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Key Distribution
• Both symmetric key schemes and public key schemes require both 

parties to acquire valid keys.

• In symmetric key schemes, the shared key should be securely 
distributed between the source and destination, while protecting it 
from others.

• Frequent key changes are usually desirable to limit the amount of 
data compromised if an attacker learns the key.

• A new session key should be used for each new connection-oriented 
session. For a connectionless protocol, a new session key is used for 
a certain fixed period only or for a certain number of transactions.

• On many occasions systems have been broken, not because of a 
poor encryption algorithm, but because of poor key selection or 
management.

• Preferred Approach, especially for scalability - A third party, whom all 
parties trust, can be used as a trusted intermediary to mediate the 
establishment of secure communications between users.



Key Distribution Techniques

• Centralized

– Needham-Schroeder Protocol

• Distributed

– Diffie-Hellman Key Exchange

• Use of Public Key Certificates for Validating 

Authentication during Key Distribution



Needham-Schroeder Protocol for Secure 
Key Distribution and Authentication

• We assume a Key Distribution Center (KDC) shares a unique key with 

each party/ user.

Initiator, A KDC Responder, B

1: E (KA, [IDA || IDB || N1] )

2: E (KA, [KS || IDA || IDB || N1 + 1])

|| E (KB, [KS || IDA])

3: E (KB, [KS || IDA])

4: E(KS, N2])

5: E(KS, N2+1])

Note: Steps 1, 2 and 3 are related to “Key Distribution,” while steps 3, 4 and 5

are related to providing “Authentication” for the initiator A at the responder B



Needham-Schroeder Protocol across 
Domains

• For very large networks, a hierarchy of KDCs can be 
established. 

• For communication among entities within the same local 
domain, the local KDC is responsible for key distribution. 
If two entities in different domains desire a shared key, 
then the corresponding local KDCs can communicate 
through a (hierarchy of) global KDC(s)

• The use of a key distribution center imposes the 
requirement that the KDC be trusted and be protected 
from subversion. This requirement can be avoided if key 
distribution is fully decentralized (not easy though).
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Diffie-Hellman Key Exhange



Primitive Root
• Let n be a prime integer.
• Then, g is a primitive root for n if the first n-1 

powers of g: g1, g2, g3, …, gn-1 include all of the 
distinct n-1 integers (except 0) in the class modulo 
n. 

• For example: 3 is a primitive root of 7.

Note: A prime integer could have one or more primitive roots.



How to test for Primitive Root?
• Let n be a prime integer.

• We need to find the prime factors of n-1.
– Note that any integer can be written as the product of 

prime integers and/or their exponents

– For example: 760 = 23 * 5 * 19

• To check whether g is a primitive root of n, do the 
following:
– Find the prime factors of n-1

– For every prime factor q, 
• Check if g(n-1)/q mod n ≠ 1

– If the above test satisfies for all prime factors of n-1, then 
g is a primitive root of n; otherwise, not

• Repeat the above test for all possible values of g: 
2, 3, 4, …, n-1.  



Example for Primitive Root (1)
• Let n = 13

• n-1 = 12 = 22 * 3

• Prime factors qs = {2, 3}

• One can try for all possible values of g = 2, 3, ...,12 
with the test for primitive root.

• Try g = 2
q = 2: g^(n-1)/q mod n = 2^(12/2) mod 13 = 12 ≠ 1

q = 3: g^(n-1)/q mod n = 2^(12/3) mod 13 = 3 ≠ 1.

Hence, g = 2 is a primitive root of 13.

• Try g = 5
q = 2: g^(n-1)/q mod n = 5^(12/2) mod 13 = 12 ≠ 1

q = 3: g^(n-1)/q mod n = 5^(12/3) mod 13 = 1.

Hence, g = 5 is NOT a primitive root of 13.



Example for Primitive Root (2)
• Let n = 23

• n-1 = 22 = 2 * 11

• Prime factors qs = {2, 11}

• One can try for all possible values of g = 2, 3, ..., 22 with the 
test for prime factors.

• Try g = 3
q = 2: g^(n-1)/q mod n = 3^(22/2) mod 23 = 1

Hence, g = 3 is NOT a primitive root of 23.

• Try g = 4
q = 2: g^(n-1)/q mod n = 4^(22/2) mod 23 = 1

Hence, g = 4 is NOT a primitive root of 13.

• Try g = 5
q = 2: g^(n-1)/q mod n = 5^(22/2) mod 23 = 22 ≠ 1

q = 11: g^(n-1)/q mod n = 5^(22/11) mod 23 = 2 ≠ 1

Hence, g = 5 is a primitive root of 23.



Diffie-Hellman Key Exchange
• Used to establish a secret key over an insecure 

communication channel

• The field size n (a prime integer) and a starting number g (g 
< n and is a primitive root of n) are publicly known. 

• Alice locally generates an integer ‘a’ (where a < n) and 
sends (ga) mod n as an intermediate key to Bob.

• Bob locally generates an integer ‘b’ (where b < n) and sends 
(gb) mod n as an intermediate key to Alice.

• Bob receives (ga) mod n from Alice and computes {(ga) mod 
n}b mod n

• Similarly, Alice receives (gb) mod n from Bob and computes 
{(gb) mod n}a mod n

• Due to the commutative property:
{(ga) mod n}b = {(ga*b) mod n} = {(gb) mod n}a

• Hence, Alice and Bob agree on the same secret key.



Diffie-Hellman Key Exchange
Alice Bob

Local key: ‘a’

Intermediate key:
IAB = ga mod n

Local key: ‘b’

Intermediate key:
IBA = gb mod n

I
AB = ga

mod n

IBA
= g

b mod n

Alice computes

IBA
a mod n

= (gb mod n)a mod n

= (gb*a mod n)

= Secret Key, KAB

Bob computes

IAB
b mod n

= (ga mod n)b mod n

= (ga*b mod n)

= Secret Key, KAB

E(K
AB, M1)

E(KAB, M2)



Diffie-Hellman Key Exch. Example 1

• Let n = 17. 

• Find a suitable value for the parameter ‘g’ (a 

primitive root of n). 

• Generate two integers a and b (a < n and b < 

n) for Alice and Bob as their private keys. 

• Compute the intermediate keys sent from 

Alice to Bob and from Bob to Alice

• Compute the final secret key agreed upon by 

both Alice and Bob.



D-H Ex-1: To find a primitive root for n = 17

• n = 17; n-1 = 16 = 24.

• Prime factors of n-1: qs = {2}. 

• Lets try g = 3
g(n-1)/q mod n = 3(16/2) mod 17 = 6561 mod 17 = 16 ≠ 1

• Hence, g = 3 is a primitive root of n = 17.

• Let Alice choose ‘a’ = 5 and Bob choose ‘b’ = 7.

• Intermediate key computed by Alice and sent to 
Bob: ga mod n = 35 mod 17

• Intermediate key computed by Bob and sent to 
Alice: gb mod n = 37 mod 17.

• Secret key greed upon by both Alice and Bob

ga*b mod n = 35*7 mod 17 = 335 mod 17.



D-H Ex-1: Interm. Key Computed by Alice
• ga mod n = 35 mod 17

Exponent 5
31 mod 17 = 3

32 mod 17 = (31 * 31) mod 17 = 9
34 mod 17 = (32 * 32) mod 17 = (9 * 9) mod 17 = 13

35 mod 17 = (34 * 31) mod 17 = (13 * 3) mod 17 = 5 (Sent to Bob)

D-H Ex-1: Interm. Key Computed by Bob

Exponent 7
31 mod 17 = 3

32 mod 17 = (31 * 31) mod 17 = 9
34 mod 17 = (32 * 32) mod 17 = (9 * 9) mod 17 = 13

37 mod 17 = (34 * 32 * 31) mod 17 = (13 * 9 * 3) mod 17 = 11

• gb mod n = 37 mod 17

(Sent to Alice)



D-H Ex-1: Secret Key Computed by Bob
• (ga mod n)b mod n = 57 mod 17

51 mod 17 = 5

52 mod 17 = (51 * 51) mod 17 = 8
54 mod 17 = (52 * 52) mod 17 = (8 * 8) mod 17 = 13

57 mod 17 = (54 * 52 * 51) mod 17 = (13 * 8 * 5) mod 17 = 10

D-H Ex-1: Secret Key Computed by Alice

111 mod 17 = 11

112 mod 17 = (111 * 111) mod 17 = 2
114 mod 17 = (112 * 112) mod 17 = (2 * 2) mod 17 = 4

115 mod 17 = (114 * 111) mod 17 = (4 * 11) mod 17 = 10

• (gb mod n)a mod n = 115 mod 17

Exponent 7

Exponent 5



D-H Ex-1: Secret Key Computed by both 

Alice and Bob (Global view)

• ga*b mod n = 335 mod 17

Exponent 35

31 mod 17 = 3

32 mod 17 = (31 * 31) mod 17 = 9
34 mod 17 = (32 * 32) mod 17 = (9 * 9) mod 17 = 13

38 mod 17 = (34 * 34) mod 17 = (13*13) mod 17 = 16

316 mod 17 = (38 * 38) mod 17 = (16*16) mod 17 = 1

332 mod 17 = (316 * 316) mod 17 = (1*1) mod 17 = 1

335 mod 17 = (332 * 32 * 31) mod 17 = (1 * 9 * 3) mod 17 = 10



Diffie-Hellman Key Exch. Example 2

• Let n = 19. 

• Find a suitable value for the parameter ‘g’ (a 

primitive root of n) such that g > 4. 

• Let Alice choose a = 6 and Bob choose b = 

9. 

• Compute the intermediate keys sent from 

Alice to Bob and from Bob to Alice

• Compute the final secret key agreed upon by 

both Alice and Bob.



D-H Ex-2: To find a primitive root for n = 19

• n = 19; n-1 = 18 = 2 * 32.

• Prime factors of n-1: qs = {2, 3}. 

• Lets try g = 5
q = 2: g(n-1)/q mod n = 5(18/2) mod 19 = 1; Hence, 5 is not a possible value for g.

• Lets try g = 6
q = 2: g(n-1)/q mod n = 6(18/2) mod 19 = 1; Hence, 6 is not a possible value for g.

• Lets try g = 7
q= 2: g(n-1)/q mod n = 7(18/2) mod 19 = 1; Hence, 7 is not a possible value for g.

• Lets try g = 8
q = 2: g(n-1)/q mod n = 8(18/2) mod 19 = 18

q = 3: g(n-1)/q mod n = 8(18/3) mod 19 = 1. Hence, 8 is not a possible value for g.

• Lets try g = 9
q = 2: g(n-1)/q mod n = 9(18/2) mod 19 = 1. Hence, 9 is not a possible value for g.

• Lets try g = 10
q = 2: g(n-1)/q mod n = 10(18/2) mod 19 = 18. 

q = 3: g(n-1)/q mod n = 10(18/3) mod 19 = 11. Hence, g = 10 is a possible value! 



D-H Ex-2: Intermediate Keys & Secret Key

• n = 19; g = 10.

• Let Alice choose ‘a’ = 6 and Bob choose ‘b’ = 

9.

• Intermediate key computed by Alice and sent 

to Bob: ga mod n = 106 mod 19

• Intermediate key computed by Bob and sent 

to Alice: gb mod n = 109 mod 19.

• Secret key greed upon by both Alice and Bob 

(global view)

ga*b mod n = 106*9 mod 19 = 1054 mod 19.



D-H Ex-2: Secret Key Computed by Alice

• ga mod n = 106 mod 19

Exponent 6101 mod 19 = 10

102 mod 19 = (101 * 101) mod 19 = (10 * 10) mod 19 = 5
104 mod 19 = (102 * 102) mod 19 = (5 * 5) mod 19 = 6

106 mod 19 = (104 * 102) mod 19 = (5 * 6) mod 19 = 11 (sent to Bob)

• gb mod n = 109 mod 19

D-H Ex-2: Interm. Key Computed by Bob

Exponent 9

108 mod 19 = (104 * 104) mod 19 = (6 * 6) mod 19 = 17 

109 mod 19 = (108 * 101) mod 19 = (17 * 10) mod 19 = 18

(sent to Alice)



D-H Ex-2: Interm. Key Computed by Bob

• (ga mod n)b mod n = 119 mod 19
111 mod 19 = 11

112 mod 19 = (111 * 111) mod 19 = (11 * 11) mod 19 = 7
114 mod 19 = (112 * 112) mod 19 = (7 * 7) mod 19 = 11

118 mod 19 = (114 * 114) mod 19 = (11 * 11) mod 19 = 7

119 mod 19 = (118 * 111) mod 19 = (7 * 11) mod 19 = 1

• (gb mod n)a mod n = 186 mod 19

D-H Ex-2: Interm. Key Computed by Alice

181 mod 19 = 18
182 mod 19 = (181 * 181) mod 19 = (18 * 18) mod 19 = 1

184 mod 19 = (182 * 182) mod 19 = (1 * 1) mod 19 = 1

186 mod 19 = (184 * 182) mod 19 = (1 * 1) mod 19 = 1



D-H Ex-2: Secret Key Computed by both 

Alice and Bob

• ga*b mod n = 1054 mod 19

Exponent 54

1054 mod 19 

= (1032 * 1016 * 104 * 102) mod 19 = (16 * 4 * 6 * 5) mod 19 

= (64 * 30) mod 19 = (7 * 11) mod 19 = 1

101 mod 19 = 10

102 mod 19 = (101 * 101) mod 19 = (10 * 10) mod 19 = 5

104 mod 19 = (102 * 102) mod 19 = (5 * 5) mod 19 = 6

108 mod 19 = (104 * 104) mod 19 = (6 * 6) mod 19 = 17
1016 mod 19 = (108 * 108) mod 19 = (17 * 17) mod 19 = 4

1032 mod 19 = (1016 * 1016) mod 19 = (4 * 4) mod 19 = 16



Man-in-the-Middle Attack (D-H Key Exch.)
Alice BobDarth

IAB = ga mod n
a

IBA
= gb mod n

b

DaDb

IDA = gDb mod n IDB = gDa mod n

Computes KDA

= (gDb mod n)a mod n

Computes KDA

= (ga mod n)Db mod n Computes KDB

= (gDa mod n)b mod n
Computes KDB

= (gb mod n)Da mod n

E(K
DA, M1)

E(K
DB, M2)



Man-in-the-Middle Attack (D-H Key Exchg.)

• The vulnerability lies in Alice accepting the incoming 
message has come from Bob (without actually verifying or 
validating it) and vice-versa (i.e., Bob accepting the 
incoming message to have come from Alice without 
validating it).

• The attack basically involves Darth taking the role of Bob as 
far as Alice is concerned (generating a local key Db that is 
used to set up the secret key KDA with Alice) and similarly 
taking the role of Alice as far as Bob is concerned 
(generating a local key Da that is used to set up the secret 
key KDB with Bob).

• Alice and Bob use the respective secret keys KDA and KDB to 
communicate messages thinking they are communicating 
directly with each other; whereas, what happens is Darth 
intercepting all the communication and changing them if 
needed before forwarding to the other end.



Man-in-the-Middle Attack (1)
(Public Key Encryption)

• Using a technique called “IP Spoofing”, a malicious user 
(say Darth) could send a message to Bob (encrypted with 
the public key of Bob) and make the message to appear to 
come from Alice’s IP address.

• Bob will be the only one who can decrypt the message 
(using his private key). If Bob trusts Alice, Bob could 
process whatever is in the message as Bob thinks the 
message came from Alice.

Alice

Darth

Bob

I PAlice {E(Bobpub, M)}



Man-in-the-Middle Attack (2)
(Public Key Encryption)

• More diligently, Darth could send his own public key to Bob and using IP 
spoofing make the public key to have come from Alice, making Bob to 
believe what he receives is Alice’s public key.

• Darth could then send Bob a message encrypted with his own private 
key and using IP spoofing make the message to have come from Alice.

• Bob decrypts the message using the public key that he perceives to be 
of Alice’s (actually, it is Darth’s public key) as the message appears to 
have come from Alice.  

• So, the issue is how to make the receiver verify that the message indeed 
came from the sender who appears to have sent it.

Darth Bob

Alice

I PAlice { Darthpub}

I PAlice { E(Bobpub, E(Darthpri, M) ) }
Darthpub

Bob believes the

Public key of Darth

is Alice’s public key



Solution: Public Key Certificate
• The public key certificate of a user is the public key of the 

user along with the user’s identifying information as well as 
the hash value of all the above – encrypted with the private 
key of a certifying authority (CA) that is being trusted by all 
the users in the system.
– The CA is like a digital notary.

• The sender could encrypt the message with its private key 
and attach its public key certificate along with the encrypted 
message – both of which are further encrypted with the 
receiver’s private key. 
– As a result, only the receiver (who also trusts the CA) could decrypt 

what is received from the sender and validate that the message 
indeed came from the sender by extracting the public key of the 



Public Key Certificate

Name: A

ID for A

Public key for A: KPUB-A

Hash value

128C4

Encrypted with KPRI-CA

User A sending to user B

Message to

user B

Encrypted 

with KPRI-A
Name: A

ID for A

Public key for A: KPUB-A

Hash value

128C4

Encrypted with KPRI-CA

Encrypted with KPUB-B

Digital Certificate for the

Public Key of A

Note: The certificates are created and formatted based on the X.509 standard, which

outlines the necessary fields of a certificate and the possible values that can be 

inserted into these fields. The latest X.509 version is v.3.



Certificates
• What if user B is in another network and cannot directly accept the 

attestation done by the CA of A, and needs another CA to attest the 
public key of the CA of A? 

• Let CA1 be the CA that could attest A.

• Let CA2 be the CA that needs to attest CA1 and this attestation 
would be believed by B.

• Along with the digital certificate issued by CA1 for A, CA1 needs to 
append the digital certificate it received from CA2 for the public key 
of CA1

• User B need to send both these digital certificates to B.

• User B will first extract the public key of CA1 from the digital
certificate issued by CA2, using the public key of CA2.

• User B will then extract the public key of user A from the digital 
certificate issued by CA1, using the extracted public key of CA1.

• User B will then use this certified public key of user A to extract the 
message.



Certificates

User A sending to user B

Encrypted with KPUB-B

Digital Certificate for the

Public Key of CA1

Digital Certificate for the Public Key of A



Station-to-Station Protocol
• Authenticated version of Diffie-Hellman Key Exchange

Alice Bob

E(Alicepri, IAB = ga mod n)

Pub-Cert-Alice

a b

E(Bobpri, IBA = gb mod n)

Pub-Cert-Bob
Alice computes

IBA
a mod n

= (gb mod n)a mod n

= (gb*a mod n)

= Secret Key, KAB

Bob computes

IAB
b mod n

= (ga mod n)b mod n

= (ga*b mod n)

= Secret Key, KAB

E(K
AB, M1)

E(KAB, M2)



Classes of Digital Certificates
• The types of certificates available can vary between CAs; but, all CAs

should at least support the following three classes of certificates:

• Class 1 – A Class 1 certificate is usually used to verify an individual’s 
identity through e-mail. A person who receives a Class 1 certificate can 
use his public/ private key pair to digitally sign e-mail and encrypt 
message contents.

• Class 2 – A Class 2 certificate can be used for software signing. A 
software vendor would register for this type of certificate so that it could 
digitally sign the software. This provides integrity for the software after it 
is developed and released, and it allows the receiver software to verify 
where the software actually came from before installation.

• Class 3 – A Class 3 certificate can be used by a company to set up its 
own CA which will allow it to carry out its own identification verification 
and internally generate certificates. 

• End-entity certificates (Class 1 and 2 are referred to as End-entity 
certificates)

• CA certificate – Class 3 can also be referred to as CA certificates.

• Note: An entity can have multiple public/ private key pairs and 
corresponding digital certificates, used for different purposes.



End-entity and 
CA Certificates

Source: Figure 6.8 from Conklin and White – Principles of Computer Security, 2nd Edition


