
 1

Jackson State University
Department of Computer Science

CSC 439-01/539-02 Advanced Information Security
Spring 2013

Lab Project # 5

Use of GNU Debugger (GDB) for Reverse Engineering of C Programs in a Linux Platform

Due: April 22, 2013, 7.30 PM

Maximum Points: 100

Demo and Hardcopy Submission: You need to show a demo of the working of Phase 2

and 3 of the project to me before the above deadline and submit a hardcopy of the report

(for all the three phases) in class at the above date/time.

The purpose of the project is to familiarize students with the GNU Debugger (GDB) and its use

for reverse engineering. This will be done in Ubuntu OS with the use of simple C programs. If

you need to set up Ubuntu as a virtual machine, follow the instructions provided for the same at

http://143.132.8.23/cms/tues/docs/CSC439-AIS-Spring2013/Project-2-Email-Security-PGP.pdf

This project is divided into three phases. The first phase will introduce you to the GNU debugger

(GDB) and the next two phases will require you to explore things built on top of the basics that

you learn in Phase 1.

 2

Phase 1: Introduction to the GNU Debugger (GDB)
25 points

What to submit:

Screenshots of ALL the practice steps. Indicate the Step # in your screenshots.

1. Open a terminal and create the following C program MaxOfTen.c using an editor of your

choice. I recommend using pico or vi. Type in the following code, save it and exit from the

editor.

 3

2. Now, compile the program using gcc -g -o MaxOfTen MaxOfTen.c. After compiling, run the

program using ./MaxOfTen The program will require you to enter your first name. Do so and

press enter. It will then require you to enter 5 integers in the terminal. Separate the integers with

spaces. After typing in the integers, press enter and the program will sort the integers in

ascending order and print the result to the screen.

3. Next, we will load the program into gdb so we can analyze through our code.

Load the program using gdb MaxOfTen

4. Type in list 1 and press enter to list the program. If all the lines do not show up at once, you

can keep pressing the enter key to list all the code lines.

 4

5. Set a breakpoint at main so that we can be able to step through the program execution. To set a

breakpoint, type the command break main and hit enter.

6. Disassemble the main function to get the assembly code equivalence. We are not going to do

any assembly programming, this is just to take a peek into what's going on in the CPU. Use disas

main to do this. Keep pressing the enter key until it reaches the end of assembler dump.

 5

7. Enter the run command to begin executing the program. Notice that the program will break at

main. It shows the breakpoint at main, and below it is the line of code that will be executed next.

Press s 3 times on your keyboard to step through the program. After pressing the third s, the

pointer is going to hold and require you to type in your first name. Press enter after keying in

your first name. The next instruction shown will print the string that requires you to enter the

integers you are going to work with. Press s to step through this.

 6

8. Press s again to continue stepping through the program. Here, we will monitor the variable i to

see how it increments as the for loop is executed. Step again through the program by typing s,

and then type in print i to see the beginning value of i which is 0.

 Press s again. The pointer is going to wait for you to type in an integer. Type in your first integer

and press enter.

Now, you will have to show the value of i after every iteration of the for loop. You can do this

using the display i command. This way, the value of i will be displayed after every iteration

without you having to type the print i command.

9. Step through the program using s and notice that the value of i will be printed each time you

step. Keep stepping through the program and entering the integers until it reads the 5th one.

Remember to take the screenshot of each step. After entering the 5th integer, press s and the

program will move to the next for loop because the value of i is now 5, and this causes the

program to finish the first loop and set up the next loop for execution. Take screenshot covering

all i values.

10. Type info b to print information about existing break points.

 7

11. Disable the breakpoint using the command disable 1. The number 1 in the command

represents the breakpoint number because you can set more than one breakpoint. Print the

breakpoint information again and notice that the character under Enb has changed from y to n.

12. Show the content of the array variable num using print num.

13. Examine the name variable as a string using x/s name. This command will print your first

name in string format. The 4-byte hexadecimal value to the left is the virtual memory address

where the string is stored.

14. Examine a character using x/c name. This prints the first character in the name variable.

Increase the number of characters you want to print using x/nc name where n is an integer that

represents how many characters you want to print. In the screenshot below, the integer 6 was

used and this printed out 6 characters and their ASCII values.

 8

Remember that the MaxOfTen program is still running. But we are able to pause the program

and examine its execution.

15. Examine the processor registers using the command info registers. This will print the CPU

registers and their contents.

16. Press c to continue and finish up the execution of the program. Type quit and press enter to

quit gdb.

17. Next, you will set a conditional breakpoint i.e. there will be a breakpoint if some condition is

met. You will set a condition that will break the execution once the value of j > 4. Then you will

modify the name string in which the name you entered was stored. To do this, load the program

into gdb again. Use list 1 to list the code. Keep pressing enter till the entire code has been listed.

 9

18. Break at the line that you have the printf("Hello %s\n\n", name); statement. From the

screenshot above, the statement is at line 27. Use the command break 27 if (j > 4) and hit enter.

19. Run the program, enter you first name as required and press enter. Next, enter any 5 integers

and press enter.

 10

20. Now at the break point, enter x/s name to print the current value of the variable name.

Change the value of the variable name from your first name to your last name. To do this, type

in the command set var name = "Meghanathan" where Meghanathan should be switched with

your last name.

Examine the content of the variable name again and see that it has been changed.

 Type c to continue and observe that your last name will be printed instead of your first name.

 Type quit and hit enter to quit gdb.

 11

Phase 2: Exploring GDB on Your Own Tasks

35 points

What to Submit (Phase 2): Screenshots of ALL the tasks. Indicate the task # in your

screenshots.

1. Type and compile the simple code in the screenshot below. Name the program whatever you

want.

2. Load the program into gdb. You need the executable to load with gd. So, make sure to compile

your C program.

3. List all the code in gdb.

4. Disassemble the main function.

5. Disassemble the add function.

6. Set a breakpoint at the add function.

7. Run the program.

8. In the execution of the program, modify and double the value of a, b, and c. So for example, if

your initial values of a, b, and c were 2, 4, and 8, you should double and make them 4, 8, and

16. Make sure you do this after the values of a, b, and c have been added and stored in sum.

9. Set the value of mul to be the product of the doubled values of a, b, and c.

10. Finish the execution of the program.

Hint: If you run the program and enter 2, 4, and 8 as the input values of a, b, and c. The value of

sum printed in the program should be 14 which is 2 + 4 + 8, and the value of mul printed in the

program should be 512 which is 4 * 8 * 16.

 12

Phase 3: Using gdb to obtain a password read into memory from a protected file

The objective of this phase of the project is to gain access to a password-protected program. This

will be achieved by loading the program into gdb and breaking the execution process in order to

peek into the stack and copy the password as soon as it is loaded from a file. Your goal will be to

find out the correct password value stored in the PasswordFile (i.e., mimic as if you are not

looking at the PasswordFile; but through the execution stack using gdb), enter it when prompted

for the user password and have the program print that you entered the correct password. You can

create the PasswordFile as a simple text file in your present Linux working directory.

Tasks
40 points

What to Submit (Phase 3): Screenshots of ALL the tasks. Indicate the task # in your

screenshots.

Password to be stored in PasswordFile for each student: Your password will be the name of

your home city and a 5-digit zip code appended to it. For example, if your home city is Clinton

and the zip code is 39056, your password will be Clinton39056.

 13

1. Type the following C program (save it as ReadPass.c), compile it using gcc -g -o ReadPass
ReadPass.c to generate the executable.

2. Create a password file (named PasswordFile) using an editor (e.g., pico) of your choice. Type

in the password assigned to each of you in the beginning of the project description. In this

description, I entered the password Security2013 into the file. Note that the S in the text is in

uppercase. Save the password in the file PasswordFile and exit. Use the cat command to print

the contents of the PasswordFile and capture it as a screenshot.

3. Change the permission of the ReadPass file using sudo chmod 777 ReadPass. Run the

program using ./ReadPass This program will ask you to enter the secret password. When it

 14

requires the password, type in Jackson. Jackson is not the correct password. The purpose of

typing it is to see what the program does when the password is incorrect. Now run the program

again and this time enter the password you saved in the PasswordFile (in my case, it is

Security2013).

4. Load the program into gdb using gdb ReadPass. Break the program at the main function

using the command break main.

5. Use the list command to see the contents of the source code. Find out which variable in the

program is used to store the password retrieved from the PasswordFile. What is the variable

name?

6. Run the program using the command run. Keep pressing s to run the program line by line

after the breakpoint. Once the execution is past the line where the password is retrieved from the

file, use the appropriate gdb command to find out the value of the variable that stores the value

of the password retrieved from the file. Keep pressing s and when it comes to the point where the

program asks the user to enter a password, enter the password that you believe you have figured

out (i.e., retrieved from the file). Finish the execution by typing c and pressing enter. The

 15

program will validate the password you entered and print out whether your entry is correct or not

correct. Quit gdb using the quit command.

7. Load the program again into gdb using gdb ReadPass. Examine the stack using the command

x/8wx $esp and hit enter. Notice the result "No registers". This means that the program has not

been run and therefore nothing has been loaded into the registers. Break the program at the main

function using the command break main.

8. Now that you have figured out the name of the variable that stores the password retrieved from

the file, find its virtual memory address and take a screenshot of the command used along with

the memory address value displayed.

9. Examine the contents of the stack using the x/8wx $esp command and with different integer

values (like 8, 12, 16, etc) until you can obtain a good range of virtual memory addresses that

encompass the virtual memory address you found in task 8. Now, through these virtual memory

addresses and the hexadecimal values of the contents stored in these addresses, extract the value

of the password retrieved from the file. Next page, I show a screenshot of the strategy I use to

retrieve the contents Security2013.

In my case, the starting virtual memory address of the variable that stores the password retrieved

from the file is 0xbffff2aa. As I indicate in the following screenshot, the values in the stack are

the hexadecimal ASCII values of the characters in the string 'Security2013' read from the reverse

order. Repeat the same for your password (note that the starting virtual memory address for your

password variable may be different or same - this is what you have to figure out from Task 8)

and provide the appropriate screenshots.

 16

