
Module 5
Data Integrity

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University, MS

E-mail: natarajan.meghanathan@jsums.edu

Hash Functions
• A hash function H accepts a variable-length block of data M

(called preimage or simply, message) as input and produces
a fixed-length hash value: H(M) = h

• If even one bit of the preimage changes, it is desirable to get
a different hash value (data integrity).
– Example: Cyclic Redundancy Check, Checksum

• Cryptographic Hash Function
– A hashing algorithm that satisfies the following two properties:

• One-way property: Given a hash value h, it should be
computationally infeasible to find a preimage M such that H(M) = h

• Collision-free property: Given a message M1 and its hash value
H(M1) = h, it should be computationally infeasible to find a different
message M2 that has the same hash value. i.e., H(M1) = H(M2).

• Hash values are typically used to test for data integrity (i.e.,
whether the message got altered during transmission).

• Message Authentication: When a hash value is also used to
assure the purported identity of the sender, it is called
message authentication.

Simple Examples of Hash Functions
• Parity-bit: Size of the hash value is 1.

– The sender and receiver agree on using a particular parity (odd
parity or even parity)

• Odd parity – the # of 1s in the message is odd

• Even parity – the # of 1s in the message is even

– Sender appends the parity bit value for a message; the receiver
computes the parity bit value for the received message, and accepts
the message if the parity bit values match.

1 1 1 0 0 1 0 1 1

Parity
bit

Assume
Even Parity

Sender

1 1 1 0 0 1 0 1 1

Parity
bit

Receiver computes

the parity bit
1

match

Parity is not conserved (i.e., the value of the
Parity bit changes) for odd number of bit reversals
Parity is conserved for even number of bit reversals

There is a 50% chance that the parity bit value for two different messages is
the same. The parity bit scheme cannot be a cryptographic hash function.

Simple Examples of Hash
Functions: Checksum

• Characters are grouped into 16-bit quantities and added; the carry

bits, if generated, are added to the result.

0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 4865

0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 6C6C
+

1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1

0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 0 6F20

0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
+

+

0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 0

Checksum

0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1

0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 0

776F

+

1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1

0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 726C

+

0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
+

0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0

0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0 642E

+

0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0

7 1 F C

On Hash Size
• Assume the hash value h

generated for a message M
is purely random.

• If the hash size is n-bits
long, there are 2n unique
possible hash values.
– For a particular message, the

probability that the hash
value is one among the 2n

values is 1/2n.

– For two different messages
M1 and M2, the probability
that they both have the same
has value is 2n / 22n = 1/2n.

Possible Hash
Values for M1
h1

Possible Hash
Values for M2
h2

0 0 0
0 0 1
0 1 0

0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0

0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

There are 64 combinations of

h1 and h2 and there are only 8

of these combinations wherein

h1 and h2 are the same.

Hence, the probability that two

different messages have the same

hash value is 8/64 = 1/8 = 1/23

where 3 is the size of the hash value.

General Structure of Secure Hash
Functions

Cipher Block
Chaining (CBC):

A Hashing
Framework

Comparison of SHA Parameters

All sizes are measured in bits.

SHA-512: Message Digest Generation

Word-by-

Word

Addition

mod 264

Question on SHA-512 (1)
• Consider a message of size 10,456 bytes and its hash value is

computed using SHA-512. Determine the number of blocks, the number
of bits of the message in the last block as well as the size of the padding
100000…0 needed for the last block.

L = 10,456 bytes

= 83,648 bits

The size of L is

expressed in 128 bits.

Let P be the size of the

Padding 100000…0
blocks =

(L = 83,648 + P + 128)

1024

blocks must be an

Integer. The fraction of

the L = 83,648 bits that

is contained in the last

block is 83,648 mod 1024

= 704 bits

The block size = 1,024 bits
(704 + P + 128) bits = 1024
Hence, P = 192 bits

blocks = 1 +

83,648 / 1,024

blocks = 1 + 81 = 82

Question on SHA-512 (1)
• Consider a message of size 10,456 bytes and its hash value is

computed using SHA-512. Determine the number of blocks, the number
of bits of the message in the last block as well as the size of the padding
100000…0 needed for the last block.

Naïve Scenario of Sending the Hash Value
Vulnerable to a Man-in-the-Middle Attack

Man-in-the-Middle Attack on the Naïve Scenario of Sending Hash Values

Using Hash Functions (1)

The above scheme provides data integrity and message authentication;
no confidentiality

The above scheme provides data integrity, message authentication and
confidentiality

Sender Receiver

Sender Receiver

Keyed Hash Functions
(Message Authentication Code)

• A keyed hash function takes in a secret key (known only to
the sender and receiver) and a block of data as input and
produces a hash value (called the message authentication
code, MAC). That is, H(K, M) = h

• If two different keys K1 and K2 are used for the same
message M, then still H(K1, M) ≠ H(K2, M).

• The MAC authenticates the sender as well as validates the
message for integrity.

• Note: Both H(K, M) and E(K, H(M)) serve the same purpose
(message authentication and integrity).

• However, there is no encryption algorithm involved in keyed
hash functions. The key is input directly to the hashing
function rather than to the encryption algorithm.

Data Integrity and Message
Authentication (without Encryption)

Sender Receiver

S is a secret key that is known only to the sender and receiver

The sender computes the hash value of M || S and sends along with M

The above scheme could be considered as a simple example for Keyed Hash

Functions, even though several other complicated Keyed Hash Functions exist.

Digital Signatures
• If the hash value of the message is signed with the sender’s private key,

it is called a digital signature.
– Like MAC, digital signatures also facilitate to authenticate the sender as well

as validate the integrity of a message.

Dynamic Generation and
Transmission of Secret Key (1)

M

DP

PRR

E(PUR,KS)

KS

Source Side Destination Side

EC

KS EP

PUR

| | KS

DC

M

ESecret-key[M] EPub-Receiver(Secret-key)||

The above scheme provides confidentiality only. The secret key generated at the
Sender side is encrypted with the receiver’s public key so that only the latter can
decrypt it with its private key.

Dynamic Generation and
Transmission of Secret Key (2)

The above scheme provides confidentiality, integrity
and sender validation (digital signature).

M

DP

PRR

KS

Source Side Destination Side

EC

KS EP

PUR

KS

DC

M

H

| |

EP

PRS

| |

H(M) H(M)

DP

PUS

HCompare

ESecret-key[M || EPri-Sender(H(M))] EPub-Receiver(Secret-key)||

Other Uses of Hash Functions
• To create a one-way password file

– Operating systems store the hash value of user
passwords and not the actual passwords.

– The hash values are generated using cryptographic hash
functions.

• Due to the one-way property, one would not be able to retrieve
the actual password using its hash value.

• Due to the collision-free property, one would not be able to find
an alternate password for a user password such that both these
passwords have the same hash value.

• For intrusion detection and virus scanning
– During the regular scan of the file systems, the anti-virus

scanner computes and stores the hash values of the files
in a secure format and location such that it cannot be
tampered.

– In order to avoid from being detected, an attacker or a
virus has to be able to modify a file in such a way that its
hash value would not change

Proactive Password Cracking using
Bloom Filter

• Proactive Password Cracking: Store a list of bad passwords;
When a user (re)sets his password, check if it is in the bad
list. If so, reject the password; otherwise, accept.

• Bloom Filter: Data structure to capture the list of bad
passwords.
– A Bloom Filter of order k consists of a set of k independent hash

functions H1(x), H2(x), …, Hk(x), where each hash function maps a
password x into a value in the range 0 to N-1.

Bloom Filter: Procedure and Analysis
• The Bloom Filter is a hash table.

• The hash table is of size N bits, with all the bits initially set to 0.

• For each password, its k hash values are calculated, and the
corresponding bits in the hash table are set to 1. If the bit already
has the value 1, it remains at 1.

• When a new password is presented to the checker, its k hash values
are calculated. If all the corresponding bits of the hash table are
equal to 1, then the password is rejected (considered to be in the list
of bad passwords).

• Note that there cannot be false negatives (i.e., a user entered
password that is in the bad list has to have all its k hash values
index in the Bloom Filter to bit positions that are set to 1).

• However, there can be false positives (i.e., a user entered password
that is not in the bad list could still have its k hash values that index
to the Bloom Filter to bit positions that are set to 1).

Test password

Bloom Filter Analysis

Ratio R = Max. Value in the hash table / # words in the dictionary

P
ro

b
a

b
ili

ty
 [

 F
a

ls
e

 P
o

s
it
iv

e
s
]

Figure 3.2: W. Stallings:

Computer Security: Principles
and Practice, 2nd edition

Bloom Filter Problem
• Consider a bloom filter hash table of size 10 bits, filled as shown below.

0 1 0 0 1 0 1 0 1 1

0 1 2 3 4 5 6 7 8 9

• Find the probability of obtaining a false positive if the number of hash
functions used is varied from 1 to 6. Assume each hash function gives a
distinct hash value (in the range 0…9) for a particular word (i.e., the
hash value generated by two different hash functions for the same word
is different).

Solution
Hash functions: 1
For a test word, its hash value could correspond to any of the 10 bit positions and 5 of

these bit positions are 1s. Hence, the chances of the hash value corresponding to one

of these 1s and incurring a false positive is 5/10 = 0.5

Hash functions: 2

There are a total of C(10, 2) combinations of bit positions that could correspond to the

Hash values generated for the two hash functions. As there five 1s in the above table.

So, there are C(5, 2) combinations of bit positions that could correspond to two 1s.

The probability of obtaining hash values that correspond to the two 1s and incurring

a false positive is C(5, 2) / C(10, 2).

Bloom Filter Problem (1)
• Consider a bloom filter hash table of size 10 bits, filled as shown below.

0 1 0 0 1 0 1 0 1 1

0 1 2 3 4 5 6 7 8 9

Hash functions: 2
C(5, 2) = 5! / {(5-2)! * 2!} = 5! / (3! * 2!) = 10

C(10, 2) = 10! / (8! * 2!) = 45

P(false positive with two hash functions) = 10/45 = 0.22

Hash functions: 3
C(5, 3) = 5! / {(5-3)! * 3!} = 5! / (2! * 3!) = 10

C(10, 3) = 10! / (7! * 3!) = 240

P(false positive with three hash functions) = 10/240 = 0.042

Hash functions: 4
C(5, 4) = 5! / {(5-4)! * 4!} = 5! / (1! * 4!) = 5

C(10, 4) = 10! / (6! * 4!) = 210

P(false positive with four hash functions) = 5/210 = 0.024

Bloom Filter Problem (2)
• Consider a bloom filter hash table of size 10 bits, filled as shown below.

0 1 0 0 1 0 1 0 1 1

0 1 2 3 4 5 6 7 8 9

Hash functions: 5
C(5, 5) = 5! / {(5-5)! * 5!} = 5! / (0! * 5!) = 1

C(10, 5) = 10! / (5! * 5!) = 252

P(false positive with five hash functions) = 1/252 = 0.004

Hash functions: 6
C(5, 6) = 0

C(10, 6) = 10! / (4! * 6!) = 210

P(false positive with six hash functions) = 0/210 = 0

