CSC 641 Network Science, Fall 2015

Instructor: Dr. Natarajan Meghanathan
Take Home Exam 3
Due: Wednesday Dec. 2, 2015: 6 PM
Late submission (Dec. 2, 2015-6:10 PM to Dec. 3, 2015-6 PM: -30 points, taken off from your score)
Late submission (Dec. 3, 2015-6:01 PM to Dec. 4, 2015-6 PM: -60 points, taken off from your score) No late submission allowed after Dec. 4, 2015-6 PM.

Maximum Points: 100
Q1, Q7, Q8-15 points each Q2, Q3, Q4, Q5, Q6-11 points each
Q1) a) Consider the BA model for scale-free networks wherein a new node joins the network for every time unit $\left(t_{1}, t_{2}, t_{3}, \ldots.\right)$ and the id of a node is simply the index of the time unit $(1,2,3, \ldots)$ the node joins the network. Each new node joining the network connects to m of the existing nodes according to preferential attachment based on node degree.
At some time t, given the rate of change of the degree of node i is: $\frac{\partial k_{i}(t)}{\partial t}=\frac{k_{i}(t)}{2 t-1}$, derive a closed-form expression for the degree of node i as a function of $t, k_{i}(t)$. Show all the steps of your integration.
b) At some time unit t, if the degree of a node that joined the network at time X units is Y , compute the degree of the node that joined the network at time Z units.

	X	Y	Z
Karthik	10	50	100
Anirudh	5	25	75
Yashwanth	15	30	40

Q2) Consider a scale-free network modeled according to the power-law distribution $\mathrm{p}(\mathrm{k})=\mathrm{Ck}^{-\gamma}$. Let the power-law exponent (γ) be as assigned to you. The minimum possible degree for any node in the network is kmin. For such a network, determine a numerical value for the probability of finding a node with degree k.

	γ	kmin	k
Karthik	2.5	2	3
Anirudh	2.2	3	5
Yashwanth	2.8	1	4

Q3) Consider a network modeled using the power law, $\mathrm{p}(\mathrm{k})=\mathrm{k}^{-\gamma}$. Determine the value of the powerlaw exponent γ if the network has approximately $\mathrm{X} \%$ of nodes with degree k .

	X\%	k
Karthik	4%	4
Anirudh	3%	3
Yashwanth	5%	5

Q4) Consider a scale-free network of $\mathrm{N}=1000$ nodes modeled using the power-law, $\mathrm{p}(\mathrm{k})=\mathrm{Ck}^{-\gamma}$. The minimum and maximum degrees of the nodes in the network are kmin $=1$ and $\mathrm{kmax}=10$ respectively. Find the power-law exponent (γ) and the constant C.

	N	kmin	kmax
Karthik	1000	3	20
Anirudh	100	1	10
Yashwanth	500	2	15

Q5) Consider the enhanced WS model for small-world networks. Let there be a regular graph that is transformed to a small-world network. For every edge (u, v) selected for re-wiring, the probability that a node w of distance $\mathrm{d}(\mathrm{u}, \mathrm{w})$ hops to u is picked for re-wiring is $\mathrm{p}(\mathrm{w})$ and the probability that a node w^{\prime} of distance $d\left(u, w^{\prime}\right)$ hops to u is picked for re-wiring is $p\left(w^{\prime}\right)$. Find the value for the parameter \boldsymbol{q} in the enhanced WS model.

	$\mathrm{d}(\mathrm{u}, \mathrm{w})$	$\mathrm{p}(\mathrm{w})$	$\mathrm{d}\left(\mathrm{u}, \mathrm{w}^{\prime}\right)$	$\mathrm{p}\left(\mathrm{w}^{\prime}\right)$
Karthik	2	0.2	4	0.08
Anirudh	3	0.15	5	0.05
Yashwanth	4	0.10	7	0.02

Q6) Consider a regular ring lattice of degree kregular for every node. This regular graph is transformed to a small-world network by arbitrarily re-wiring the edges with probability β. Let the clustering coefficient of the small-world network generated out of this re-wiring be $\mathrm{C}(\beta)$. Determine the re-wiring probability β.

	kregular	$C(\beta)$
Karthik	4	0.04
Anirudh	6	0.03
Yashwanth	8	0.02

Q7) Consider the BB model for scale-free networks .
Let the parameter $\beta\left(\eta_{i}\right)$ for any node i be equal to the fitness of node i, η_{i}. Consider two nodes A and B such that the fitness of node B is twice the fitness of node A.
Node A joins the network at time 10 units and node B joins the network at time 100 units.
If the degree of the nodes increase for every time unit (when a new node joins), what is the minimum value of the time unit starting from which the degree of node B would always be greater than the degree of node \mathbf{A} ? Show all the steps. No guess work.

Q8) For a probability distribution $\mathrm{p}(\mathrm{k})$, consider the first moment (mean) to be given by: $\int_{1}^{\infty} k p(k) d k$, and the second moment is given by: $\int_{1}^{\infty} k^{2} p(k) d k$. For the power-law distribution $\mathrm{p}(\mathrm{k})=k^{-\gamma}$, find the minimum value of the power-law exponent γ that the first moment is defined (i.e., positive) and similarly, find the minimum value of γ that the second moment is defined (i.e., positive). Show all the steps of your integration. No guess work

