
Graph Theory for Network

Science

Dr. Natarajan Meghanathan

Associate Professor

Department of Computer Science

Jackson State University, Jackson, MS

E-mail: natarajan.meghanathan@jsums.edu

Networks or Graphs
• We typically use the terms interchangeably.
• Networks – refers to real systems

– WWW: network of web pages connected by URLs

– Society: network of individuals connected by family,
friendship or professional ties

– Metabolic network: sum of all chemical reactions that
take place in a cell

• Graphs: Mathematical representation of the
networks
– Web graph, Social graph, Metabolic graph

Real systems of quite different nature can

have the same network representation
• Even though these real systems have different nature, appearance or scope,

they can be represented as the same network (graph)

• Internet – connected using routers

• Actor network – network of actors who acted together in at least one movie

• Protein-Protein Interaction (PPI) network – two proteins are connected if there
is experimental evidence that they can bind each other in the cell

Internet

Actor Network

PPI

Network

Graph

Fig. 2.3: Barabasi

Networks
• Node – Components in the system

• Link – Interactions between the nodes

• Directed link – nodes that interact in a specific direction (A calling B,
not vice-versa; URL A is linked to URL B; A likes B)

• Undirected link – Transmission lines on the power grid (two people
who are friends to each other in Facebook; electric current flowing in
both directions; A and B are siblings; A and B are co-authors)

• Degree of a node – Number of links incident on it

• In-degree - # incoming links; Out-degree - # outgoing links

• Directed network – contains all directed links

• Undirected network – contains all undirected links

• Some networks can have both directed and undirected links

– Metabolic network with certain reactions being reversible and
certain reactions proceeding in only one direction

• It is important to make proper choices in the selection of links to
apply the network science theory.

Edge Attributes
• Weight (e.g., frequency of communication)

• Ranking (choice of dining parameters)

• Type (friend, relative, co-worker)

Source: girls school dormitory dining-table

partners, 1st and 2nd choices (Moreno,

The sociometry reader, 1960)

Degree and # Links

• Undirected network

– Let ki denote the degree of node i, then the total number

of links is:

– The ½ factor is because we count each link twice while

computing the sum of the degrees

– The average degree of an undirected network

On a complete graph of N nodes,

the max. number of links is
2

)1(−NN Average
Degree

= N – 1

For many large real-world networks,

<k> ~ 1/N, implying that the networks are sparse

Degree and # Links
• Directed Network

– Let ki
in and ki

out denote the incoming and
outgoing degrees of node i.

– The total number of links:

– Average degree of a directed network is:

–

Common Network Maps: their Properties

*

*

* - Subset of the real system

Degree Distribution

• Let pk denote the probability that a randomly selected node
has degree k.

• For a fixed number of nodes (N) in the network, pk = Nk / N,
where Nk is the number of degree k nodes.

• Average degree of a network is:

1
2

3
4

5

6

7

8

Nodes Degree

1 3

2 3

3 2

4 5

5 4

6 3

7 2

8 2

Degree # nodes

2 3

3 3

4 1

5 1

Degree Prob[deg]

2 0.375

3 0.375

4 0.125

5 0.125

Avg. Degree = (2*0.375) + (3*0.375) + (4*0.125) + (5*0.125)
= 3.0

Degree Distribution Examples

N1 = 1

N2 = 2

N3 = 1

p1 = N1 / N = ¼ = 0.25

p2 = N2 / N = 2/4 = 0.5

p3 = N3 / N = ¼ = 0.25

Average Degree

= 1*0.25 + 2*0.5 + 1*0.25

= 1.5

Average Degree

= 2*1.0

= 2.0

Source:

Figure 2.4a: Barabasi

k

p(k) p(k)

k

k

p(k) p(k)

!
)(

k

ke
kp

kk−

=

Poisson

Distribution

()

 −
−

=
2

2

2

2

1
)(

k

kk

k

ekp
σ

πσ

Gaussian

Distribution

kk
ekp

/
~)(

−

Exponential

Distribution

γ−
kkp ~)(

Power-Law

Distribution

k

(e.g., Star Graphs)

Power-Law Degree Distribution

48% (0.48) of the nodes have degree 1

0.0005 of the nodes have degree 92.

log-log scale

Source:

Figure 2.4b: Barabasi

ln(p(k)) = -γlnk + lnA

Slope = -γ

Y-Intercept = lnA
lnA

γ

p(k) = Ak-γ

k

p(k)

Adjacency Matrix
• Unweighted graphs: Aij = 1 if there is a link

pointing from node i to node j, and 0

otherwise

• Weighted graphs: Aij = wij – weight of a link

from node i to node j, and 0 otherwise

Assortativity Index

• Assortativity is a measure of the association of nodes of
similar degrees. That is, high degree nodes tend to
associate with high degree nodes and low-degree nodes
with low-degree nodes.

• On the other hand, if high degree nodes associate with low
degree nodes and vice-versa, it is referred to as
disassortativity.

• We measure the assortativity index as the Pearson
Correlation Coefficient (r) evaluated on the degrees of the
end nodes of every link in the network.
– Positive values of r indicate the network exhibits assortativity.

– Negative values of r indicate the network exhibits diassortativity.

– Values of r close to 0 indicates the network is more neutral.

Example: Assortativity Index

1 2

3
45

Edges Degrees of End Nodes

X – Y Degree(X) Degree(Y) X – Avg(X) Y – Avg(Y) (X-Avg(X))(Y-Avg(Y))

1 – 2 3 2 0.5 -0.5 -0.25

1 – 4 3 3 0.5 0.5 0.25

1 – 5 3 2 0.5 -0.5 -0.25

2 – 4 2 3 -0.5 0.5 -0.25

3 – 4 2 3 -0.5 0.5 -0.25

3 – 5 2 2 -0.5 -0.5 0.25

Avg. X 2.5 2.5 SumSq 1.5 1.5 Sum -0.5

Assortativity Index = -0.5 / [sqrt(1.5) * sqrt(1.5)] = -0.333 [disassortativity]

We follow the convention of considering edges

in the increasing order of the left node ID,

followed by increasing order of right node ID.

Assortativity of Social Networks

Network # Nodes Assortativity Index
Physics
Co-authorship 52,909 0.363
Film actor

Collaborations 449,913 0.208
Company
Directors 7,673 0.276
E-mail Address
Books 16,881 0.092
In real world, most of the social networks are assortative and the non-social

Networks are typically disassortative. However, there are some exceptions.

Network Assortativity Index Network Assortativity Index

Drug Users -0.118 Roget’s Thesaurus 0.174

Karate Club -0.476 Protein Structure 0.412

Students dating -0.119 St Marks Food Web 0.118

Clumping Index
• The clumping index is a measure of the occurrence of the

nodes together as a clump (cluster) - compactly or spread
out.

∑
−

>

=Λ
2/)1(

)(
),,(

nn

ji ij

ji

d

kk
kG

α
α

(for undirected network)

∑
−

≠

=Λ
)1(

)(
),,(

nn

ji ij

ji

d

kk
kG

α
α

(for directed network)

The Clumping Index increases with increase in node degree; but, decreases

with increase in the distance between the nodes. The Clumping Index will

be high when we have high degree nodes that are compactly placed

together.

The parameter α is typically chosen as 2.

Note that Λ(G – e) ≤ Λ(G).
Complete graphs have the highest Λ as distances are all 1s

and the nodes have the highest degree.

Clumping Index of a complete

Graph of n nodes

= n(n-1)3/2

Clumping Index has nothing to do with assortativity or
disassortativity.

Assortativity Index = 0.118

High Clumping
Assortativity Index = 0.129

Low Clumping

Assortativity Index = -0.304

High Clumping
Assortativity Index = -0.227

Low Clumping

Clumping Index Examples 1 and 2

1 2

3
45

Node Degree Distance (a)

Pair Product dij dij
2 ---

(a) (b) (b)

1 – 2 6 1 1 6

1 – 3 6 2 4 1.5

1 – 4 9 1 1 9

1 – 5 6 1 1 6

2 – 3 4 2 4 1

2 – 4 6 1 1 6

2 – 5 4 2 4 1
3 – 4 6 1 1 6
3 – 5 4 1 1 4

4 – 5 6 2 4 1.5

3 2

2

2

3

Λ = 42

1 2 3 44 5

1 2 2 2 1

Node Degree Distance (a)

Pair Product dij dij
2 ---

(a) (b) (b)

1 – 2 2 1 1 2

1 – 3 2 2 4 0.5

1 – 4 2 3 9 0.22

1 – 5 1 4 16 0.063

2 – 3 4 1 1 4

2 – 4 4 2 4 1

2 – 5 2 3 9 0.22

3 – 4 4 1 1 4

3 – 5 2 2 4 0.5
4 – 5 2 1 1 2

Λ = 14.5

Clumping
Index

Example 3

1 2

34 5

Node Out In Degree Distance (a)

Pair deg deg Product dij dij
2 ---

(a) (b) (b)

1->2 2 2 4 1 1 4

1->3 2 3 6 1 1 6

1->4 2 0 0 ∞ ∞ N/A

1->5 2 1 2 2 4 0.5

2->1 1 1 1 ∞ ∞ 0

2->3 1 3 3 1 1 3

2->4 1 0 0 ∞ ∞ N/A

2->5 1 1 1 2 4 0.5

3->1 1 1 1 ∞ ∞ 0

3->2 1 2 2 2 4 0.5

3->4 1 0 0 ∞ ∞ N/A

3->5 1 1 1 1 1 1.0

4->1 2 1 2 1 1 2.0

4->2 2 2 4 3 9 0.44

4->3 2 3 6 1 1 6.0

4->5 2 1 2 2 4 0.5

5->1 1 1 1 ∞ ∞ 0.0

5->2 1 2 2 1 1 2.0
5->3 1 3 3 2 4 0.75

5->4 1 0 0 ∞ ∞ N/A

(2,1) (1,2)

(2,0) (1,3) (1,1)

(out deg, in deg)

Clumping Index = 27.19

Eigenvalue and Eigenvector

• Let A be an nxn matrix.

• A scalar λ is called an Eigenvalue of A if there is a non-

zero vector X such that AX = λX. Such a vector X is called

an Eigenvector of A corresponding to λ.

• Example: 2 is an Eigenvector of A = 3 2 for λ = 4

1 3 -2

Finding Eigenvalues and Eigenvectors
(4) Solving for λ:

(λ – 8) (λ + 2) = 0

λ = 8 and λ = -2 are the Eigen values

(5) Consider A – λ I

Let λ = 8

= B

Solve B X = 0

-1 3

3 -9

X1

X2
= 0

0

-X1 + 3X2 = 0

3X1 – 9X2 = 0

X1 = 3X2
3X1 = 9X2 � X1 = 3X2

If X2 = 1;

X1 = 3

3

1
is an eigenvector

for λ = 8

Finding Eigenvalues and Eigenvectors

For λ = -2

7- (-2) 3

3 -1 – (-2)

=
9 3

3 1

Solve B X = 0

9 3

3 1

X1

X2
= 0

0

9X1 + 3X2 = 0

3X1 + X2 = 0

X2 = - 3X1

If X1 = 1;

X2 = -3

1

-3
is an eigenvector

for λ = -2

X2 = - 3X1

Verification

AX = λX

For λ = 8 and X =
3

1

A =
7 3

3 -1

7 3

3 -1

3

1
= 24

8
= 8

3

1

Spectral Radius (Network Index)
• The index of the network or the spectral radius of the node

adjacency matrix A is the largest Eigenvalue of A, denoted
λ1(A).

• The largest Eigen value of a connected undirected network
is a unique positive value whose corresponding
Eigenvector is the principal Eigenvector of the network.

• If kmin, kavg, kmax are the minimum, average and
maximum node degrees, then:

kmin ≤ kavg ≤ λ1(A) ≤ kmax

Use this website to determine Eigenvalues and Eigenvectors for a
matrix. http://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert.htm

The largest Eigenvalue is 2.4811. 1 2

3
45

kmin = 2; kmax = 3; kavg = 2.4
2 < 2.4 < 2.4811 < 3

Cocitation and Bibliographic Coupling
• The CB-Adjacency matrix is the one where there is a 1 in

(row index i, column index j) if there is an edge j to i.
– Aij = 1 iff there is an edge j � I

– Aij = 0 iff there is NO edge from j to i.

• Cocitation and Bibliographic coupling are some of the
techniques to transform a directed graph to an undirected
graph and analyze the info hidden in the directed graph.

• The cocitation of two vertices i and j in a directed graph
is the number of vertices k that have outgoing edges
pointing to both i and j.
– Cocitation Cij = 1 iff Aik = 1 and Ajk = 1.

i j

Cij = 3

Cocitation Coupling: Example

1

23

4

6 5

1

2

3

4

5

6

1 2 3 4 5 6

0 0 1 0 0 1

1 0 1 0 0 0

0 0 0 1 0 1

1 1 0 0 0 0

1 0 0 1 0 1

0 0 0 0 0 0

CB Adj.

Matrix

A =

1

2

3

4

5

6

1 2 3 4 5 6

0 1 0 1 1 0

0 0 0 1 0 0

1 1 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

1 0 1 0 1 0

AT =

Cocitation

Coupling

Matrix =

1

2

3

4

5

6

1 2 3 4 5 6

=

1

2

3

4

5

6

1 2 3 4 5 6

0 0 1 0 0 1

1 0 1 0 0 0

0 0 0 1 0 1

1 1 0 0 0 0

1 0 0 1 0 1

0 0 0 0 0 0

1

2

3

4

5

6

1 2 3 4 5 6

0 1 0 1 1 0

0 0 0 1 0 0

1 1 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

1 0 1 0 1 0

2 1 1 0 1 0

1 2 0 1 1 0

1 0 2 0 2 0

0 1 0 2 1 0

1 1 2 1 3 0

0 0 0 0 0 0

Other than the entries for a vertex to itself, the only entries where
Cij > 1 are: C35 = C53 = 2; meaning that two papers (4 and 6) are citing both

papers 3 and 5.

Cocitation Coupling

• A cocitation network comprises of only undirected edges (i, j), iff
Cij > 0.

• The value of Cij is a good indicator of two papers i and j that deal
with related topics.
– If two papers are often cited together in the same bibliography, they

probably have something in common.

– The more often they are cited together, the more likely it is that they are
related.

• Strength: Cocitation counts of papers increase with time. The rate
of increase can be used to trace the evolution of an academic field.

• The co-citation measure reflects the opinion of many authors.

• Weakness with Cocitation coupling: The relative similarity
between two papers is being adjudged with the number of papers
citing them.

• For two papers i and j to be adjudged to be “strongly related” to each
other, we should have more incoming edges to both of them.
– This may not be the case for two papers (or at least one of them) that

have few citations.

– Also, the relative similarity of two papers cannot be computed until both
the papers are cited by at least one paper.

Bibliographic Coupling
• Two papers i and j are related if they refer to one

or more papers k in common.

– The number of common references is an indicator of the

similarity between the two papers.

• However, the similarity is based on the opinion of only the

authors of the two papers; not others in the subject area – a

weakness to assess similarity between two papers.

– It is a static measure: established when a paper gets

published and not updated henceforth.

• Hence, it cannot be used to trace the evolution of an academic

field.

– Strength: Unlike Co-citation coupling, there is no need

to wait for other papers to cite.

Bibliographic Coupling
• The bibliographic coupling

of two vertices i and j in a
directed graph is the number

of vertices k that have
incoming edges from both i
and j.

– Bibliographic coupling Bij =
1 iff Aki = 1 and Akj = 1.

i j

Bibliographic Coupling: Example

1

23

4

6 5

1

2

3

4

5

6

1 2 3 4 5 6

0 0 1 0 0 1

1 0 1 0 0 0

0 0 0 1 0 1

1 1 0 0 0 0

1 0 0 1 0 1

0 0 0 0 0 0

CB Adj.

Matrix

A =

1

2

3

4

5

6

1 2 3 4 5 6

0 1 0 1 1 0

0 0 0 1 0 0

1 1 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

1 0 1 0 1 0

AT =

Bibliogr.

Coupling

Matrix =

1

2

3

4

5

6

1 2 3 4 5 6

=

1

2

3

4

5

6

1 2 3 4 5 6

0 0 1 0 0 1

1 0 1 0 0 0

0 0 0 1 0 1

1 1 0 0 0 0

1 0 0 1 0 1

0 0 0 0 0 0

1

2

3

4

5

6

1 2 3 4 5 6

0 1 0 1 1 0

0 0 0 1 0 0

1 1 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

1 0 1 0 1 0

3 1 1 1 0 1

1 1 0 0 0 0

1 0 2 0 0 1

1 0 0 2 0 2

0 0 0 0 0 0

1 0 1 2 0 3

Other than the entries for a vertex to itself, the only entries where
Bij > 1 are: B46 = B64 = 2; meaning that two papers (1 and 3) are both being

referred by papers 4 and 6.

Bipartite Graph and Projection
• A bipartite graph (or bigraph) is a network whose

nodes are divided into two disjoint sets U and V;
the only links in the graph are those connecting
a U-node to a V-node.
– There is no link connecting two U-nodes or two V-

nodes.
– The U-nodes can be of one color and the V-nodes

can be of another color; a link always connects two
nodes of different colors.

• Projection:
– Projection U: Links involving the U-nodes. Two U-

nodes are connected if they link to the same V-node
in the bipartite graph.

– Projection V: Links involving the V-nodes. Two V-
nodes are connected if they link to the same U-node
in the bipartite graph.

Bipartite Graph and Projection

Source: Fig. 2.9a, Barabasi

(Vertex Projection) (Group Projection)

Incidence Matrix and Projections

Vertex Projection
Two vertices are connected if they

belong to at least one common group.

Group Projection
Two groups are connected if they

share at least one common vertex.

VPij is the number of groups that

i and j share.

VPii is the number of groups to

which i belongs to.

GPij is the number of vertices that

groups i and j share.

GPii is the number of vertices that

belong to group i.

A B C D

1 2 3 4 5

A

B

C

D

1 2 3 4 5

1 0 0 1 0

0 1 1 0 1

1 1 1 1 0

0 0 1 1 1

1 0 0 1 0

0 1 1 0 1

1 1 1 1 0

0 0 1 1 1

1 0 1 0

0 1 1 0

0 1 1 1

1 0 1 1

0 1 0 1

2 0 2 1

0 3 2 2

2 2 4 2

1 2 2 3

1 0 1 0

0 1 1 0

0 1 1 1

1 0 1 1

0 1 0 1

1 0 0 1 0

0 1 1 0 1

1 1 1 1 0

0 0 1 1 1

2 1 1 2 0

1 2 2 1 1

1 2 3 2 2

2 1 2 3 1

0 1 2 1 2

=

=

Adjacency Matrix B

B BT BBT

BT B BTB

Groups

Vertices

Group Projection: Indicates the

number of vertices that are

common to any two groups.

Vertex Projection: Indicates

the number of common groups

for any two vertices.

A

B

C

D

A B C D

1

2

3

4

5

1 2 3 4 5

Examples of Bipartite Graphs
and Projections

• Actor-movie network: Actors are one set of nodes and the
movies are another set of nodes. Each actor is connected
to the movie(s) in which s/he has acted.
– Projection Actors (Actor network): Two actors are connected if they

acted together in at least one movie

– Projection Movies (Movie network): Two movies are connected if
they had at least one common actor.

• Diseasome network: One set of nodes are the diseases
and another set of nodes are the genes: A disease is
connected to a gene if mutations in that gene are known to
affect the particular disease.
– Projection Gene (Gene network): Two genes are connected if they

are associated with the same disease.

– Projection Disease (Disease network): Two diseases are connected
if the same genes are associated with them, indicating the two
diseases have common genetic origins.

Paths and Distances in Networks

• A path between two nodes i and j is a route along the
links of the network; the length (distance dij) is the
number of links the path contains.
– In an undirected network, dij = dji

– In a directed network, dij need not be equal to dji

• Shortest path (geodesic path): between any two nodes i
and j is the path with the fewest number of links.

• Diameter of a network: Maximum of the shortest path
lengths between any two nodes

• The number of paths of length k between any two
vertices can be found from: Ak where A is the adjacency
matrix of the network.

• The shortest path length between any two nodes i and j
is the minimum value of k for which Ak-1[i, j] = 0 and
Ak[i, j] > 0.

Walks (Paths) of Certain Length

1 2

3 4

A2 =

1

2

3

4

1 2 3 4

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

1

2

3

4

1 2 3 4

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

1

2

3

4

1 2 3 4

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

1

2

3

4

1 2 3 4

3 1 1 2

1 2 2 1

1 2 2 1

2 1 1 3

=

A Walk is a path in which one or

more vertices (other than the

source and destination) are

repeated.

Number of Paths of Certain Length

1 2

3 4

A2 =

1

2

3

4

1 2 3 4

0 0 0 1

1 0 0 1

1 0 0 0

0 0 1 0

1

2

3

4

1 2 3 4

0 0 1 0

0 0 1 1

0 0 0 1

1 0 0 0

=

1

2

3

4

1 2 3 4

0 0 0 1

1 0 0 1

1 0 0 0

0 0 1 0

1

2

3

4

1 2 3 4

0 0 0 1

1 0 0 1

1 0 0 0

0 0 1 0

Path Terminologies

Path
Shortest
Path

Diameter Cycle

Diameter: Largest shortest path

Diameter

Diameter of a Ring = N/2 or (N-1)/2

Diameter of a Chain = (N-1)

Diameter of a binary tree with K levels

nodes N = 2(K+1) – 1

K+1 = log2(N+1)

Diameter = 2K = 2*[log2(N+1) – 1]

Small Average Path Length and Diameter

• Milgram (1967) letter experiments
– median 5 for the 25% that made it

• Co-Authorship studies
– Grossman (2002) Math mean 7.6, max 27

– Newman (2001) Physics mean 5.9, max 20

– Goyal et al (2004) Economics mean 9.5, max 29

• WWW
– Adamic, Pitkow (1999) – mean 3.1 (85.4% possible of 50M pages)

• Facebook
– Backstrom et al (2012) – mean 4.74 (721 million users)\

• Small-World Property: If n is the number of nodes in the
network, as n increases, the average path length of a
random network is proportional to ln(n) and for a network
with power-law degree distribution, the average path length
is proportional to ln(n) / ln(ln(n)).

Eccentricity, Diameter, Radius, Center
• The eccentricity of a node is the maximum of the shortest path distance

(# hops) to any other node in the network.

• The diameter of the network is the maximum of the node eccentricity
values.

• The radius of the network is the minimum of the node eccentricity
values.

• A node is said to be central if its eccentricity is equal to the radius of
the network.

• The set of nodes that are central constitute the center of the network.

• Weiner Index:

1 2

3 4

5 6

Nodes Distances

(Eccentricity)

1 1, 1, 2, 2, 2 (2)

2 1, 1, 1, 2, 2 (2)

3 1, 1, 2, 2, 3 (3)
4 1, 1, 2, 2, 3 (3)
5 1, 1, 2, 2, 2 (2)

6 1, 1, 1, 2, 2 (2)

Diameter = 3

Radius 2

Center = {1, 2, 5, 6}

Average Path Length:

Weiner Index = 48
Avg. Path Length = 48/ (6*5)

= 1.60

∑∑
= =

=
n

u

n

v

vudistGW
1 1

),()()1(

)(

−nn

GW

Components (Clusters)
• The vertices of a graph are said to be in a single

component if there is a path between the vertices.

• A graph is said to be connected if all its vertices are in one
single component; otherwise, the graph is said to be
disconnected and consists of multiple components.

– Adding one or more links (bridges) can connect the
different components

Bridge

Laplacian Matrix
• Laplacian Matrix L = D – A

The n eigenvalues of an n x n

Laplacian matrix are all positive.

The first eigenvalue is always 0.

The number of 0s among the

Eigenvalues of the Laplacian

Matrix indicates the number of

Connected components of a graph.

The second smallest eigenvalue of the

Laplacian matrix is a measure of the

Connectivity of the graph and is called

Algebraic connectivity (Fiedler Value).

The eigenvalues of the above Laplacian matrix are:

0 1.586 3.0 4.414 5.0

Max. Fiedler Value for a
graph of n vertices is n

(for a complete graph).

Laplacian Matrix
Components

The 7 eigenvalues of the Laplacian

Matrix are:
0

0

1.0

3.0

3.0

3.0

4.0
two components

Laplacian Matrix
Spanning Trees
If µ1 = 0 < µ2 ≤ µ3 ≤ … ≤ µn are the n

Eigenvalues of the Laplacian matrix

of a connected graph of n vertices

The # spanning trees of the graph is then

∏
=

n

i

i
n 2

1
µ

The five eigenvalues of the Laplacian matrix
of the above graph are: 0, 1.586, 3.0, 4.414, 5.0

spanning trees = (1/5)(1.586*3*4.414*5) = 21.

Path Terminologies

Eulerian Path
A path that traverses each link exactly once

Examples: 1 – 2 – 5 – 4 – 3 – 2

1 – 2 – 3 – 4 – 5 – 2

A node may be visited more than once.

Hamiltonian Path
A path that traverses each node exactly once

Examples: 1 – 2 – 5 – 4 – 3

1 – 2 – 3 – 4 – 5

One or more links need not be traversed.

Eulerian Path and Circuit
• Eulerian Path: Start with a

particular vertex, visit each edge
exactly once (could visit a vertex
more than once) and then end
the trail at a vertex different from
the starting vertex.
– There exists an Eulerian Path in a

graph G only if G has exactly two
vertices with odd degree and the
rest of the vertices have even
degree.

• Eulerian Circuit: Start with a
particular vertex, visit each edge
exactly once (could visit a vertex
more than once) and then end
the trail at the starting vertex.
– There exists an Eulerian Circuit in

G only if every vertex in G has an
even degree.

1

2

3

5

4

1

2

3

5

4

V2 ���� V5 ���� V1 ���� V2 ���� V3 ����

V4 ���� V5

1

2

3

6

5

4

1

2

3

6

5

4

V1 ���� V2 ���� V3 ���� V4 ���� V5 ���� V6

Depth First Search (DFS)
• Visits graph’s vertices (also called nodes) by always moving away

from last visited vertex to unvisited one, backtracks if there is no
adjacent unvisited vertex.

• Break any tie to visit an adjacent vertex, by visiting the vertex with the
lowest ID or the lowest alphabet (label).

• Uses a stack

– a vertex is pushed onto the stack when it’s visited for the first time

–a vertex is popped off the stack when it becomes a dead end, i.e.,
when there is no adjacent unvisited vertex

• “Redraws” graph in tree-like fashion (with tree edges and
back edges for undirected graph):

– Whenever a new unvisited vertex is reached for the first time, it is attached
as a child to the vertex from which it is being reached. Such an edge is
called a tree edge.

– While exploring the neighbors of a vertex, it the algorithm encounters an
edge leading to a previously visited vertex other than its immediate
predecessor (i.e., its parent in the tree), such an edge is called a back edge.

– The leaf nodes have no children; the root node and other intermediate
nodes have one more child.

Pseudo Code of DFS

Example 1: DFS

Source: Figure 3.10: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms,

2012.

DFS
• DFS can be implemented with graphs represented as:

–adjacency matrices: Θ(V2); adjacency lists: Θ(|V|+|E|)

• Yields two distinct ordering of vertices:
–order in which vertices are first encountered (pushed onto stack)

–order in which vertices become dead-ends (popped off stack)

• Applications:
–checking connectivity, finding connected components

• The set of vertices that we can visit through DFS, starting from a
particular vertex in the set constitute a connected component.

• If a graph has only one connected component, we need to run DFS
only once and it returns a tree; otherwise, the graph has more than
one connected component and we determine a forest – comprising of
trees for each component.

–checking for cycles (a DFS run on an undirected graph returns a
back edge)

–finding articulation points and bi-connected components
• An articulation point of a connected component is a vertex that when

removed disconnects the component.

• A graph is said to have bi-connected components if none of its
components have an articulation point.

Example 2: DFS

f b c g

d a e

f b c g

d a e

1, 7

2, 3

3, 2

4, 1 5, 6 6, 5

7, 4

Tree Edge

Back Edge

• Notes on Articulation Point
– The root of a DFS tree is an articulation point if it has more than

one child connected through a tree edge. (In the above DFS tree,
the root node ‘a’ is an articulation point)

– The leaf nodes of a DFS tree are not articulation points.

– Any other internal vertex v in the DFS tree, if it has one or more
sub trees rooted at a child (at least one child node) of v that does
NOT have an edge which climbs ’higher ’ than v (through a back
edge), then v is an articulation point.

DFS: Articulation Points

• In the above graph, vertex ‘a’ is the only articulation point.

• Vertices ‘e’ and ‘f’ are leaf nodes.

• Vertices ‘b’ and ‘c’ are candidates for articulation points. But, they cannot
become articulation point, because there is a back edge from the only sub
tree rooted at their child nodes (‘d’ and ‘g’ respectively) that have a back edge
to ‘a’.

• By the same argument, vertices ‘d’ and ‘g’ are not articulation points, because
they have only child node (f and e respectively); each of these child nodes
are connected to a higher level vertex (b and a respectively) through a back
edge.

a

b c

d

f

g

e

Based on

Example 2

Example 3: DFS and Articulation Points

f b c g

d a e

f b c g

d a e

1, 7

2, 3

3, 2

4, 1 5, 6 6, 5

7, 4

Tree Edge

• In the above new graph (different from the previous example: note edges b –
f, a – d and a – e are missing), vertices ‘a’, ‘b’, ‘c’, ‘d’ and ‘g’ are articulation
points, because:
– Vertex ‘a’ is the root node of the DFS tree and it has more than one child

node
– Vertex ‘b’ is an intermediate node; it has one sub tree rooted at its child node

(d) that does not have any node, including ‘d’, to climb higher than ‘b’. So,
vertex ‘b’ is an articulation point.

– Vertex ‘c’ is also an articulation point, by the same argument as above – this
time, applied to the sub tree rooted at child node ‘g’.

– Vertices ‘d’ and ‘g’ are articulation points; because, they have one child node
(‘f’ and ‘e’ respectively) that are not connected to any other vertex higher than
‘d’ and ‘g’ respectively.

Example 4: DFS and Articulation Points

f b c g

d a e

f b c g

d a e

1, 7

2, 3

3, 2

4, 1 5, 6 6, 5

7, 4

Tree Edge

• In the above new graph
(different from the
previous example: note
edge a – e and b – f are
added back; but a – d is
missing):
– Vertices ‘a’ and ‘b’ are

articulation points

– Vertex ‘c’ is not an
articulation point

Back Edge

a

b c

d

f

g

e

Example 5: DFS and Articulation Points

a

b

c

d e

f g

h

i j

k

a

b

c

d e

f g

h

i j

k

DFS TREE

1) Root Vertex ‘a’ has more than one child; so, it is an articulation point.
2) Vertices ‘d’, ‘g’ and ‘j’ are leaf nodes
3) Vertex ‘b’ is not an articulation point because
the only sub tree rooted at its child node ‘c’ has
a back edge to a vertex higher than ‘b’ (in this
case to the root vertex ‘a’)
4) Vertex ‘c’ is an articulation point. One of its
child vertex ‘d’ does not have any sub tree
rooted at it. The other vertex ‘e’ has a sub
tree rooted at it and this sub tree has no
back edge higher up than ‘c’.
5) By argument (4), it follows that vertex ‘e’
is not an articulation point because the sub tree
rooted at its child node ‘f’ has a back edge higher
up than ‘e’ (to vertex ‘c’);
6) Vertices ‘f’ and ‘k’ are not articulation points because
they have only one child node each and the child nodes
are connected to a vertex higher above ‘f’ and ‘k’.
7) Vertex ‘i’ is not an articulation point because the only
sub tree rooted at its child has a back edge higher up (to vertices ‘a’ and ‘h’).
8) Vertex ‘h’ is not an articulation point because the only sub tree rooted at ‘h’ has a
back edge higher up (to the root vertex ‘a’).

Identification of the Articulation Points
of the Graph in Example 5

a

b

c

d e

f g

h

i j

k

Breadth First Search (BFS)
• BFS is a graph traversal algorithm (like DFS); but, BFS proceeds in a

concentric breadth-wise manner (not depth wise) by first visiting all
the vertices that are adjacent to a starting vertex, then all unvisited
vertices that are two edges apart from it, and so on.
– The above traversal strategy of BFS makes it ideal for determining

minimum-edge (i.e., minimum-hop paths) on graphs.

• If the underling graph is connected, then all the vertices of the graph
should have been visited when BFS is started from a randomly
chosen vertex.
– If there still remains unvisited vertices, the graph is not connected and the

algorithm has to restarted on an arbitrary vertex of another connected
component of the graph.

• BFS is typically implemented using a FIFO-queue (not a LIFO-stack
like that of DFS).
– The queue is initialized with the traversal’s starting vertex, which is marked

as visited. On each iteration, BFS identifies all unvisited vertices that are
adjacent to the front vertex, marks them as visited, and adds them to the
queue; after that, the front vertex is removed from the queue.

• When a vertex is visited for the first time, the corresponding edge that
facilitated this visit is called the tree edge. When a vertex that is
already visited is re-visited through a different edge, the
corresponding edge is called a cross edge.

Pseudo Code of BFS

BFS can be implemented with graphs represented as:
adjacency matrices: Θ(V2); adjacency lists: Θ(|V|+|E|)

Example for BFS

Source: Figure 3.11: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms,

2012.

0

1 1 1

2 2

0

1 1

2

Use of BFS to find Minimum Edge Paths

Source: Figure 3.12: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms,

2012.

Note: DFS cannot be used to find minimum edge paths, because DFS is not guaranteed to
visit all the one-hop neighbors of a vertex, before visiting its two-hop neighbors and so on.

For example, if DFS is executed starting from vertex ‘a’ on the above graph, then vertex ‘e’
would be visited through the path a – b – c – d – h – g – f – e and not through the
direct path a – e, available in the graph.

a b c d

e f g h

1 2

3

5

4

7

6

8

Comparison of DFS and BFS

Source: Table 3.1: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms,

2012.

With the levels of a tree, referenced starting from the root node,
A back edge in a DFS tree could connect vertices at different levels; whereas, a cross edge
in a BFS tree always connects vertices that are either at the same level or at adjacent levels.

There is always only a unique ordering of the vertices, according to BFS, in the order they
are visited (added and removed from the queue in the same order).
On the other hand, with DFS – vertices could be ordered in the order they are added to the
Stack, typically different from the order in which they are removed from the stack.

Bi-Partite (2-Colorable) Graphs
• A graph is said to be bi-partite or 2-colorable if the vertices of the

graph can be colored in two colors such that every edge has its
vertices in different colors.

• In other words, we can partition the set of vertices of a graph into two
disjoint sets such that there is no edge between vertices in the same
set. All the edges in the graph are between vertices from the two sets.

• We can check for the 2-colorable property of a graph by running a
DFS or BFS
– With BFS, if there are no cross-edges between vertices at the same level,

then the graph is 2-colorable.

– With DFS, if there are no back edges between vertices that are both at odd
levels or both at even levels, then the graph is 2-colorable.

• We will use BFS as the algorithm to check for the 2-colorability of a
graph.
– The level of the root is 0 (consider 0 to be even).

– The level of a child node is 1 more than the level of the parent node from
which it was visited through a tree edge.

– If the level of a node is even, then color the vertex in yellow.

– If the level of a node is odd, then color the vertex in green.

Bi-Partite (2-Colorable) Graphs

a b c

d e f

a b c

d e f

0 1

1

2

2 3

a b c

d e f

Example for a 2-Colorable Graph

a b

d e

Example for a Graph that is Not 2-Colorable

a b

d e

0 1

1 1

We encounter cross edges between vertices

b and e; d and e – all the three vertices are

in the same level.

Examples: 2-Colorability of Graphs

f b c g

d a e

f b c g

d a e

01

1

1

1

b – d is a cross edge between

Vertices at the same level. So,

the graph is not 2-colorable

f b c g

d a e

f b c g

d a e

0

11

1

2

2

2

The above graph is 2-Colorable

as there are no cross edges

between vertices at the same level

Directed Acyclic Graphs (DAGs)
• A directed graph with no cycles.

– E.g., Citation network: we always cite the work done earlier. A prior
work does not cite a work to be done later.

• In a DAG, there must be at least one vertex that has only
all incoming edges and no outgoing edge.
– We start with one vertex, go around the vertices in the graph. If the

path never reaches a vertex with no outgoing edges, then it must
eventually arrive back at a vertex that has been visited previously –
at most we can visit all the n vertices in the graph once before the
path either terminates or we are forced to revisit a vertex (in the
latter case, we encounter a cycle).

• To test for cycle: Remove the vertices with no outgoing
edges (and all the associated incoming edges), one by
one. If there is a cycle, there will be a scenario in which we
could not find any vertex without outgoing edges.
– If all vertices could be removed one by one, the graph is acyclic.

DFS on a DAG

a b

e f

c d

g h

a b

e f

c d

g h

Forward edge
Topological Sort

c d a e b g h f

f h g b e a d c

Order in which the

Vertices are popped

of from the stack

Reverse the order

Cross edge

1 23

4

5

6
7

8

DFS on a DAG

a b

e f

c d

g h

1 23

4

5

6
7

8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Let the vertices be numbered in the order

in which they are topologically sort.

An adjacency matrix of the vertices listed in

the order of their topological sort is strictly

upper triangular.

Components
• Component: The subset of vertices in a graph that are

reachable from one another through paths of length one
or more.

• Maximal subset property of a component: Inclusion of
additional edges or vertices from the graph to this subset
will break the connectivity of a component.

• A graph in which all its vertices are not in one
component is said to be disconnected.
– Undirected graph: The set of all vertices that are reachable (via

BFS or DFS) starting from a particular vertex are all said to be in
the same component.

– Directed graph:
• Weakly connected: The vertices of a di-graph are said to form a

weakly connected component if they are connected in their
undirected version.

• Strongly connected: The vertices of a di-graph are said to form a
strongly connected component if they are connected (reachable
from each other through paths).

– A standalone vertex that is not reachable to and from any other
vertex is said to be in its own component.

Components: Examples

Undirected graph with

Two components

Directed graph with

Two weakly connected

Components

Five strongly connected

components

Components in a DAG
• Note that for a directed graph to have a

strongly connected component (scc), the

graph should have a cycle: because, we

need the vertices in an scc to be reachable

from one another.

– There has to be a path from A to B through a
sequence of edges and vice-versa through a
different sequence of edges.

• Hence, there cannot be a strongly

connected component in a DAG.

Out- and In- Components
• The out-component (defined for a

specific vertex A) in a directed graph
is the set of all vertices (including A
itself) that are reachable from A
through one or more paths.

• The in-component (defined for a
specific vertex A) in a directed graph
is the set of all vertices (including A
itself) that have a directed path to A.

• The intersection of both the out-
component and in-component of A
yields a strongly connected
component (scc) involving vertex A.
All the vertices in such a scc are
reachable from each other at least
through A.

A

Algorithm to Find Strongly Connected
Components in a Di-Graph

• Let G be a directed graph and SCC-Stack (S) be an
empty stack.

• While SCC-Stack does not contain all vertices:
– Choose an arbitrary vertex v not in S. Perform a DFS starting at v.

Each time DFS pops out a vertex u from its stack (note: the DFS
stack), push u onto the SCC-Stack.

• Reverse the directions of all edges to obtain the transpose
graph of G.

• While the SCC-Stack is nonempty:
– Pop the top vertex v from S. Perform a DFS starting at v in the

transpose graph. The set of visited vertices will give the strongly
connected component containing v; record this and remove all
these vertices from the graph G and the stack S.

• Time complexity: Two DFS: Θ(V+E).

Finding Strongly Connected Components

1

2

3

4

5

6

7

8

SCC Stack

2

3

4

1

6

7

8
5

Order in which

the vertices

are popped

out of the

DFS stack

1

2

3

4

5

6

7

8

5 ���� 6

8

7

1 ���� 2 ���� 3

4

Transpose Graph

Original Graph

DFS Traversals

Finding Strongly Connected Components

a b

e f

c d

g h

SCC Stack

c

d

a

e

b

g

h

f

a b

e f

c d

g h

DFS Traversals

c

d

a
e

b

g

h
f

Vertex Connectivity, Edge Connectivity
• Consider the set of paths between two vertices A and B.

• Vertex-disjoint paths: Two paths are said to be vertex-
disjoint if there is no common intermediate vertex
between the two paths.

• Edge-disjoint paths: Two paths between are said to be
edge-disjoint if there is no common edge between the
two paths.

• Vertex Connectivity between two vertices A and B is the
number of vertex-disjoint paths between A and B.

• Edge Connectivity between two vertices A and B is the
number of edge-disjoint paths between A and B.

A
B

Vertex Connectivity – 1

Edge Connectivity – 2

Connectivity: Good or bad?
• It depends:

– Spread of good
news – want to
stay in a bigger
connected
component as in
the center ones

– Spread of virus –
want to stay in a
smaller connected
component like the
smaller ones so
that you are less
likely to be
attacked.

Local Clustering Coefficient
• The local clustering coefficient captures the degree to

which the neighbors of a given node link to each other.

• If ki is the degree of node i, then the maximum number of

links between its ki neighbors is ki * (ki – 1) / 2.

• Let Li be the number of links among the neighbors of node

i. Local clustering coefficient of node i is

• The local clustering coefficient is a probability that any two

neighbor nodes of a node are linked to each other.

• Average Clustering Coefficient

Is a measure of the probability that any two

neighbor nodes of a randomly selected node are

linked to each other.

Local clustering coefficient is a measure of the

neighborhood density. Larger the value, more dense

is the neighborhood and vice-versa.

Examples for Local Clustering Coefficients

Case
Study:

PPI
Network of

Yeast

The probability of finding

Nodes with degree

less than 3 is 69%

Any two nodes are connected

within a shorter distance

Nodes that have a

high degree do not

have a dense

neighborhood. The

contrary is observed.

Network Types: Terminologies
• Complement of a network G: Is a network comprising of all the

nodes in G but comprising of links (between nodes) that are not in
G.

• Regular network: An r-regular network is a network in which each
node has degree r and such a network of n nodes has rn/2 links.

• Complete network: comprises of links between any two nodes

• Empty network: Complement of a complete network

• K-Colorability: A network is k-colorable if for any link in the network,
the end vertices are colored in different colors, chosen among the k
colors.

• Bipartite networks: The network is partitioned to two disjoint (non-
empty) subsets V1 and V2 such that V1 U V2 = V, the set of all
vertices and the only edges in the network are those that connect a
vertex in V1 to a vertex in V2.
– There are no edges between any two vertices within V1 or V2.

• Planar Networks: The network can be drawn in such a way (in a
plane) that no two edges intersect (except at the end nodes).

• K-partite networks: The network is partitioned into k-disjoint subsets;
such that any edge in the network is between the vertices across
any two of these subsets.

Planar Graph (1)
• A planar graph is one which can be drawn in the plane

(say, on paper) with no intersecting edges.

• A complete graph on 5 vertices (K5) and a complete bi-
partite graph of 3-3 vertices (K3,3) are not planar.

• Test for planarity:
– Necessary Condition (note these are not sufficient conditions,

hence, can be used to decide only if it is NOT planar): If a graph
G = (V, E) is connected and has 3 or more vertices,

• If there is no cycle of length 3 (i.e., NO triangle),
– If |E| > (2|V| - 4), then G is not planar.

• Otherwise,
– If |E| > (3|V| - 6), then G is not planar.

– Test: Check if the graph G has any K5 or K3,3 imbedded in it. If so,
then G is not planar.

• Theorem: A non-planar graph H cannot be a sub graph of a planar
graph G.

– Note that we may need to smoothen a graph G (i.e., remove all 2-
valent vertices, vertex with two edges only) and if the smoothened
graph has any K5 or K3,3 imbedded in it, then G is not planar.

Planar Graph (2)

After

Smoothening

After

Smoothening

NOT PLANAR

NOT PLANAR

10 vertices, 18 edges

18 > 3 (10) – 6;

Passes test for necess. condition

10 vertices, 13 edges

13 > 2 (10) - 4. Fails test for necess. condition

there is a cycle of length 3

Planar Graph (3)

V1

V2

V3

V4

V5

V6

V2 V3

V7

V8
V1 V8

V6 V7

V5

V4

8 vertices; 16 edges; there is a triangle

16 < 3(8) – 6 ; 16 < 18.

So, it passes the necessary condition

for planar graph
For every two regions that have

a common border, we add an edge

between the corresponding vertices

in the graph.

Planar Graph (4)V2 V3

V1 V8

V6 V7

V5

V4

V2 V3

V1 V8

V6 V7

V5

V6

V7

V8

V2

V5

V1

After smoothing,

among the remaining 7

vertices, there cannot be

a K5 because there are

three vertices V6, V7 and

V8 of degree less than 4.

V3

Among the remaining 7

vertices, V6, V7 and V8

are the three vertices that

do not have any edge

between them. There are

edges V2 – V5; V2 – V1;

V2 – V3; V1 – V5. Hence,

{V6, V7, V8} are the only
Disjoint subset; there
cannot be another

disjoint subset.

After

Smoothing

There is NO K5 and

NO K3, 3.

Hence, the graph is

PLANAR.

Layered Graph for Planarity
• We need sufficient space to construct a planar network

(e.g., roads in a city). If it becomes too congested to layout
roads without intersection (at points other than the street
intersections), then we have to opt for a multi-layer network
(with nodes distributed across the different layers), with the
sub graph in each layer being planar.

• This is the model that has been recently proposed to avoid
congestion and handle population growth in a limited space
in the city of Tokyo (as a multi-layered city).

The following two results have been arrived at for the lower and upper

bounds. The lower bound is the same in both cases.

Let m be the # edges and n be the # vertices.

+≤Θ≤

− 2

3

3
)(

63

m
G

n

m

≤Θ≤

− 2
)(

63

maxk
G

n

m

Planar Graph Problem
• Consider a non-planar network with 1,000 nodes and

10,500 edges; the maximum degree for any node in the
network is 100. Determine the minimum and maximum
number of layers that need to be constructed to transform
the non-planar network to a multi-layer planar network.

We pick the maximum of the two upper bounds 50 and 61, which is 61.
Hence, the minimum and maximum number of layers are 4 and 61 respectively.

Protein Folding
• Protein folding is the process by which a protein transforms

from a random coil (sequence of amino acids: linear
polypeptide chain) to its characteristic 3-dimensional
structure that is essential to its expected function.

• The correct three-dimensional structure is essential to
function, although some parts of functional proteins may
remain unfolded.

• Failure to fold into native structure generally produces
inactive proteins, but in some instances misfolded proteins
have modified or toxic functionality.

• When modeled as a graph, the more flat (linear chain) is
the graph, the less the folding and vice-versa.

Source: Wikipedia

Estrada Index of Graphs
• The Estrada Index can be used to determine the degree of

folding of a protein.
– Larger the Estrada Index, the larger the folding.

1 2

3 4

5

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 0

1 0 1 0 0

A =

∑
=

=
n

j

jeGEE
1

)(
λ

λ1 = -1.618 0.2

λ2 = -1.473 0.23
λ3 = -0.463 0.63

λ4 = 0.618 1.852

λ5 = 2.935 18.654

eλj

EE(G) = 21.56

1

2

3 4

5

0 1 1 0 0

1 0 1 0 0

1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

λ1 = -1.5616 0.211

λ2 = -1 0.369

λ3 = -1 0.369

λ4 = 1 2.71
λ5 = 2.5616 12.856

eλj

EE(G) = 16.51

Estrada Index of Star and Chain

1 2

3

45

0 0 1 0 0

0 0 1 0 0

1 1 0 1 1

0 0 1 0 0

0 0 1 0 0

A =

∑
=

=
n

j

jeGEE
1

)(
λ

λ1 = -2 0.136

λ2 = 0 1

λ3 = 0 1

λ4 = 0 1

λ5 = 2 7.344

eλj

EE(G) = 10.48

1 2 3 4 5

0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

λ1 = -1.7321 0.178

λ2 = -1 0.369

λ3 = 0 1

λ4 = 1 2.71

λ5 = 1.7321 5.622

eλj

EE(G) = 9.88

Network Returnability
• By computing Estrada Index on directed networks, we can

determine how much of the information departing from a
node in the network returns to it.

• Estrada Index is the weighted sum of the number of walks

of lengths k (k = 0, 1, 2, ….) that start and end at each of

the nodes in the network.

• In the context of network returnability, we define the
Estrada Index as: Z(D) = EE(D) – n.

Returnability Equilibrium Constant
)(

)(

UZ

DZ
Kr =

where Z(D) and Z(U) are the Estrada Index of

Network Returnability values for a

directed network D and its undirected version U (with symmetric links) respy.

0 ≤ Kr ≤ 1

Kr = 0 for a directed graph

with no cycles; Kr = 1 for

a directed graph with all

bi-directional edges

Examples:
Network

Returnability
1 2

3
0 1 1

0 0 1

0 0 0

λj

0

0

0

eλj

1

1

1

nenDEEDZ
n

j

j −=−= ∑
=1

)()(
λ

Z(D) = 3 – 3 = 0

1 2

3
0 0 1

1 0 0

0 1 0

λj

1

-0.5-0.866i

-0.5+0.866i

eλj

2.71

e-0.5 (cos (-0.866) + i sin (-0.866))

e-0.5 (cos (0.866) + i sin (0.866))

)sin(cos. bibeeee
abiabia +==+

EE(D) = 2.71 + e-0.5 {cos(-0.866) + cos(0.866)}

= 2.71 + e-0.5 {cos(0.866) + cos(0.866) }

= 2.71 + 2*e-0.5*cos(0.866)

= 2.71 + 2*e-0.5*1 = 2.71 + 2*0.6074

= 3.925

Note: sin(-x) = -sin(x)

cos(-x) = cos(x)

Z(D) = EE(D) – 3 = 0.925

1 2

3

0 1 1
1 0 1
1 1 0

λj

-1
-1

2

eλj

0.369
0.369

7.344

Z(D) = 8.082 – 3 = 5.082

Kr = 0 / 5.082 = 0

Kr = 0 .925 / 5.082 = 0.182

Kr = 5.082 / 5.082 = 1.0

Returnability Equilibirum Constant
of Real Networks

• Networks - log(Kr) Kr
– Thesaurus 1.45 0.2356

– Prison Inmates 0.90 0.4077
– US airports 0.00 1.0

– Neuron network (abundant with activator-sink links)
• Trans Elegans 6.11 0.0022

– Food webs (indicating strong prey-predator flow)
• LittleRock 14.66 0.0000004

• Skipwith 7.42 0.0006

Note that directed networks having high returnability will also have a positive

correlation between the in-degree and out-degree of nodes (due to the

increased chances of the information leaving a node to flow back into the

node). On the other hand, directed networks having low returnability are

expected to have a negative correlation between the in-degree and out-degree
of nodes, as in such networks, a node is more likely to have either a high

in-degree (only information flows in) or high out-degree (only info. flows out)

Eigen Values of an almost Bipartite Network

• There are even number of vertices.
• Let λ1, λ2, λ3, …, λn be the n Eigenvalues of an n-

node network.
• For any j = 1, 2, …, n/2, if λj = | - λn-j+1|, then the

network is almost bi-partite.

1

3

2

4

6

5

0 0 0 1 0 1

0 0 0 1 1 1

0 0 0 1 0 1

1 1 1 0 0 0

0 1 0 0 0 0

1 1 1 0 0 0

Eigenvalues

-2.5243

-0.7923

0

0

0.7923

2.5243

Bipartite Graphs

Bipartivity Check
• A bi-partite graph is the one that has two partitions V1 and

V2 of its vertices such that
– V1 U V2 = V; V1 n V2 = Φ.

– No edges within V1 and within V2.

– All edges are those connecting V1 and V2.

• Graphs can be considered close to bi-partite if there are
few edges (not a significant number) called the frustrated
edges that connect vertices within V1 and/or V2.

Computing the Bipartite Measure

Compute the Eigenvalues (λ1, λ2, λ3, …, λn) of the nxn adjacency matrix.

∑∑

∑

==

=

+

=
n

j

j

n

j

j

n

j

j

S Gb

11

1

)sinh()cosh(

)cosh(

)(

λλ

λ For a “truly” bi-partite graph,

bS(G) = 1; the sinh terms add to 0.

For a “close-to” bi-partite graph,
bS(G) < 1; the sinh terms add up to

some small positive value.

There should be NO odd length cycles in a truly

bi-partite network

Bipartivity Measure: Examples

bS(G) = 1.0 bS(G) = 0.829 bS(G) = 0.769 bS(G) = 0.731

bS(G) = 0.692 bS(G) = 0.645 bS(G) = 0.645 bS(G) = 0.597

For a given number of frustrated links, a larger bipartivity measure is
observed if more of the frustrated links are present in the network with the

larger subset.

Bipartivity of Real Networks
Type: Information

Network Bipartivity

Measure
SciMet 0.500

Roget 0.529

Type: Social

Network Bipartivity

Measure

Drugs 0.500

Corporate Elite 0.500

Karate Club 0.597

Saw Mill 0.749

Type: Food webs

Network Bipartivity

Measure

Coachella 0.500

El Verde 0.500

Grassland 0.743

Stony stream 0.815

Type: PPIs

Network Bipartivity

Measure
Yeast 0.500

Human 0.576

H. Pylori 0.711

A. Fulgidus 0.976

Type: Transcription

Network Bipartivity

Measure

Urchin 0.618

E. Coli 0.831

Yeast 0.960

Type: Technological

Network Bipartivity

Measure

USAir97 0.500

Internet 0.502

Electronic3 0.952

Identifying Bipartite Subsets using
Eigenvalue and Eigenvector

• We identify the smallest Eigenvalue (most likely a
negative value), hereafter called the bi-partite
Eigenvalue, and its corresponding Eigenvector,
hereafter called the bi-partite Eigenvector.

• The values in the bi-partite Eigenvector will be
positive and negative.
– The node IDs whose entries are of the same sign in the

bi-partite Eigenvector form the two subsets.
• The vertices that are of the same sign are more likely not to

have links between them, and are more likely to have links with
vertices of the other sign.

– Each of the two subsets will have the minimum (or zero,
if possible) number of frustrated links. Most of the links
are likely to be between the vertices in the two subsets.

Identifying Bipartite Subsets using

Eigenvalue and Eigenvector: Ex. 1 (1)

2

1

3

4

56

1

2

3

4

5

6

1 2 3 4 5 6

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

Based on the

lowest

Negative

Eigenvalue -2:

1 -1

2 1

3 -1

4 1

5 -1
6 1

2

1

3

4

56

1

3

5
5

2

4

6

Identifying Bipartite Subsets using

Eigenvalue and Eigenvector: Ex. 1 (2)

Eigenvalue, λ cosh(λ) sinh(λ)

-2 3.7622 -3.6269

-1 1.5431 -1.1752

-1 1.5431 -1.1752

1 1.5431 1.1752

1 1.5431 1.1752

2 3.7622 -3.6269

Total 13.6968 0

∑∑

∑

==

=

+

=
n

j

j

n

j

j

n

j

j

S Gb

11

1

)sinh()cosh(

)cosh(

)(

λλ

λ

13.6968

bS(G) = --------------------------

(13.6968 + 0)

= 1.0

Identifying Bipartite Subsets using

Eigenvalue and Eigenvector: Ex. 2 (1)

1

2

3

4

5

6

7
89

10

3

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0

1 1 0 1 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 1 1

0 1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

Identifying Bipartite Subsets using

Eigenvalue and Eigenvector: Ex. 2 (2)

Based on the lowest Negative

Eigenvalue -2.4870836366555125:

1 1.4787537545980032

2 -1.187138860314116

3 0.19014161045039232

4 -0.1937033791843519

5 -2.4870836366555196

6 1.477321648061068

7 1.2295096130605534

8 -0.570809603098033

9 1

10 1

1

3

6

7

9

10

2

4

5

8

Identifying Bipartite Subsets using

Eigenvalue and Eigenvector: Ex. 2 (3)

Eigenvalue, λ cosh(λ) sinh(λ)

-2.4871 6.0547 -5.9716

1.6828 2.7832 -2.5974

-1.3098 1.9877 -1.7178

-0.8564 1.3897 -0.9650

-0.3741 1.0708 -0.3829

0 1.0 0

0.3197 1.0515 0.3252

1.1131 1.6862 1.3576

1.8880 3.3788 3.2274

3.3893 14.839 14.8057

Total 35.2416 8.0812

∑∑

∑

==

=

+

=
n

j

j

n

j

j

n

j

j

S Gb

11

1

)sinh()cosh(

)cosh(

)(

λλ

λ

35.2416

bS(G) = --------------------------

(35.2416 + 8.0812)

= 0.8135

Bipartite Partition Detection: Digraph

• When confronted with a directed graph, first
transform the directed graph to an undirected
graph and determine the two partitions as

explained previously using the Eigenvector
approach.

• After identifying the partitions, restore the
directions of the edges.

• In a directed graph, the edges typically point from
one set of vertices to the other set of vertices.

– There could be scenarios where the edges could point

in the reverse direction; as long as we know the

direction of the edges, we could restore them after
determining the two partitions.

Digraph Bipartivity Detection: Example (1)

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 0 1

1 1 0 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0

Digraph Bipartivity Detection: Example (2)

1

2

3

4

5

6

7

8

9

10

Based on the lowest Negative

Eigenvalue -2.4998281017161057:

1 -0.8997180792493449

2 -0.8000550112333811

3 -0.42348238246099357

4 -0.8997180792493445

5 -0.8000550112333811

6 1

7 0.5293165801288399

8 0.5293165801288398

9 0.7198239580007104

10 1

Communicability in a Network
• For any two nodes r and s, the communicability of a pair of

nodes r and s is C(r,s) - the weighted sum of the number of
walks between these two nodes of lengths l = 1, 2, …., ∞;
the weights are 1/l!.

()
∑

∞

=

=
1 !

),(
l

rs

l

l

A
srC

In closed form,

∑
=

=
n

j

jj

jesrsrC
1

)()(),(
λ

ϕϕ

where φj(i) is the ith entry of the jth Eigenvector associated with Eigenvalue λj

Communicability of a Node r

∑
=

=
n

s

srCrC
1

),()(

Example 1: Network Communicability (1)

1

2

3

4

5

6

7
89

10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0

1 1 0 1 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 1 1

0 1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

Node IDs: 1, 2, …, 10

Eigen

Vectors

Example 1: Network Communicability (2)
Even though node 5 has the highest degree

(5 links), its communicability is less than that

of the nodes in the clique (1, 2, 3, 4). The links

to peripheral nodes such as 9 and 10 does

not make any significant contributions to

the communicability of node 5. Hence, to

have high communicability, it is better for a

node to be part of a clique and/or connected

with nodes having high degree.

Each of nodes 7 and 8 have the same degree;

but, since Node 8 is connected to a node in

the clique, node 8 has high communicability.
The relative

closeness of

node 6 to a high

degree node 5

helps node 2 to

gather high

communicability

compared to node 3

that is connected to
node 8 which is in
turn connected to a

low-degree node (node 7).

1

2

3

4

5

6

7
89

10

Example 1: Network Communicability (3)

1

2

3

4

5

6

7
89

10

The communicability of node 5 has increased

with the additional connection to the

clique and the connections to the other

nodes further contributing to it.

Note that the communicability of the nodes

in the clique (1, 2, 3, 4) has reduced a bit
as the domination of node 5 increases.

We add a link

4 – 5, making

Node 5 connected

to 2 of the 4

nodes in the

4-node clique

