
1 
 

Jackson State University 
Department of Computer Science 

CSC 541 Cryptography and Network Security 
Fall 2015 

Instructor: Dr. Natarajan Meghanathan 
Project # 2 

 

Use of CAPTCHA (Image Display and Selection Strategy) to Prevent XSRF Attacks 
 
Due: November 30, 2015: 4 PM (hard deadline; no postponement) 
Maximum Points: 100                                                             

 
In this project, you will be presented with an online banking web application.  It will be your task 

to implement a user-acknowledgment system similar to CAPTCHA.  If you do not have a copy of 
XAMPP in your system, download it as mentioned in Step 1. Images: Look in the last page of this 
project description for the type of images to download and use for your CAPTCHA, assigned for each 
student. You can try downloading from the http://images.google.com/  
 

1. Download XAMPP for your operating system 
 
 Visit the XAMPP website (http://www.apachefriends.org/en/xampp.html) and download the latest 
version of XAMPP installer for your operating system and start the installation process. 
 

2. Install XAMPP for your operating system 
 
 Once the download of the installer has completed, follow the installation instructions given. Make 
sure to install xampp directly under the C:\drive by creating a folder named ‘xampp’. It is better NOT 
to install Apache and MySQL as services during installation. 
 

3. Download the online banking application archive (a Zip file, posted in JSU 
Blackboard: as part of the Content for the CSC 541 course) 
 

4. Install the online banking application archive 
 

In the online banking application archive file you have downloaded in Step 3, unzip it. You can 
find two folders, “Content” and “Data.”  Open the “Data” folder and copy the folder it contains 
(hometown_bank)  to the /mysql/data/ folder within the XAMPP installation folder on your machine.  
You should now have a folder /mysql/data/hometown_bank/ containing a number of files. 
 

Open the “Content” folder and copy its contents to the HometownBank folder created within the 
/htdocs/ folder of the XAMPP installation folder on your machine.  You should now have a folder 
/htdocs/HometownBank/ containing a number of files. 
 

5. Start the XAMPP Services 
 
 Start the XAMPP Control Panel (file named: xampp-control, located in the main XAMPP folder) 



2 
 

Click the “Start” button next to Apache.  It will shortly change to a “Stop” button and display a green 
“Running” bar.  Once Apache is running, click the “Start” button next to MySql.  When it has started, 
the “Start” button will change to a “Stop” button and the green “Running” bar will be displayed next to 
the MySql label. 
 
 To test that XAMPP has been installed properly, open a web browser and navigate to 
http://localhost.  If you see the XAMPP web page, Apache has been installed correctly.  Also navigate 
to http://localhost/phpmyadmin to ensure that MySql has been installed correctly.  
 

6. Open the Online Banking Application in Your Browser 
 

Open a web browser and navigate to http://localhost/HometownBank/ .  You should see the 
Hometown Bank homepage.  You should notice that the site contains several pages:  “Home,” “Login,” 
“View Account,” and “Transfer Funds.”  You will also notice that you cannot view the “View Account” 
and “Transfer Funds” pages without logging in.   
 

There is one user account already created within the system.  To view the information for this 
account, open a new browser tab or window and navigate to http://localhost/phpmyadmin .  This should 
display a page with a number of databases listed on the left-hand side.  Select the “hometown_bank” 
database in the list on the left-hand side.  Once you have selected the “hometown_bank” database, 
select the “accounts” table from the list on the left-hand side of the page and click on the icon next to it 
(placing your mouse on the top of the icon will display ‘Browse’).  This should take you to a new page 
where you may browse the contents of the “accounts” table. 
 

Now, select “Insert” at the top of the page.  Fill in the fields with login and imaginary account 
information for yourself.  The username should be your school ID number (J#), and you may enter any 
password you like.  The account number (should be 9-digits long) and the Amount field should be a 
value equal to 1000 plus the last 4 digits of your J#. You should also create three additional fictional 
user accounts.  For these, you may enter any information you like.  When you are done, there should be 
five accounts in the database, the one that was originally in the database, the account you created for 
yourself, and the three additional accounts you created. 
 
Screenshot # 1: Once you have created the accounts, take a screenshot of the updated “accounts” 
table to include in your report. 
 

Now that you have created your own user account, return to the browser window containing the 
bank app and log into your account using the information you just inserted into the database.  Once you 
are logged in, you may click on the “View Account” link at the top.  You should now be able to view 
the information you have just entered into the database. 

 
Screenshot # 2: Take a screenshot of the “View Account” page displaying your account 
information to include in your report. 
  

7.  Intro to Cross-Site Request Forgery 
 
 Now click on the “Transfer Funds” link.  On this page you may transfer funds from the account 
you are logged into, to another account.  You will first be transferring $200.00 from your account to 
Gregg McDonald’s account.  His account number is 1000000001.  You may also find his account 



3 
 

number by viewing the contents of the database.  To transfer these funds, enter his account number in 
the “Transfer To:” field and enter “200.00” in the “Amount” field.  When you have done this, click the 
“Submit” button. 
 
Screenshot # 3: Once you have transferred the funds to Gregg McDonald’s account, take a 
screenshot of the Transfer Verification page to include in your report. 
 
 Once again, use the “Transfer Funds” page to transfer money.  This time, transfer $200.00 from 
one of the fictional accounts you created to your own account.  To do this, you will need to be logged in 
as the fictional account and transfer to the account number of your own account.  When you have 
completed the funds transfer, you should have the same account balance as you did when you started. 
 
Screenshot # 4: Once you have transferred funds from the fictional account to your own account, 
take a screenshot of the Transfer Verification page to include in your report. 
 
 Notice the URL of the Funds Transfer verification page.  It will appear something like: 
http://localhost/HometownBank/transfer_action.php?TransferTarget=1000000026&TransferAmount=200.00 

where the TransferTarget is the account to which you wished to transfer money and the 
TransferAmount is the amount you transferred. 
 

 Before proceeding, make sure you log back in to your own account. 
 

 Suppose you receive an email with the following text: 
Click here to claim your new computer! 
Press Ctrl and Click on the link above and answer the following questions: 
Note: If nothing works by clicking the above link, click on the link below: 
http://localhost/HometownBank/transfer_action.php?TransferTarget=1000000001&TransferAmount=2
00.00 
 
Questions 1 through 6: 

1. Where does the link take you? 
2. What is the URL of the link? 
3. What does the link do? 
4. What is your new account balance? 
5. Why does the link work? 
6. Examine the URL of the page that the link directed you to.  Modify this URL to transfer 

$200.00 to one of the fictional accounts you created and navigate to that URL in the 
browser. Did the amount of $200.00 get transferred from your account to the fictional 
account?  

 
Screenshot # 5: Once you have activated the above URL, take a screenshot of your new account 
balance.  You may access this by clicking the “View Account” link at the top of the Hometown 
Bank page. 
 You have just been the victim of a cross-site request forgery attack (XSRF).  XSRF attacks 
successfully occur when a website wrongfully believes that a request being made to it is being willfully 
triggered by the user. 
 In this case, the bank’s website wrongfully trusts that any request to the transfer_action.php page is 
being willfully executed by you, the authorized user.  That is not necessarily true here.  While you did 
willfully click the link, you most likely did not intend to transfer all of your money to someone else’s 



4 
 

account. 
 One way to prevent such attacks from the point of view of a web developer is to ensure that 
whenever any kind of transactions or changes are made to a user’s account, the user acknowledges the 
transaction.  When you clicked the link above, if you had been displayed a page that said “Are you sure 
you wish to transfer $20,000 to Account Number 1000000026?” you probably would have said “No.” 
 

8. Implementing a CAPTCHA-type Scheme 
 
 Now imagine that you are a web developer.  You get a call from Hometown Bank saying that they 
have discovered an enormous security flaw in their online banking system, and they need you to fix it 
for them.  They tell you about users falling victim to an email scam that transfers money from their 
accounts. 
 
 You know just how to solve the problem.  You will implement a scheme like the CAPTCHA 
technology with which you are probably familiar.  The CAPTCHA system is a challenge-response 
system which displays a series of characters and requires the user to read and enter the characters 
displayed in a box to verify the user’s humanity (and acknowledgement of the transaction). 
 
 The system that you will be implementing will be a little simpler, but should work pretty well.  
The first thing that you will need to do will be to find 10 simple pictures online by searching 
http://images.google.com .  The pictures may be of anything, but each picture should only include one 
thing, for example: 

• A hat 

• A car 

• A dog 
You should avoid pictures with more than one object in them (a picture containing a horse and a truck), 
or multiple pictures of the same item (2 pictures of cats).  You should also avoid obscure objects that 
members of the general public might not recognize, or might misidentify.  You should also try to pick 
pictures that are roughly square-shaped. 
 
 Once you have found your 10 images, save them to the /HometownBank/images/ directory in your 
XAMPP install.  You will now need to rename the images so that the image names are not descriptive 
of what is in the picture.  Randomly mashing on the keyboard should give you a pretty unrecognizable 
sequence of characters for a file name.  Make sure that there are no punctuation marks or spaces in the 
file name, only letters between A and Z.  The filenames should also be around 10-12 characters long.  
Once you are done you should have renamed your 10 images to things like: 

• eajjeagkajeg.jpg 

• yturuyozya.png 

• behaleghgh.gif 
 
 Now that your images have been renamed, you will have to add them to the database.  To do this, 
navigate to http://localhost/phpmyadmin .  Once there, click on the “hometown_bank” database on the 
left side.  You will see that there are two tables in this database, “accounts” and “image data”.  Click on 
the “image_data” table.  You will see that this table contains two fields:  “URL” and “Description”.  
You will now need to add the data for your images into this table.  To do this, click “Insert” at the top 
of the page.  This will take you to a page where you may insert the information for your images, one 
image at a time.  In the “URL” field, insert the filename of your image.  Be sure to include the 
extension (.jpg, .gif, .ping, etc.) with the proper case (yes, it is case-sensitive!!) or your application 



5 
 

will not work. In the “Description” field, enter a one-to-two word description of the image (cat, house, 
donut, etc.).  Once you have done this, click the “Go” button, and continue inserting the information 
until you have inserted the data for all of your images. 
 
 

9. Implementation of the CAPTCHA Strategy 
  
We will employ the following strategy to implement the user verification with pictures: We will have 
the “Transfer Funds” page display five random pictures from our database.  It will then request that the 
user select the picture that corresponds to a randomly chosen description of one of the five pictures.  
The user will then submit the form.  If the user selects the picture that matches the randomly chosen 
description, he or she will be considered to have been authenticated as a willing human user.  The good 
thing about this method is that it is user-friendly.  The user only has to click on a button below the 
appropriate picture.   
 
Important Note: Do not copy and paste from this document to your PHP editor. Type out all the 
statements; there could be errors due to differences in quotation characters " and “.  
 Whenever a user wants to transfer funds, he or she must correctly select an image.  If the correct 
image is not selected, or no image is selected at all, the funds transfer will not take place.  This will 
require that we make some changes to the transfer.html page and the transfer_action.php page. 
  
9.1.1  Edit transfer.html 
 
 We will edit our transfer.html page (located in the C:\xampp\htdocs\HometownBank folder) first to 
include some PHP code that will randomly select and display 5 images from our database.  The page 
will also pick a description of one of the five items and ask the user to click on the picture of the item 
that is described in words.  For example, the user will be presented with pictures of a horse, a cat, a 
dog, a bird, and a snake and asked to click on the picture of the dog. 
 
 The first thing that we will need to do will be to rename transfer.html to transfer.php.  Once you 
have renamed the file, open it in a text editor.  Scroll down to line 66, which says: 
<input type=”submit” value=”Submit” /> 
We will be placing all of our PHP code before this line, so everything that you insert should come 
immediately after the </table> tag on line 65 and before the <input> tag that is currently on line 66. 
 
A.  Set up PHP and the database connection 
 
 To start a PHP code segment, you need to create your beginning and ending PHP tags.  The tag to 
begin a PHP code segment is  
 <?php 
and the tag to end a PHP code segment is 
 ?> 
 
 You will now need to insert the code to access the database.  Inside your PHP start/end tags, insert 
the following code: 
 $host = “localhost”; 
 $user = “root”; 
 $password = “”; 



6 
 

 $dbname = “hometown_bank”; 
 $connection = mysql_connect( $host, $user, $password ); 
 $database = mysql_select_db( $dbname, $connection ); 
The first line stores the hostname where the database is located.  The second and third lines store the 
username and password used for access to the database.  The fourth line stores the name of the 
particular database that we will be using.  The fifth line creates a connection object on the host with the 
specified username and password.  The sixth line selects the specific database that we want on the 
created connection. 
 
B.  Perform a query on the database and retrieve the results 
 
 Now write an SQL query to get the entire contents of the “image_data” table and store it as the 
variable $query.  When you have completed this, your code thus far should look like: 
 … 
 <?php 
  $host  =  “localhost”; 
  $user  =  “root”; 
  $password  =  “”; 
  $dbname  =  “hometown_bank”; 
  $connection  =  mysql_connect(  $host,  $user,  $password  ); 
  $database  =  mysql_select_db(  $dbname,  $connection  ); 
  $query  =  “SELECT   *   FROM   image_data   i”; 
 ?> 
 
Extend the above PHP code (<?php …………. ?>) further as explained below:  
 
 Now you will need to execute the query on the database in order to retrieve the results and store 
them in a variable.  This is done with the line: 
 $result  =  mysql_query(  $query,  $connection  );  
 
C.  Create a table to display the images 
 
 We will now set up a table to hold our pictures.  Regular HTML tags can be used inside PHP code 
by using the echo command to print the HTML to the browser, for example: 
 echo '<br /> <br />'; 
       echo '<table cellpadding="0" cellspacing="0">'; 
                                 
         echo '<tr>'; 
This inserts two blank lines before the table, creates a table, and starts the first table-row (tr).  The first 
row of the table will contain the randomly-selected pictures and the second row of the table will 
contain the option buttons with which the user can select the picture matching the displayed text. 
 
C.1  Randomly select images for the table 
 
 We will know need to create a random number generator object, some arrays to hold our 
randomly-selected objects, and a counter.  This can be done with the code below: 
 srand(time()); 
 $url[]  =  null; 



7 
 

 $description[]  =  null; 
 $total_selected  =  0; 
 
 We will need to construct two loops.  The first loop will randomly select 5 objects from the 
database and the second will insert the pictures into the table. 
 
 The first loop will be a while() loop.  It will first get a random picture’s URL and description from 
the database.  We will then need to check whether or not that picture has already been inserted into the 
picture array.  If it has not, then we will insert it and increase the counter.  If it has not, we will simply 
let the loop continue. 
 The structure of the first loop will be: 
 while  ($total_selected  <  5) 
 { 
  get a random picture 
  
  if  (the picture has not already been selected) 
   insert the picture into the array 
   increment the counter 
 }//end while 
 
 To get a random picture, we will first generate a random number between 0 and 9 (both inclusive) 
and assign it to a variable.  This is done with the line: 
 $random  =  (rand()%10); 
 
 To get the URL associated with that item in our query results, we can use the line: 
 $current_url  =  mysql_result($result,  $random,  “URL”); 
where $result is the name of our results variable, $random is our random row number, and “URL” is 
the name of a field in the table.  We can then do the same thing to get the value of the “Description” 
field for the same row and save it in a variable named $current_description . 
 
C.2  Check for duplicate selections 
 
 Now that we have our current randomly-selected values, we need to make sure that these have not 
already been selected and included in the arrays.  The in_array function in PHP allows us to search for 
a particular value within an array.  The line: 
 if  (!in_array($current_url,  $url)  ) 
 { 
 }//end if 
checks whether or not the value of $current_url, our current URL value from the database, is contained 
already within the array $url.  If it is not (!), then the commands within the braces ({ })will be 
executed.  To insert our picture into the array, we can simply assign it using a line such as: 
 $url[$total_selected]  =  $current_url; 
and do the same to assign the $current_description to the $description array.  We will finally need to 
increment our $total_selected counter by 1. 
 
 When this first loop has completed executing, we should have 5 picture URLs and 5 corresponding 
descriptions. 
 



8 
 

C.3  Insert the images into the table 
 
 In the second loop, we will simply insert our pictures into the table.  This can be done with a 
simple for() command: 
 for ($i  =  0;  $i  <  5;  $i++) 
 { 
  echo  ‘<td><img  src=”./images/’; 
  echo  $url[$i]; 
  echo ‘ ” height=”50” width=”50” /></td>’; 
 }//end for 
We have now built the first row of our table, so now we need to close the first row by printing a </tr> 
tag and open the second row by printing a <tr> tag. 
 
D.  Insert option buttons into the table 
 
 We will now construct a third loop that will place the option buttons across the second row of the 
table.  The structure of the for() loop will be the same as that that was used to insert the pictures, but 
instead of a picture, we will insert an option button at each iteration.  The PHP code for inserting an 
option button is given below: 
 echo '<td><center><input type="radio" name="ObjectURL" value="'; 
     echo $url[$i]; 
     echo ‘ “ /></center></td>'; 
Once the option buttons are in place and after we get out of the for loop, we will need to close the table 
row by printing a </tr> tag to the browser and close the table by printing a </table> tag to the browser 
using the “echo” command. 
 
E.  Randomly select an image and store its value in the form 
 
 The last thing that we will need to do in our transfer.php file will be to randomly pick one of our 5 
objects, and ask the user to select that object. 
 
 This is done by selecting another random number between 0 and 4 (both inclusive).  We will then 
use the code: 
$random = (rand()%5);  
echo  ‘<input type=”hidden”  name=”ObjectToFind”  value=” ’; 
 echo  $description[$random]; 
 echo ‘ ”>’; 
to insert a hidden field in the form that will contain the name of the object the user was asked to select.  
This way the only information that will be submitted with our form is the object that the user is 
supposed to find and the selection the user made.  The form has no way of knowing whether the 
selection the user made was correct or not, and thus, neither has an automated system any way of 
knowing. 
 
F.  Provide user instructions 
  
 We should now print out a blank line to the browser using the “echo” command, as well as a 
message to the user to “Select the picture of the [selected item] and press the Submit button.” This is 
done as follows: 



9 
 

 
echo '<br />Select the picture of the '; 
echo $description[$random]; 
echo ' and click Submit to complete your transfer.<br /><br />'; 
 
 
 When this is done, our transfer.php page will be complete.  We may now move on to updating our 
transfer_action.php page. 
 
G. Update Links to transfer.php 
 
 After you have added the PHP code to your transfer.php page, you will need to update the other 
pages so that they link to the appropriate page (at the beginning of this section, you changed the name 
from transfer.html to transfer.php).  In turn, open each of the following pages in a text editor and 
change the two references to “transfer.html” to “transfer.php”.  The line numbers at which these 
references occur are given below, but you can also search within the document and find them. 

• default.html  (lines 30 and 52) 

• login.html   (lines 30 and 61) 

• transfer.php  (line 44 and the 12th line from the bottom) 

• transfer_action.php (lines 44,  the 11th from the bottom, and several other locations) 

• view.php   (lines 44 and 172) 

• login.php   (lines 32 and 136) 
 
9.1.2  Edit transfer_action.php 
 
 Updating the transfer_action.php page requires the addition of much less code than the 
transfer.php page did.  To update the transfer_action.php page, we will simply need to get the values of 
the item description, and the item URL that the user selected from the form.  The correct item URL for 
the given description (obtained from the database) will be compared with the item URL selected by the 
user.  If the two URLs match, the user will be allowed to process a funds transfer.  If the two do not 
match, the user will not be allowed to transfer funds because no proper selection (or no selection) was 
made. 
 
A.  Retrieve user input 
 
 To retrieve the two required values from the form, we will use the $_GET[] method.  The syntax 
of these two lines will be: 
 $ObjectToFind  =  $_GET[‘ObjectToFind’]; 
 $ObjectURL  =  $_GET[‘ObjectURL’]; 
where $ObjectToFind and $ObjectURL are PHP variables and ‘ObjectToFind’ and ‘ObjectURL’ are the 
“name” values of the input elements from the form.  
 
You need to insert the above two lines after line # 66 in the transfer_action.php file, immediately 
following the “$amount = $_GET[‘TransferAmount’]” line. 
 
 One additional consideration here is that if no values are passed to this page for ‘ObjectToFind’ 
and ‘ObjectURL’, PHP will display a notice stating that “Notice: Undefined index: ObjectToFind in 
transfer_action.php on line 71” and also a notice regarding the fact that ‘ObjectURL’ has an 



10 
 

undefined index.   
 
B.  Determine if user input has been passed 
 
 Now we need to determine whether or not values for the ‘ObjectToFind’ and ‘ObjectURL’ 
variables have actually been passed to the form.  If the transfer_action.php page were accessed from 
any page other than the appropriate transfer.php page, or directly from a URL as in the example of the 
XSRF link in section 7, then these values would not be present. 
 
 We will insert the code to check these parameters inside the first if statement (currently if (false)).  
Edit the if (false) statement to read: 
 if ($ObjectToFind == “” || $ObjectURL == “” || $ObjectToFind == null || $ObjectURL==null) 
This will determine whether any of our variables is empty or null.  If either of them is not specified, we 
need to display an appropriate message to the user. 
 Inside the if( ) block you just edited, you will see the text 
 //this will be executed if no valid parameters are passed 
Here you will need to use the echo command to insert a message to the user warning that there was an 
error in processing the transfer request and that he or she should return to the transfer page. 
  
C.  Construct a query to check the passed parameters 
 
 We will now need to construct a query which selects the rows from the image_data table where the 
URL in the table is equal to the $ObjectURL variable and execute the query on the database. 
 
The statements for the query and its execution results should be placed after the lines that reads $result 
= null;: 

$query = "SELECT * FROM image_data i WHERE (i.URL = '$ObjectURL')"; 
 $result = mysql_query($query, $connection); 
 
D.  Verify the passed parameters 
 
 Now we need to alter the next two if() statements to validate the input.  The first if() statement will 
check whether or not any rows were returned.  If the user somehow made a selection on the previous 
page that does not correspond to any elements in the database, the query will not find any matching 
database elements and the result will not contain any rows.  If a row was returned, we should retrieve 
the value of its “Description” field so that it may be compared with the $ObjectToFind variable 
retrieved from the form.   
 
D.1.  Check for a matching database row 
 
 The first if statement that we will be revising is the one that currently reads 
 if(false) //if the number of rows is zero 
 { 
  //this will be executed if the result contains zero rows 
 } 
The first thing to do will be to update the contents of the if() statement.  Replace the word “false” with: 
 mysql_numrows($result) ==  0 
 



11 
 

 Now, we need to fill in the contents of the if() block.  Replace the line that currently reads 
 //this will be executed if the result contains zero rows 
with 
 $validinput = false; 
 
Immediately following that if() block, you will find a line which reads $result_object = null; .  We need 
to replace this with the MySQL command which will retrieve the value of the “Description” field from 
the first row of our result.  To do this, change this line to read 
  $result_object  =  mysql_result($result, 0, “Description”); 
 
D.2.  Check for matching parameters 
 
 The second if() statement should compare $ObjectToFind with the value of $result_object obtained 
from the database.  The line currently reads if (false) //if the values of the parameters match .  It should 
be changed to: 

if ($ObjectToFind == $result_object) 
 

The code inside of this if() block will execute if the value of $ObjectToFind retrieved from the 
transfer.php page matches that of the description of the object matching the URL of $ObjectURL in the 
database.  The code inside of the if() block should be changed from: 

//this will be executed if the values of the parameters match 
to 
 $validinput = true; 
This will let the program know that valid input was passed from the transfer.php page and that the 
values match. 
 
 You should then change the code inside the else block from: 
 //this will be executed if the values of the parameters do not match 
to: 
 $validinput = false; 
 
E.  Check for complete input validity 
 
 Now we have checked all the conditions to determine whether the parameters passed from the 
transfer.php page are valid or not.  The only thing left to do is to change the code in our 
transfer_action.php page so that if the parameters were not valid and correct, the transfer will not take 
place. 
 
 You will see a line which currently reads 
 if (true)  //if the user entered proper information on the transfer.php page 
We need to change this to read 
 if ($validinput == true) 
This way, the actual transfer code contained within this if() block will only execute if everything is 
correct. 
 
 Now, scroll down all the way to the bottom of the transfer_action.php code and you will see an 
else block which currently reads 
 else 



12 
 

 { 
  //this will be executed if there are no matches 
 } 
Insert code inside of this else block which will use an echo statement to output a message to the user 
informing him or her that there was an error processing the form and request that the user return to the 
transfer.php page, similar to that shown below: 

 echo 'There was a problem with the transfer, please click <a href="./default.html">here</a> to 
return to the Transfer page and try again.</br><br />'; 

  
 The required edits to transfer_action.php should now be complete.  Save your document. 
 
Screenshot # 6: When you have completed this step, take a screenshot of your new transfer.php 
page.   
 
Screenshot # 7: Now take 2 series’ of screenshots.  In the first series, take screenshots of: 

• valid data entered into the transfer.php page 

• the resulting transfer_action.php page 
 
Screenshot # 8: In the second series, take screenshots of: 

• invalid data (say a negative number for the Amount to be transferred) entered into the 
transfer.php page 

• the resulting transfer_action.php page 
 

Screenshot # 9: Click on the XSRF link in section 7 again and take a screenshot of the resulting page 
 
11.  Further Problems 
 
 There are still a number of bugs in the transfer system’s code (as you might have noticed above to obtain 
Screenshot 8, while passing invalid data for the Amount to be transferred). You will now need to fix these bugs.  
Some of these bugs which need to be addressed are: 

• If a user’s account balance is negative, he can still transfer money to another account.  If a user does 
have a negative account balance, he should not be able to transfer money. 

• If a user’s account balance is less than the amount she wishes to transfer, she is still allowed to make the 
transfer (which will result in her having a negative balance).  This should no occur. 

• Users are able to transfer money to their own accounts.  This is unnecessary and should not occur. 

• Users are able to transfer a negative amount of money to someone else’s account (thereby increasing the 
amount of money in their own at someone else’s expense). 

 
 These issues are fairly simple and can be easily fixed.  We will now walk through the process of fixing the 
first one together.  After that, you will need to fix the remaining three bugs. 
 
 The first bug is that a user can transfer money to another account even when he has a negative account 
balance.  To fix this, we simply need to check the user’s account balance before we initiate any transfer. 
  
 In the transfer_action.php code, scroll down to the line that says 
 if (false)  //if the source account has a negative balance 
We will need to use this if statement to compare the source account’s balance with zero to determine if the 
amount in the account is less than or equal to zero.  A look at the code reveals that there is a variable named 
“$source_balance”.  This is the variable that holds the amount of money in the source account.  We will need to 
replace the contents of the if() statement to be: 



13 
 

 if ($source_balance <= 0) 
 
 We will then need to insert a line into the if() block which will issue a message to the user if this condition 
has occurred.  Immediately following the line that says 
 //check the source account balance 
Insert the following line: 
 echo ‘<br />The source account has a negative balance.  No transfer will occur.<br />’; 
 
 Now save the transfer_action.php code and return to the application.  To test the fix, you will need to alter 
the data in the database (http://localhost/phpmyadmin) to give your account a negative balance. 
   
Screenshots # 10: Once you have done this, you will take three screenshots:  a screenshot of the database 
contents showing your negative balance, one of the transfer.php page in which you request to transfer 
money, and a screenshot of the resulting transfer_action.php page which should deny you the ability to 
transfer funds due to your negative balance. 
 
Screenshots # 11, 12, 13: 
 
 After you have proceeded so far, fix the three remaining bugs.  For each bug that you fix, you will 
need to take a set of three screenshots: 
 

• A screenshot of the database contents showing the initial conditions, 

• A screenshot of the transfer.php page where you try to enter improper data related to the bug 
you have fixed, and 

• A screenshot of the resulting transfer_action.php page which should deny you the ability to 
transfer funds based on the conditions related to the bug you have fixed 

 
Screenshot # 14: Take a final screenshot of the contents of your “Accounts” table showing the details of 
each account. 
 

WHAT TO TURN IN: 
(1) Hardcopy of the following: 

• Screenshots 1 through 14 as described above 

• The transfer.php code after all of your modifications 

• The transfer_action.php code after all of your modifications 

• Trace the structure of your transfer_action.php code and briefly explain why you were able to easily 
fix the above four bugs by just replacing the false Boolean value with an appropriate condition in 
the if statement. 

 
(2) Video Recording: After you have completely setup the banking website and tested it (i.e., proceeded until 
Screenshot 14), record a video illustrating the following (the CAPTCHA scheme should work for verification for 
cases iii, iv, v and vi). Upload the video through GoogleDrive and e-mail the link to 
natarajan.meghanathan@jsums.edu 

(i) An unsuccessful login attempt 
(ii) A successful login and check the account balance. 
(iii) Transfer a positive amount from one account to another account, with the transfer verified using the 
CAPTCHA scheme 
(iv) Attempt to transfer a negative amount to another account. It should not work an error message must be 
displayed. 
(v) Attempt to transfer an amount from an account that exceeds the balance in that account. An error 
message must be displayed. 
(vi) Attempt to transfer a positive amount to their own account. An error message should be displayed. 



14 
 

 

Images to choose from (use http://images.google.com): Choose a distinct image of each type assigned to you 
 

# Student Name Image Types 
1 Bernard Aldrich Books, Laptop, Cloud, Broccoli, Rat, Horse, Snake, Couch, Television, 

Bus 
2 Anirudh Reddy Tree, Car, Sandwich, Cat, Sheep, Phone, Rainbow, Laptop, Apple, 

Microwave 

3 Yashwanth Divanji Tree, Motorbike, Rainbow, Donut, Cycle, Window, Butterfly, Rat, Dryer, 
Table 

4 Keerthi Donepudi Microwave, Table, Rabbit, Motorbike, Rose, Eggplant, Pizza, Tablet, 
Phone, House 

5 Rashad Evans Dryer, Rat, Horse, Tree, Pig, Books, Table, Cookie, Banana, Rainbow 

6 Mesafint Fanuel Snake, Cookie, Dog, Chair, Table, Books, Sheep, Bus, Horse, Tablet 
7 Phillip Graise Dryer, Snake, Car, Chair, Banana, Sheep, Pig, Road, Tablet, Tree 

8 Damon Jones Television, Broccoli, Airplane, Couch, Tree, Cycle, Rat, Hurricane, 
Microwave, Cookie 

9 Joel Maddirala Window, Cloud, Motorbike, Stove, Snake, Tree, Rose, Dryer, Bus, 
Butterfly 

10 Jerry McLin Hurricane, Rainbow, Stove, Phone, House, Banana, Peacock, Horse, 
Towel, Tomato 

11 Kranthi Nalivela Rose, Cabbage, Window, House, Chair, Phone, Peacock, Rat, Motorbike, 
Cat 

12 Victoria O'Harroll Tree, Cabbage, Elephant, Table, House, Eggplant, Tablet, Dog, Towel, 
Horse 

13 Ayotunde Olutade Tablet, Window, Rose, Laptop, Cloud, Snake, Books, Television, Broccoli, 
Cat 

14 Antranella Pendleton Cookie, Tree, Dog, Cycle, Cloud, Sandwich, Cabbage, Television, Phone, 
Peacock 

15 Deepak Vadlamudi Tomato, Peacock, Television, Horse, Rabbit, Tablet, Phone, Cabbage, Car, 
Motorbike 

 
 
 
 
 


