009.

[4] P. R. Caseley, and M. J. Hadley, “Assessing the Effectiveness of Static Code

Analysis,” Proceedings of the 1st Institution of Engineering and Technology

International Conference on System Safety, pp. 227-237, 2006.

[5] I. A. Tondel, M. G. Jaatun and J. Jensen, “Learning from Software Security

Testing,” Proceedings of the International Conference on Software Testing

Verification and Validation Workshop, pp. 286-294, 2008.

[6] H. Mcheick, H. Dhiab, M. Dbouk and R. Mcheik, “Detecting Type Errors and

Secure Coding in C/C++ Applications,” Proceedings of the IEEE/ACS

International Conference on Computer Systems and Applications, pp. 1-9,

2010.

[7] M. Mantere, I. Uusitalo and J. Roning, “Comparison of Static Code Analysis

Tools,” Proceedings of the 3rd International Conference on Emerging Security

Information, Systems and Technologies, pp. 15-22, 2009.

[8] J. Novak, A. Krajnc and R. Zontar, “Taxonomy of Static Code Analysis Tools,”

Proceedings of the 33rd IEEE International Conference on Information and

Communication Technology, Electronics and Microelectronics, pp. 418-422,

2010.

 70

[9] https://www.fortify.com/products/hpfssc/source-code-analyzer.html, last

accessed: July 2, 2012.

[10] M. G. Graff, and K. R. Van Wyk, Secure Coding: Principles and Practices,

O’Reilly Media, Sebastopol, CA, USA, 2003.

[11] M. Howard, D. Leblanc, and J. Viega, 24 Deadly Sins of Software Security:

Programming Flaws and How to Fix them, McGraw-Hill, New York City, NY,

USA, 2009.

[12] J. A. Whittaker, How to Break Software, Addison-Wesley, Boston, MA, USA,

2002.

Buy your books fast and straightforward online - at one of world’s

fastest growing online book stores! Environmentally sound due to

Print-on-Demand technologies.

Buy your books online at

www.get-morebooks.com

Kaufen Sie Ihre Bücher schnell und unkompliziert online – auf einer

der am schnellsten wachsenden Buchhandelsplattformen weltweit!

Dank Print-On-Demand umwelt- und ressourcenschonend produzi-

ert.

Bücher schneller online kaufen

www.morebooks.de
VDM Verlagsservicegesellschaft mbH

Heinrich-Böcking-Str. 6-8 Telefon: +49 681 3720 174 info@vdm-vsg.de
D - 66121 Saarbrücken Telefax: +49 681 3720 1749 www.vdm-vsg.de

