
Module 2 – Advanced

Symmetric Ciphers

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

E-mail: natarajan.meghanathan@jsums.edu

Data Encryption Standard (DES)

• The DES algorithm was developed by IBM based on the Lucifer

algorithm it has been using before.

• The DES is a careful and complex combination of the two

fundamental building blocks of encryption: substitution and

transposition.

• The algorithm derives its strength from repeated application of these

two techniques (16 cycles), one on top of the other.

• Product cipher: Two complementary ciphers can be made more

secure by being applied together alternately

Plaintext, M Encryption E1(M) Encryption E2(E1(M))

Cycles of Substitution and Permutation

Input (64-bit) Plaintext block

Initial Permutation

L0 R0

L1= R0 R1

Cycle 1 64-bit Key

L2= R1 R2

Cycle 2 64-bit Key

.

.

.

.

.

.

DES Encryption

Cycles of Substitution and Permutation

L15 = R14
R15

L16= R15 R16

Cycle 16 64-bit Key

.

.

.

.

.

.

Final Permutation

64-bit Ciphertext

DES Encryption

Details of a Cycle

⊕

Left Data Half

32-bits

Right Data Half

32-bits

Expansion

Permutation

48-bits

New Left Data Half

32-bits

Every 8th bit removed

64-bit key

56-bit key

Key Shifted

and

Permuted

48-bits

Substitution,

Permuted Choice

32 bits

Permutation

⊕

New Right Data Half

32-bits

Feistel Network

Encryption: Details of a Cycle i

⊕

Left Data Half

32-bits

Right Data Half

32-bits

Expansion

Permutation

48-bits

New Left Data Half

32-bits

Every 8th bit removed

64-bit key

56-bit key

Key Shifted

and

Permuted

48-bits

Substitution,

Permuted Choice

32 bits

Permutation

⊕

New Right Data Half

32-bits

Feistel Network

Li = Ri-1

Li-1

Ri-1

Ki

Ri = Li-1

f(Ri-1, Ki)

Li Ri

Initial and Final 64-bit Permutations

Initial Permutation

Final Permutation (reverse of the initial)

Types of Permutations

Permutation Expansion

Permutation
Permuted Choice

Various Permutations

Expansion Permutation: 32-bits to 48-bits

Permutation Box, P-Box

Key Transformation

• The 64-bit key immediately becomes a 56-bit key by deletion of

every eighth bit.

• At each step in the cycle, the key is split into two 28-bit halves, the

halves are shifted left by a specified number of digits, the halves are

then merged together again, and 48 of these 56 bits are permuted to

be fed to the cycle

Key Shift Table

Key Shift and Permutation (Cycle 1)

Choice Permutation to Select 48 Key Bits

56 bits to 48 bits

Substitution Boxes S-Boxes

S-Boxes

• An S-box is a permuted choice function by which six bits are

replaced by four bits.

• The 48-bit input is divided into eight 6-bit blocks, identified as

B1B2…B8; block Bj is operated on by S-box Sj.

• The S-Boxes are substitutions based on a table of 4 rows and 16

columns.

• Suppose that block Bj is the six bits b1b2b3b4b5b6.

• Bits b1 and b6 taken together form a two-bit binary number b1 b6

having a decimal value from 0 to 3. Call this value r.

• Bits b2, b3, b4 and b5 taken together form a 4-bit binary number

b2b3b4 b5, having a decimal value from 0 to 15. Call this value c.

• The substitutions from the S-boxes transform each 6-bit block Bj into

4-bit result shown in row r and column c of S-box Sj.

Example to Illustrate Use of S-Boxes

Cycles of Substitution and Permutation

L15 = R14
R15

L16= R15 R16

Cycle 16 64-bit Key

.

.

.

.

.

.

Final Permutation

64-bit Input Ciphertext

DES Decryption

Cycles of Substitution and Permutation

Output (64-bit) Plaintext block

Initial Permutation

L0 R0

L1= R0 R1

Cycle 1 64-bit Key

L2= R1 R2

Cycle 2 64-bit Key

.

.

.

.

.

.

DES Decryption

Decryption of the DES

• The same DES algorithm is used for both encryption and decryption

– Note that cycle i derives from cycle (i-1) in the following manner:

– The same function f is used forward to encrypt or backward to decrypt.

– The only change is that the keys must be taken in the reverse order (K16,

K15, …, K3, K2, K1)

– The number of positions shifted for the keys should be considered from

the bottom of the table and not top-down.

Recap: Encryption: Cycle i

⊕

Left Data Half

32-bits

Right Data Half

32-bits

Expansion

Permutation

48-bits

New Left Data Half

32-bits

Every 8th bit removed

64-bit key

56-bit key

Key Shifted

and

Permuted

48-bits

Substitution,

Permuted Choice

32 bits

Permutation

⊕

New Right Data Half

32-bits

Feistel Network

Li = Ri-1

Li-1

Ri-1

Ki

Ri = Li-1

f(Ri-1, Ki)

Li Ri

Decryption: Details of a Cycle i

⊕

Left Data Half

32-bits

Right Data Half

32-bits

Expansion

Permutation

48-bits

New Left Data Half

32-bits

Every 8th bit removed

64-bit key

56-bit key

Key Shifted

and

Permuted

48-bits

Substitution,

Permuted Choice

32 bits

Permutation

⊕

New Right Data Half

32-bits

Feistel Network

Ri-1 = Li

Li-1

Ri-1

Ki

Li-1 = Ri

f(Ri-1=Li, Ki)

Li Ri

Property of S-Boxes

• Changing one bit in the input of an S-box results in changing at least
two output bits; that is the S-boxes diffuse their information well
throughout their outputs.

• Example:

• No S-box is a linear or affine function (a function with a constant
slope and may have a non-zero value when the independent
variables are zero) of its input; the four output bits cannot be
expressed as a system of linear equations of the six input bits

Weaknesses of the DES

• Complements:

– For a plaintext p and key k, if C = DES(p, k), then ⌐C = DES(⌐p, ⌐k)

where ⌐x is the ones complement (all 0s changed to 1s and vice-versa)

of binary string x.

• Weak keys:

– If the value being shifted in each cycle is all 0s or all 1s, then the key

used for encryption is the same across all cycles. Such keys are called

weak keys, because for a weak key K, C = DES(P, K) and P = DES(C,

K) when proceeded in the forward direction from round 1 to round 16.

– Keys with all 0s or all 1s or all 0s in the first half and 1s in the second

half or vice-versa are also considered weak keys.

• Semi-weak keys:

– There exists some key pairs k1 and k2 such C=DES(p, k1) = DES(p, k2).

This implies that a message encrypted with key k1 could be decrypted

with key k2.

Proof of DES Complement Property(1)

• For any plaintext P and key K, if C = DES(P, K), then C’ = DES(P’, K’)

where P’, K’ and C’ are the ones complement of P, K and C

respectively.

⊕

Truth Table

From the truth table,

A B = A’ B’⊕

⊕(A B)’ = A’ B⊕

⊕(A B)’ = A B’⊕

Proof of DES Complement Property(2)

⊕

⊕

⊕

From the truth table,

A B = A’ B’⊕

⊕(A B)’ = A’ B⊕

⊕(A B)’ = A B’⊕

If Ri-1’ and Ki’ are passed to a Fiestel Network, the

the output of the first XOR operator will be the same

as the one obtained when one passes Ri-1 and Ki as

Inputs. As a result, what comes out of the Feistel network

is also the same as that comes out with Ri-1 and Ki.

Ri-1’ Ki’ = = Ri-1 Ki⊕

Expanded

from 32 bits

to 48 bits

Reduced

from 64 bits

to 48 bits

f(Ri-1, Ki) = f(Ri-1’, Ki’)

Proof of DES Complement Property(3)

⊕

⊕(A B)’ = A’ B⊕

Li-1’ Ri-1’

Feistel

Network
Ki’

f(Ri-1, Ki)

Li-1’ f(Ri-1, Ki)⊕

⊕

Li-1
Ri-1

Feistel

Network
Ki

f(Ri-1, Ki)

Li-1 f(Ri-1, Ki)⊕

Li-1’ f(Ri-1, Ki)⊕ = [Li-1
f(Ri-1, Ki)]’⊕

Proof of DES Complement Property(4)

⊕

Li-1’ Ri-1’

Feistel

Network
Ki’

f(Ri-1, Ki)

Ri = Li-1’ f(Ri-1, Ki)⊕

[Li-1
f(Ri-1, Ki)]’⊕

So, for every DES encryption cycle i,

if we input the complement of Li-1,

Ri-1 and Ki, then the output is

the complement of the cycle is

the complement of what we would

get if the inputs Li-1, Ri-1 and Ki.

The observation holds good for

each cycle.

Li

Ri-1’

Chosen Plaintext Attack on DES (1)

• Let P be the plaintext that is chosen by an attacker.
The attacker knows both P and P’

• Let C1 = DES(P, K).
– The attacker knows C1 (due to this being a chosen

plaintext attack) and hence also deduce C1’.

• Due to the complement property C1’ = DES(P’, K’).

• Let C2 = DES(P’, K)
– Due to the chosen plaintext attack, the attacker can pass

P’ to the DES routine and know C2.

• Also, due to the complement property,

• C2’ = DES(P, K’) and C2’ is known to the attacker
without actually running DES.

• The objective would be to determine the key K.

Chosen Plaintext Attack on DES (2)
• Let T be a key chosen from the search space

of 56 bits (there are 256 possible combinations
of 1s and 0s).

• Let CT = DES(P, T).

• If CT = C1, then T = K

• If CT = C2’, then T = K’.

• If CT ≠ C1 and CT ≠ C2’, then:
– T ≠ K as well as T ≠ K’.

• Half of the search space are keys that are
complement to the other half.

• With just one key T, we are now able to
decide on two keys in the search space.

• Hence, the overall search space is only O(255)
and not O(256).

Known

Search Space

000

001

010

011

100

101

110

111

Complementary

Key pairs

Double DES and Triple DES

• The DES algorithm is fixed for a 56-bit key.

• As the computing power has increased rapidly these days and

hopefully will continue in the near future too, it may not be that time

consuming to do an exhaustive search of all the 256 keys, when an

attacker gets a plaintext and the corresponding ciphertext.

Double DES:

– To encrypt: C = E(K2, E(P, K1))

– To decrypt: P = D(K1, D(K2, C))

– The encryption/ decryption algorithm used is DES.

• Triple DES:

– To encrypt: C = E(K3, D(K2, E(K1, P)))

– To decrypt: P = D(K1, E(K2, D(K3, C)))

– The encryption/ decryption algorithm used is DES.

– With 3 keys, 3DES uses 168-bits and is more robust; but, also slow.

– 3DES has also been adopted for Internet applications like PGP, S/MIME.

– Note: Triple DES can also be run with two keys such that K1=K3 and K2.

Meet-in-the-Middle Attack with Double DES

• It is a known-plaintext attack where the <plaintext,

ciphertext> pair and the encryption algorithm (DES) is
known and the key(s) need to be determined.

–– C = EC = E
K2K2(E(EK1K1(P))(P))

• Since X = EK1(P) = DK2(C), the attack consists of

encrypting P with all possible values of 56-bit keys (K1)

and storing the resulting X values. Similarly, we decrypt

C with all possible values of 56-bit keys (K2) and compare

the resulting values for a match with the set obtained
based on K1. The 56-bit key values (K1 and K2) for which

EK1(P) = DK2 (C), constitute the 112-bit key K1 K2.

• The time complexity for cryptanalysis is thus O(256) and

not O(2112).

Advanced Encryption Standard (AES)

• AES is a block cipher with a block length of 128 bits
• The key length could be 128, 192 or 256 bits
• The number of rounds for AES varies with the key

length:
– 128 bits: 10 rounds

– 192 bits: 12 rounds

– 256 bits: 14 rounds

• In each case: all the rounds are identical, except
the last round.

• Each round of AES consists of the following:
– Single-byte based substitution (byte level)
– Row-wise permutation (word level)

– Column-wise mixing (word level)

– XOR (addition) with the round key

AES Input Block
• 4x4 matrix of bytes, arranged in a column-major fashion.

Referred to as the

State array for each round

W0 W1 W2 W3

• A word consists of 4 bytes (32 bits). Each column of the
state array is a word.

• Each AES round processes the input state array and
produces an output state array.

Hexa decimal Basics

0 – 9: 0 – 9

10 A 13 D

11 B 14 E

12 C 15 F

AES Encryption Key and its Expansion

• We assume a 128-bit key throughout
this discussion.

• The 128-bit key is arranged in the form
of a matrix of 4x4 bytes (column-major
fashion)

• The four column words are expanded
into a key schedule of 44 words. The
first four words are used as part of pre-
processing.

• Each round uses four words from the
key schedule.

• 192 bits: 4 x 6 array; 256 bits: 4 x 8
array

Key Expansion

Overall Structure of AES

Add (XOR)

Round Key

Round 1

Round 2

Round 10

128-bit ciphertext

block

128-bit plaintext block

W0-W3

W4-W7

W8-W11

W40-W43
Add (XOR)

Round Key

Round 1

128-bit ciphertext

block

Round 2

Round 10

128-bit plaintext block

W40-W43

W36-W39

W32-W35

W0-W3

Encryption and Decryption Round
E

n
c

ry
p

ti
o

n
 R

o
u

n
d

D
e

c
ry

p
tio

n
 R

o
u

n
d

Note: The last round of encryption does not involve the “Mix Columns” step.

The last round of decryption does not involve the “Inverse Mix Columns” step.

SUBSTITUTE BYTES STEP
(SubBytes and Inverse SubBytes)

• This is a byte-by-byte substitution step using a 16 x 16
lookup table (whose entry values range from 0 to 255: a
byte each).

• The same lookup table is used for each byte in all the
rounds
– One lookup table for SubBytes: encryption

– A different (but related) lookup table for InvSubBytes: decryption

• The substitution lookup tables are developed based on bit
scrambling (a kind of randomization) to reduce the
correlation between the input bits and the output bits at the
byte level.

• To find the substitute for an input byte, we break the byte
into two four-bit units (nibble); use the first 4-bit nibble as the
row index and the second 4-bit nibble as the column index
to the lookup table.

SubBytes Lookup Table (dec.)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SubBytes Lookup Table (hex.)

Inverse SubBytes Lookup Table (dec)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Inverse SubBytes Lookup Table (hex)

Shift Rows Step
• Shift Rows transformation:

– The first row is NOT shifted

– The second row is shifted one byte to the left

– The third row is shifted two bytes to the left

– The fourth row is shifted three bytes to the left

• Scrambling: As the bytes of the state array are filled column-
wise, shifting the rows in the manner indicated above
scrambles the byte order of the state array and promotes
diffusion.

Inverse Shift Rows Step

• Inverse Shift Rows transformation:

– The first row is NOT shifted

– The second row is shifted one byte to the right

– The third row is shifted two bytes to the right

– The fourth row is shifted three bytes to the right

Mix Columns and Inv. Mix Col. Step
• This step replaces each byte of a column by a function of all the bytes in

the same column

• All multiplications are according to the GF(28) arithmetic and all
additions are XOR operations.

• For Encryption, the state matrix is multiplied with the following matrix

• For Decryption, the state matrix is multiplied with the following matrix

State Matrix

M
ix

 C
o

lu
m

n
s

In
v

.
M

ix
 C

o
ls

AES Columns – Finite Field Arithmetic

• Also called Galois Field (GF) arithmetic
• AES uses GF(28) arithmetic: all values are in the

range 0 – 255
• We write all values in hex: a byte is written as two

hexadecimal values
• A binary string is represented as a polynomial

– 00110110: X5 + X4 + X2 + X

– 10010011: X7 + X4 + X + 1

• Addition (XOR): Example
36 + 93 = 00110110 + 10010011

= (X5 + X4 + X2 + X) + (X7 + X4 + X + 1)
= X5 + X4 + X2 + X + X7 + X4 + X + 1

= X5 + X2 + X7 + 1 = X7 + X5 + X2 + 1

= 1010 0101 = a5

Note: 1 + 1 = 0

Hence, Xi + Xi = 0

for any exponent i.

Finite Field Arithmetic Multiplication: Ex 1

• (36)(93) = (0011 0110)(1001 0011)

= (X5 + X4 + X2 + X)(X7 + X4 + X + 1)

= X12 + X9 + X6 + X5 + X11 + X8 + X5 + X4 + X9 + X6 + X3 + X2 +
X8 + X5 + X2 + X

= X12 + X11 + X5 + X4 + X3 + X = 1100000111010

If the degree of the resulting polynomial exceeds 7, we need to
do an XOR division with the GF(28) reducing polynomial: X8

+ X4 + X3 + X + 1 = 100011011

100011011 1100000111010
100011011

100110001
100011011

101010010

100011011

1001001

Prefix the remainder with sufficient 0s

to make it 8-bits long

(36)(93) = 49
= 01001001

4 9

Finite Field Arithmetic Multiplication: Ex 2

• (53)(ca) = (0101 0011)(1100 1010)

= (X6 + X4 + X + 1)(X7 + X6 + X3 + X)

= X13 + X12 + X9 + X7 +X11 + X10 + X7 + X5 + X8 + X7 + X4 + X2 +
X7 + X6 + X3 + X

= X13 + X12 + X9 + X7 +X11 + X10 + X7 + X5 + X8 + X7 + X4 + X2 +
X7 + X6 + X3 + X

= X13 + X12 + X11 + X10 + X9 + X8 + X6 + X5 + X4 + X3 + X2 + X

= 11111101111110

We divide the above polynomial by the GF(28) reducing polynomial:

X8 + X4 + X3 + X + 1 = 100011011

Finite Field Arithmetic Multiplication: Ex 2

(continued…)

11111101111110100011011
100011011

111000001
100011011

110110101
100011011

101011101

100011011

100011010

100011011

1

Prefix with seven 0s to make it: 0000 0001 = 01 (hex)

Hence, (53)(ca) = 01

AES Column Multiplication Example

=

Steps to show how the first value in the product vector is 04

(02*d4) + (03*bf) + (01*5d) + (01*30)

= (0000 0010 * 1101 0100) +

(0000 0011 * 1011 1111) +

(0000 0001 * 0101 1101) +

(0000 0001 * 0011 0000)

Note: All values shown here

are in hex.

= (X)(X7 + X6 + X4 + X2) +

(X + 1)(X7 + X5 + X4 + X3 + X2 + X + 1) +

(1)(X6 + X4 + X3 + X2 + 1) +

(1)(X5 + X4)

= X8 + X7 + X5 + X3 +

X8 + X6 + X5 + X4 + X3 + X2 + X +

X7 + X5 + X4 + X3 + X2 + X + 1 +

X6 + X4 + X3 + X2 + 1 +

X5 + X4

Assume the column used is

the first column of the state

matrix

AES Column Multiplication Ex. (cont.)
Steps to show how the first value in the product vector is 04

= X8 + X7 + X5 + X3 +

X8 + X6 + X5 + X4 + X3 + X2 + X +

X7 + X5 + X4 + X3 + X2 + X + 1 +

X6 + X4 + X3 + X2 + 1 +

X5 + X4

= X2

= 0000 0100 = 0 4

AES Column Multiplication Ex. (cont.)

=

Steps to show how the second value in the product vector is 66

(01*d4) + (02*bf) + (03*5d) + (01*30)

= (0000 0001 * 1101 0100) +

(0000 0010 * 1011 1111) +

(0000 0011 * 0101 1101) +

(0000 0001 * 0011 0000)

Note: All values shown here

are in hex.

= (1)(X7 + X6 + X4 + X2) +

(X)(X7 + X5 + X4 + X3 + X2 + X + 1) +

(X+1)(X6 + X4 + X3 + X2 + 1) +

(1)(X5 + X4)

= X7 + X6 + X4 + X2 +

X8 + X6 + X5 + X4 + X3 + X2 + X +

X7 + X5 + X4 + X3 + X +

X6 + X4 + X3 + X2 + 1 +

X5 + X4

AES Column Multiplication Ex. (cont.)
Steps to show how the second value in the product vector is 66

= X7 + X6 + X4 + X2 +

X8 + X6 + X5 + X4 + X3 + X2 + X +

X7 + X5 + X4 + X3 + X +

X6 + X4 + X3 + X2 + 1 +

X5 + X4

= X8 + X6 + X5 + X4 + X3 + X2 + 1 = 101111101

We divide the above polynomial by the GF(28) reducing polynomial:

X8 + X4 + X3 + X + 1 = 100011011

101111101100011011
100011011

1100110

Prefix with sufficient 0s to make the remainder an 8-bit quantity: 0110 0110 = 6 6

Differences between AES and DES
• Input Processing
• With DES the permutations are based on the Feistel network wherein

the input block is divided into two halves, processed separately and then
the two halves are swapped.

• AES processes the whole input block and make them go through byte-
level substitutions followed by word-level permutations.

• Encryption and Decryption
• With DES, the encryption and decryption rounds look the same and are

based on the Fiestel network.

• With AES, the encryption and decryption rounds are different (the byte-
sub, row-shift and column mix, add round key steps are done in a
different order).

• Avalanche Effect
• On average, with DES, changing one bit of the plaintext affects 31 bit

positions in the ciphertext. With AES, changing one bit of the plaintext
affects all the 128 bit positions of the ciphertext.

