
Centrality Measures

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

E-mail: natarajan.meghanathan@jsums.edu

Centrality
• Tells us which nodes are important in a network

based on the topological structure of the network
(instead of just looking at the popularity of nodes)
– How influential a person is within a social network

– Which genes play a crucial role in regulating systems
and processes

– Infrastructure networks: if the node is removed, it would
critically impede the functioning of the network.

Y Z

Nodes X and Z have higher

Degree

Node Y is more central from

the point of view of

Betweenness – to reach from

one end to the other

Closeness – can reach every

other vertex in the

fewest number of hops

X

Centrality Measures

• Degree-based Centrality Measures

– Degree Centrality: measure of the number of vertices

adjacent to a vertex (degree)

– Eigenvector Centrality: measure of the degree of the

vertex as well as the degree of its neighbors

• Shortest-path based Centrality Measures

– Betweeness Centrality: measure of the number of

shortest paths a node is part of

– Closeness Centrality: measure of how close is a vertex

to the other vertices [sum of the shortest path distances]

– Farness Centrality: captures the variation of the shortest

path distances of a vertex to every other vertex

Degree Centrality

Weakness: Very likely that more than one vertex has the same degree and not

possible to uniquely rank the vertices

Eigenvalue and Eigenvector

• Let A be an nxn matrix.

• A scalar λ is called an Eigenvalue of A if there is a non-

zero vector X such that AX = λX. Such a vector X is called

an Eigenvector of A corresponding to λ.

• Example: 2 is an Eigenvector of A = 3 2 for λ = 4

1 3 -2

An n x n square matrix

has ‘n’ eigenvalues

and the corresponding

Eigenvectors

The eigenvector

corresponding to the
largest eigenvalue is
called the Principal

Eigenvector

The largest eigenvalue

is also called the

Spectral radius

Finding Eigenvalues and Eigenvectors
(4) Solving for λ:

(λ – 8) (λ + 2) = 0

λ = 8 and λ = -2 are the Eigen values

(5) Consider A – λ I

Let λ = 8

= B

Solve B X = 0

-1 3

3 -9

X1

X2
= 0

0

-X1 + 3X2 = 0

3X1 – 9X2 = 0

X1 = 3X2
3X1 = 9X2 � X1 = 3X2

If X2 = 1;

X1 = 3

3

1
is an eigenvector

for λ = 8

Eigenvector
Centrality (1)

Eigenvector
Centrality (2)

After 7 iterations

EigenVector Centrality Example (1)

1

2

3

4

5

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

Iteration 1

Let X0 =
1

1

1
1
1

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

1

1

1

1

1

=

1

2

2

3

2

Normalized Value = 4.69

≡

0.213

0.426

0.426

0.639

0.426

Iteration 2

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

0.213

0.426

0.426

0.639

0.426

=

0.426

0.852

1.065

1.278

1.065

Normalized Value = 2.19

0.195

0.389

0.486

0.584

0.486

≡

EigenVector Centrality Example (1)

1

2

3

4

5

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

Let X0 =
1

1

1

1
1

Iteration 3

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

=

0.389

0.779

1.07

1.361

1.07

Normalized Value = 2.21

0.195

0.389

0.486

0.584

0.486

0.176

0.352

0.484

0.616

0.484

≡

Iteration 4

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

Normalized Value = 2.21 converges

0.176

0.352

0.484

0.616

0.484

0.352

0.792

1.100

1.320

1.100

=

0.176

0.352

0.484

0.616

0.484

Eigen Vector

Centrality

1

2

3

4

5

EigenVector Centrality Example (2)

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Let X0 =

1

1

1

1

1

1

6

Iteration 1

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

1

1

1

1

1

1

2

2

1

3

1

1

=

Normalized Value = 4.472

0.447

0.447

0.224

0.671

0.224

0.224

Iteration 2

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1.674

0.447

0.447

0.224

0.671

0.224
0.224

0.671

0.671

0.447

0.895

0.671
0.671

0.401

0.401

0.267

0.535

0.401
0.401

=

≡

≡

EigenVector Centrality Example (2)

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Let X0 =

1

1

1

1

1

1

6

Iteration 3

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1.872

0.401

0.401

0.267

0.535

0.401

0.401

0.668

0.936

0.401

1.203

0.535

0.535

0.357

0.500

0.214

0.643

0.286

0.286

Iteration 4

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1. 901

0.357

0.500

0.214

0.643

0.286

0.286

0.714

1.000

0.357

1.072

0.643

0.643

0.376

0.526

0.188

0.564

0.338

0.338

≡

≡

=

=

EigenVector Centrality Example (2)

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Let X0 =

1

1

1

1

1

1

6

Iteration 5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1. 901 converges

0.376

0.526

0.188

0.564

0.338

0.338

0.714

0.940

0.376

1.202

0.564

0.564

0.376

0.494

0.198

0.632

0.297

0.297

≡=

0.376

0.494

0.198

0.632

0.297
0.297

EigenVector

Centrality

Node

Ranking

4

2

1

5

6

3

Note that we typically

stop when the EigenVector

values converge.

For exam purposes,

we will Stop when

the Normalized value

converges.

Eigen Vector Centrality for Directed Graphs
• For directed graphs, we can use the Eigen Vector centrality to evaluate

the “importance” of a node (based on the out-degree Eigen Vector) and
the “prestige” of a node (through the in-degree Eigen Vector)
– A node is considered to be more important if it has out-going links to nodes

that in turn have a larger out-degree (i.e., more out-going links).

– A node is considered to have a higher “prestige”, if it has in-coming links
from nodes that themselves have a larger in-degree (i.e., more in-coming
links).

2 1

3 4

5

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0
1 0 0 0 0

Out-going links

based Adj. Matrix

Importance of Nodes

(Out-deg. Centrality)

Node Score

1 0.5919

4 0.4653

5 0.4653

3 0.3658

2 0.2876

0 0 0 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

In-coming links
based Adj. Matrix

Prestige of Nodes

(In-deg. Centrality)

Node Score

1 0.5919

2 0.4653

5 0.4653

3 0.3658

4 0.2876

Closeness and Farness Centrality

1 23

6 7

8

4

5

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

0 1 1 1 1 2 3 2

1 0 2 2 2 1 2 1

1 2 0 2 2 3 4 3

1 2 2 0 2 3 4 3

1 2 2 2 0 3 4 3

2 1 3 3 3 0 1 2

3 2 4 4 4 1 0 3
2 1 3 3 3 2 3 0

Distance Matrix Principal

Eigenvector

δ1 =

[0.2527

0.2518

0.3771

0.3771

0.3771

0.3278

0.4439

0.3763]

Ranking of Nodes

Score Node ID

0.2518 2

0.2527 1

0.3278 6

0.3763 8

0.3771 3

0.3771 4

0.3771 5

0.4439 7
Sum of

distances

11

11

17

17

17

15

21

17

Principal

Eigenvalue

η1 = 16.315

Closeness
Farness

Betweeness Centrality

• We will now discuss how to find the total number of
shortest paths between any two vertices j and k as well as
to find out how many of these shortest paths go through a
vertex i (j ≠ k ≠ i).

• Use Breadth First Search (BFS) to find the shortest path
tree from vertex j to every other vertex k
– Root vertex j is at level 0

– Vertices that are 1-hop away from j are at level 1; 2-hops away
from j are at level 2, and so on.

– The number of shortest paths from j to a vertex k at level p is the
sum of the number of shortest paths from j to the neighbors of k in
the original graph that are at level p-1

– The number of shortest paths from j to k that go through vertex i is
the maximum of the number of shortest paths from j to i and the
number of shortest paths from k to i.

For vertices

1, 6 and 7

Betw.C = 0

a b c g

d f e

a b c g

d f e

0

1

1

2 3

3 4

a b c g

d f e

1

1

1

2 2

2 4

Levels of

Vertices on

the BFS tree

shortest paths

from the root

to the other
vertices

a b c g

d f e

01

1
2

3

34

a b c g

d f e

11

1
2

2

24

shortest paths from a to g that go through c

is the maximum (# shortest paths from a to c,

shortest paths from g to c)

= max (2, 1) = 2

0

1

2

3

4

5

6 7

To determine how many

Shortest paths from nodes

1 to 7 that go through

node 4.

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0

To determine how many Shortest paths from nodes

1 to 7 that go through node 4: = Max(2, 1) = 2

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0

0

1

2

3

4

5

6 7

1

1 1

2

2

2

2 2

0

1

2

3

4

5

6 7

2

1 1

1

1

1

1 1

BFS Tree

rooted at

Vertex 1

BFS Tree

rooted at

Vertex 7

shortest paths

from vertex 1 to

the other vertices

shortest paths

from vertex 7 to

the other vertices

Subgraph Centrality
• The subgraph centrality of a node is a measure of the

number of sub graphs a node is part of.
– Gives more importance to the smaller sub graphs

– Measured as the weighted sum of the number of closed walks of
particular length (l = 1, 2, 3, ….) that a node is part of. The weights
are 1/l!

– For a given adjacency matrix A, Al gives the number of closed
walks of length l from a vertex to another vertex (incl. itself).

In closed form

where φj(i) is the ith entry of the jth Eigenvector associated with Eigenvalue λj

() []∑
=

==
n

j

jii

A jeieiSubGC
1

2
)()(

λ
ϕ

Subgraph Centrality Example (2)

1 2

3 4

5

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 0

1 0 1 0 0

A =

λ1 = -1.618

λ2 = -1.473

λ3 = -0.463

λ4 = 0.618

λ5 = 2.935

-0.602 0.602 0 -0.372 0.372

-0.138 -0.138 0.770 -0.429 -0.429

0.510 0.510 -0.307 -0.439 -0.439

-0.372 0.372 0 0.602 -0.602

0.47 0.47 0.559 0.351 0.351

1

2

3

4

5

Eigenvector

entries

1 2 3 4 5

Node IDs

λ1 = -1.618 0.2

λ2 = -1.473 0.23

λ3 = -0.463 0.63

λ4 = 0.618 1.852

λ5 = 2.935 18.654

SubGC(Node 1) = { (-0.602)2 * e^(-1.618) + (-0.138)2 e^(-1.473) + (0.51)2 e^(-0.463)

+ (-0.372)2 * e^(0.618) + (0.47)2 * e^(2.935) } = 4.62

SubGC(Node 2) = { (0.602)2 * e^(-1.618) + (-0.138)2 e^(-1.473) + (0.510)2 e^(-0.463)

+ (0.372)2 * e^(0.618) + (0.47)2 * e^(2.935) } = 4.62

eλjEigenvalues

1 2

3 4

5

-0.602 0.602 0 -0.372 0.372

-0.138 -0.138 0.770 -0.429 -0.429

0.510 0.510 -0.307 -0.439 -0.439

-0.372 0.372 0 0.602 -0.602

0.47 0.47 0.559 0.351 0.351

1

2

3

4

5

1 2 3 4 5

Node IDs

SubGC(Node 3) = { (0)2 * e^(-1.618) + (0.770)2 e^(-1.473) + (-0.307)2 e^(-0.463)

+ (0)2 * e^(0.618) + (0.559)2 * e^(2.935) } = 6.02

SubGC(Node 4) = { (-0.372)2 * e^(-1.618) + (-0.429)2 e^(-1.473) + (-0.439)2 e^(-0.463)

+ (0.602)2 * e^(0.618) + (0.351)2 * e^(2.935) } = 3.16

6.02

4.62 4.62

3.16

3.16

SubGC(Node 5) = { (0.372)2 * e^(-1.618) + (-0.429)2 e^(-1.473) + (-0.439)2 e^(-0.463)

+ (-0.602)2 * e^(0.618) + (0.351)2 * e^(2.935) } = 3.16

λ1 = -1.618 0.2

λ2 = -1.473 0.23

λ3 = -0.463 0.63

λ4 = 0.618 1.852

λ5 = 2.935 18.654

eλjEigenvalues

For the example graph given here: <SC> = 4.32

Average

Subgraph

Centrality

Centrality Correlations

Network Graphs Analyzed (1)
• (i) Zachary's Karate Club: Social network of friendships (78

edges) between 34 members of a karate club at a US
university in the 1970s

• (ii) Dolphins' Social Network: An undirected social network
of frequent associations (159 edges) between 62 dolphins
in a community living off Doubtful Sound, New Zealand

• (iii) US Politics Books Network: Nodes represent a total of
105 books about US politics sold by the online bookseller
Amazon.com.
– A total of 441 edges represent frequent co-purchasing of books by

the same buyers, as indicated by the "customers who bought this
book also bought these other books" feature on Amazon

Network Graphs Analyzed (2)
• (iv) Word Adjacencies Network: This is a word co-appearance network

representing adjacencies of common adjective and noun in the novel
"David Copperfield" by Charles Dickens.

– A total of 112 nodes represent the most commonly occurring
adjectives and nouns in the book. A total of 425 edges connect any
pair of words that occur in adjacent position in the text of the book

• (v) US College Football Network: Network represents the teams that
played in the Fall 2000 season of the US College Football games and
their previous rivalry - nodes (115 nodes) are college teams and there is
an edge (613 edges) between two nodes if and only if the corresponding
teams have competed against each other earlier

• (vi) US Airports 1997 Network: A network of 332 airports in the United
States (as of year 1997) wherein the vertices are the airports and two
airports are connected with an edge (a total of 2126 edges) if there is at
least one direct flight between them in both the directions.

• Spectral radius ratio: Ratio of spectral radius (largest Eigenvalue
based on the Adjacency matrix) to the average node degree.

American Football Network

(115 nodes, 613 edges)

Dolphins' Social Network

(62 nodes, 159 edges)

US Politics Books Network

(105 nodes, 441 edges)

Zachary's Karate Club Network

(34 nodes, 78 edges)

Word Adjacencies Network

(112 nodes, 425 edges)

US Airports'97 Network

(332 nodes, 2126 edges)

Real-World Networks

Correlation Coefficient
High: ≥ 0.75

Moderate:
0.50 – 0.74

Low < 0.50

Observations: Centrality Correlations

• The degree-based centrality metrics (degree and Eigenvector
centralities) are consistently highly correlated for all the six real-world
network graphs considered.

• Likewise, though the shortest path-based centrality metrics are only
moderately correlated for most of the real-world network graphs, we
observe such a correlation to be consistent across the network graphs
without much variation in the correlation coefficient values.

• The level of correlation between a degree-based centrality metric and a
shortest path-based centrality metric increases with increase in
variation of node degree:
– the two classes of metrics are poorly correlated in regular/random networks

and are at the low-end of moderate-level of correlation for real-world
networks that are less scale-free.

– As the real-world networks get more scale-free, the level of correlation
between the two classes of centrality metrics is likely to increase.

• The shortest path-based centrality metrics correlate better for
regular/random networks and the level of correlation decreases as the
networks get increasingly scale-free.

Link Analysis-based Ranking

• We want to rank a node in a graph based on the
number of edges pointing to it and/or leaving it as
well as based on the rank of the nodes at the other
end of these edges.

• Used primarily in web search
– We model the web as a graph: the pages as nodes and

the edges are directed edges – a page citing (having a
link to) another page.

• Hubs and Authorities (HITS) algorithm

• PageRank algorithm

Hypertext Induced Topic Search
(HITS) Algorithm

• Hub: Node that points to lots of pages
– Yahoo like directory

• Authority: Node to which several other nodes point to
– The larger the number of nodes pointing to a node, the

more authoritative is the view presented by a node on a
particular subject

• The HITS algorithm assigns two scores for each
page:
– Authority: an estimate of the value of the contents of the

page
– Hub: an estimate of the value of its links to other pages

• A page is considered to be more authoritative if it is
referenced by many hub pages that are relevant to a
search query

• A page is a hub page for a search query if it points to
many authoritative pages for that query

• Good authoritative and hub pages reinforce one
another.

HU

B

Auth

ority

A variant of HITS is used by Ask.com

Finding Pages for a Query in HITS
• Initial Work
• Step 1: Submit query q to a similarity-based engine and

record the top n, i.e., the root set RS(q) pages.

• Step 2: Expand set RS(q) into the base set BS(q) to
include pages pointed by RS(q) pages

• Step 3: Also include into BS(q), the pages pointing to
RS(q) pages.

• Run the HITS algorithm
– For each page pj, compute the authority and hub score of pj

through a sequence of iterations.

• After obtaining the final authority and hub scores for
each page, display the search results in the decreasing
order of the authority scores. Pages having zero authority
scores (nodes with no incoming links – strictly hubs) are
listed in the decreasing order of their hub scores.
– Note: nodes that are strictly hubs still contribute to the authority of

the nodes that it points to.

HITS Algorithm
• Let E be the set of links in BS(q) and a link from page pi to pj is

denoted by the pair (i, j).

• A: Authority Update Step H: Hub Update Step

• After each iteration i, we scale the ‘a’ and ‘h’ values:

• As can be noted above, the two steps are interwined: one uses the

values computed from the other.

– In this course, we will follow the asynchronous mode of

computation, according to which the authority values are updated

first for a given iteration i and then the hub values are updated.

• The hub values at iteration i are using the authority values just

computed in iteration i (rather than iteration i – 1).

∑
∈

=
Eji

ij phpa
),(

)()(∑
∈

=
Ekj

kj paph
),(

)()(

()∑
=

k k

i

j

i

j

i

pa

pa
pa

2)(

)(

)(

)(

)(
)(

()2)(

)(

)(

)(

)(
)(

∑
=

k k

i

j

i

j

i

ph

ph
ph

HITS Example (1)

1

2

3

4

5

It # 1

a = [1 0 0 3 2] h = [5 3 5 1 0]

After Normalization,

a = [0.26 0 0 0.80 0.53] h = [0.64 0.38 0.64 0.12 0]

It # 2

a = [0.12 0 0 1.66 1.28] h = [2.94 1.66 2.94 0.12 0]

After Normalization,

a = [0.057 0 0 0.79 0.61] h = [0.66 0.37 0.66 0.027 0]

It # 3

a = [0.027 0 0 1.69 1.32] h = [3.01 1.69 3.01 0.027 0]

After Normalization,

a = [0.0126 0 0 0.79 0.61] h = [0.66 0.37 0.66 0.006 0]

Initial

a = [1 1 1 1 1] h = [1 1 1 1 1]

Order Pages

Listed after

Search

4

5

1

3

2

It # 4
a = [0.006 0 0 1.69 1.32] h = [3.01 1.69 3.01 0.006 0]
After Normalization,

a = [0.003 0 0 0.79 0.61] h = [0.66 0.37 0.66 0.001 0]

HITS Example (2)

1 2

3 4

It # 1

a = [0 3 1 1] h = [3 1 4 3]

After Normalization,

a = [0 0.91 0.30 0.30] h = [0.51 0.17 0.68 0.51]

It # 2

a = [0 1.70 0.17 0.68] h = [1.70 0.17 2.38 1.70]

After Normalization,

a = [0 0.92 0.09 0.37] h = [0.50 0.05 0.70 0.50]

It # 3

a = [0 1.70 0.05 0.70] h = [1.70 0.05 2.4 1.70]

After Normalization,

a = [0 0.92 0.027 0.38] h = [0.50 0.014 0.70 0.50]

It # 4
a = [0 1.70 0.014 0.70] h = [1.70 0.014 2.4 1.70]
After Normalization,

a = [0 0.92 0.008 0.38] h = [0.50 0.004 0.71 0.50]

Order Pages

Listed after

Search

2

4

3

1

Initial

a = [1 1 1 1] h = [1 1 1 1]

HITS Example (3)1

2

3 4

It # 1

a = [3 1 2 0] h = [0 5 3 6]

After Normalization,

a = [0.80 0.27 0.53 0] h = [0 0.59 0.36 0.72]

It # 2

a = [1.67 0.72 1.31 0] h = [0 2.98 1.67 3.7]

After Normalization,

a = [0.745 0.32 0.58 0] h = [0 0.59 0.33 0.73]

It #3

a = [1.65 0.73 1.32 0] h = [0 2.97 1.65 3.7]

After Normalization,
a = [0.74 0.32 0.59 0] h = [0 0.59 0.33 0.73]

Order Pages

Listed after

Search

1

3

2

4

Initial

a = [1 1 1 1] h = [1 1 1 1]

HITS Example (4)

• Assume ‘x’ web-pages
point to page X and ‘y’
pages point to page Y,
where x >> y. What
happens with the hubs
and authority values of
X and Y respectively?

• Assume no
normalization is done
at the end of each
iteration.

X

Y

It # 1

a = [8 2 0 0 0 0 0 0 0 0 0 0]

h = [0 0 8 8 8 8 8 8 8 8 2 2]

It # 2

a = [64 4 0 0 0 0 0 0 0 0 0 0]

h = [0 0 64 64 64 64… 64 4 4]

Initial

X Y ����x web-pages ����<-y ->
a = [1 1 1 1 1 1 1 1 1 1 1 1]

h = [1 1 1 1 1 1 1 1 1 1 1 1]

We can notice that with each iteration i, the ratio of the authority values

of X and Y is proportional to (x/y)^i. After a while, X will completely

dominate Y. There is no change in the hub values of X and Y though.

PageRank
• The basic idea is to analyze the link structure of the web to

figure out which pages are more authoritative (important) in
terms of quality.

• It is a content-independent scheme.

• If Page A has a hyperlink to Page B, it can be considered
as a vote of A for B.
– If multiple pages link to B, then page B is likely to be a good page.

• A page is likely to be good if several other good pages link
to it (a bit of recursive definition).
– Not all pages that link to B are of equal importance.

– A single link from CNN or Yahoo may be worth several times

• The web pages are first searched based on the content.
The retrieved web pages are then listed based on their
rank (computed on the original web, unlike HITS that is run
on a graph of the retrieved pages).

• The Page Rank of the web pages are indexed
(recomputed) for every regular time period.

PageRank

(Random Web Surfer)
• Web – graph of pages with the

hyperlinks as directed edges.

• Analogy used to explain PageRank
algorithm (Random Web Surfer)

• User starts browsing on a random page

• Picks a random out-going link listed in
that page and goes there (with a
probability ‘d’, also called damping
factor)
– Repeated forever

• The surfer jumps to a random page with
probability 1-d.
– Without this characteristic, there could be a

possibility that someone could just end up
oscillating between two pages B and C as in
the traversing sequence below for the graph
shown aside:

G � E � F � E � D � B � C

B

C

E

FD

A

G

H
I

J

K

Lets say d = 0.85.

To decide the next page

to move, the surfer simply

generates a random

number, r. If r <= 0.85,

then the surfer randomly

chooses an out-going link

from the existing page.

Otherwise, jumps to a

randomly chosen page

among all the pages,

including the current page.

PageRank Algorithm
• PageRank of Page X is the

probability that the surfer is at page
X at a randomly selected time.
– Basically the proportion of time, the

surfer would spend at page X.

• PageRank Algorithm

• Initial: Every node in the graph gets
the same pagerank. PR(X) = 100% /
N, where N is the number of nodes.

• At any time, at the end of each
iteration, the page rank of all nodes
add up to 100%.

• Actually, the initial pagerank value of
a node is the pagerank at any time, if
there are no edges in the graph. We
have 100% / N chance of jumping to
any node in the graph at any time.

9.

1

Initial PageRank

of Nodes

9.

1

9.

1

9.

1

9.

1
9.

1 9.

1
9.

19.

1

9.

1

9.

1

PageRank Algorithm

• Page Rank of Node X is the probability of being at
node X at the current time.

• How can we visit node X from where we are?

– (1-d) term: Random Jump: The probability of ending

up at node X because of a random jump from some

node, including node X, is 1/N.

– However, such a random jump itself could occur with a

probability of (1-d).

– This amounts to a probability of (1-d)/N to be at node X

due to a random jump.

Page Rank of
Node X

Assuming

there are NO

Sink nodes
∑

>−

+
−

=
xy yOut

yPR
d

N

d
xPR

)(

)(100*)1(
)(

PageRank Algorithm

• Page Rank of Node X is the probability of being at node X
at the current time.

• How can we visit node X from where we are?
– d term: Edge Traversal from a Neighbor:

– We could visit node X from one of the nodes that point to node X.

– Lets say, we are at node Y in the previous iteration. The probability
of being at node Y in the previous iteration is PR(Y). We can visit
any of Y’s neighbors.

– The probability of visiting node X among the Out(Y) out-going links
of node Y is PR(Y) * (1 / Out(Y)) = PR(Y) / Out(Y).

– Likewise, we could visit X from any of its neighbors.

– All the probabilities of visiting X from any of its neighbors have to be
added, because visiting X from any of its neighbors is independent
of the neighbors.

– The whole event of visiting from a neighbor occurs with a prob. ‘d’

Page Rank of
Node X

Assuming

there are NO

Sink nodes
∑

>−

+
−

=
xy yOut

yPR
d

N

d
xPR

)(

)(100*)1(
)(

PageRank
• Since Page Rank PR(X) denotes the probability of

being at node X at any time, the sum of the Page
Ranks of all the nodes at any time should be
equal to 1.

• We can also interpret the traversal from a node Y
to node X as node Y contributing a part of its PR
to node X (node Y equally shares its PR to the
nodes connected to it through its out-going links).

• Implementation:
– Note that (unlike HITS) we need to use the page rank

values of the nodes from the previous iteration to
update the page rank values of the nodes in the current
iteration.

• Need to maintain two arrays at any time t: PR(t-1) and PR(t)

Calculating PageRank of
Node B

9.

1

Initial PageRank

of Nodes

9.

1

9.

1

9.

1

9.

1
9.

1 9.

1
9.

19.

1

9.

1

9.

1

B

Iteration 1

9.

1

9.

1

4.

5

4.

5

3.

0

4.

5

4.

5

4.

5

B
A

D

C

F

E

G

H
I

J

K G

H
I

D

C

F

E

For any iteration,

PR(B) = 0.15 * 9.1 +

0.85 * [PR(C) + ½ PR(D) +

⅓ PR(E) + ½ PR(F) +

½ PR (G) + ½ PR(H) + ½ PR(I)]

Assume the damping factor d = 0.85 For Iteration 1,

Substituting the PR values of

the nodes (initial values),

we get PR(B) ≈ 31

Final PageRank Values for the
Sample Graph

9.

1
9.

1

9.

1

9.

1

9.

1
9.

1 9.

1
9.

19.

1

9.

1

9.

1

B
A

D

C

F

E

G

H
I

J

K

3.

3
38.

4

34.

3

3.

9

3.

9
8.

1 1.

6
1.

61.

6

1.

6

1.

6

BA

D

C

F

E

G

H
I

J

K

PageRank: More Observations
• Algorithm converges (few iterations sufficient)

• For an arbitrary graph, it is pretty difficult to figure out the
final page rank values of the nodes.

• Certain inferences could be however made.

• For our sample graph:
– For nodes that do not have any in-links pointing to them,

the only way we will end up at these nodes is through a random
jump: this happens with a probability (1-d)/N.
In our case, it is (1-0.85)* 100/11 = 1.6%.

– Two nodes with links from the same node (symmetric in-links)
have the same PR. (nodes D and F) and it will be higher than
those nodes without any in-links.

– One in-link from a node with high PR value contributes significantly
to the PR value of a node compared to the in-links from several
low PR nodes.

• In our sample graph, an in-link from node B contributes significantly
for node C compared to the several in-links that node E gets from the
low-PR nodes. So, the quality of the in-links matters more than the
number of in-links.

A B

C D
Note that there are NO sink nodes

(nodes without any out-going links)

PR(A) = (1-d)*100/4

PR(B) = (1-d)*100/4 + d*[PR(A) + 1/2 * PR(C) + PR(D)]

PR(C) = (1-d)*100/4 + d*[PR(B)]

PR(D) = (1-d)*100/4 + d*[1/2*PR(C)]

Initial

PR(A) = 25

PR(B) = 25

PR(C) = 25

PR(D) = 25

It # 1

PR(A) = 3.75
PR(B) = 56.88

PR(C) = 25

PR(D) = 14.38

Assume damping

Factor d = 0.85

It # 2

PR(A) = 3.75
PR(B) = 29.79

PR(C) = 52.10

PR(D) = 14.38

It # 3

PR(A) = 3.75
PR(B) = 41.30

PR(C) = 29.07

PR(D) = 25.89

It # 4

PR(A) = 3.75
PR(B) = 41.29

PR(C) = 38.86

PR(D) = 16.10

It # 5

PR(A) = 3.75

PR(B) = 37.14

PR(C) = 38.85

PR(D) = 20.27

It # 6

PR(A) = 3.75

PR(B) = 40.68

PR(C) = 35.32

PR(D) = 20.26

It # 7

PR(A) = 3.75

PR(B) = 39.17

PR(C) = 38.33

PR(D) = 18.76

It # 8

PR(A) = 3.75

PR(B) = 39.17

PR(C) = 37.04

PR(D) = 20.04

It # 9

PR(A) = 3.75

PR(B) = 39.71

PR(C) = 37.04

PR(D) = 19.49

It # 10

PR(A) = 3.75
PR(B) = 39.25
PR(C) = 37.5

PR(D) = 19.49

Ranking

B

C
D

A

Page Rank Example (1)

Page Rank: Graph with Sink Nodes
Motivating Example

• Consider the graph: A � B

• Let d = 0.85

• PR(A) = 0.15*100/2 PR(B) = 0.15*100/2 + 0.85*PR(A)

• Initial: PR(A) = 50, PR(B) = 50

• Iteration 1:

– PR(A) = 0.15*100/2 = 7.5

– PR(B) = 0.15*100/2 + 0.85 * 50 = 50.0

– PR(A) + PR(B) = 57.5

– Note that the PR values do not add up to 100.

– This is because, B is not giving back the PR that it receives from A

to any other node in the graph. The (0.85*50 = 42.5) value of PR

that B receives from A is basically lost.

– Once we get to B, there is no way to get out of B other than random

jump to A and this happens only with probability (1-d).

Page Rank: Sink Nodes (Solution)
• Assume implicitly that the sink node is connected to every node in the

graph (including itself).

– The sink node equally shares its PR with every node in the graph,
including itself.

– If z is a sink node, with the above scheme, out(z) = N, the number
of nodes in the graph.

• The probability of getting to node X at a given time is still the two terms
below:

• Random jump from any node (probability, 1-d)

• Visit from a node with in-link to node X (probability, d)

Page Rank

of Node X

the second term of the original Page Rank formula is now broken between

that of nodes with explicit out-going links to one or more selected nodes and

the sink nodes with implicit out-going links to all nodes.

Explicit out-going

links to certain nodes

Implicit out-going

links to all nodes

(sink nodes)

∑ ∑
>− >−

++
−

=
xy z

zPR
N

d

yOut

yPR
d

N

d
xPR

ϕ

)(
)(

)(100*)1(
)(

Consolidated PageRank Formula

A

B

C D

PR(A) = (1-d)*100/4 + d [PR(B)/2 + PR(C)/1 + PR(D)/3] + (d/4)*[PR(A)]

PR(B) = (1-d)*100/4 + d [PR(D)/3] + (d/4)*[PR(A)]

PR(C) = (1-d)*100/4 + d [PR(B)/2 + PR(D)/3] + (d/4)*[PR(A)]

PR(D) = (1-d)*100/4 + (d/4)*[PR(A)]

Initial

PR(A) 25

PR(B) 25

PR(C) 25
PR(D) 25

It # 1

PR(A) 48.02

PR(B) 16.15
PR(C) 26.77

PR(D) 9.063

It # 2

PR(A) 46.14

PR(B) 16.52
PR(C) 23.386

PR(D) 13.954

It # 3

PR(A) 44.41

PR(B) 17.51
PR(C) 24.53

PR(D) 13.55

It # 4

PR(A) 45.32

PR(B) 17.03
PR(C) 24.47

PR(D) 13.18

Page Rank Example (2)

Node Ranking: A, C, B, D

∑ ∑
>− >−

++
−

=
xy z

zPR
N

d

yOut

yPR
d

N

d
xPR

ϕ

)(
)(

)(100*)1(
)(

Page Rank Example (3)
A

B C D

PR(A) = (1-d)*100/4 + d*[½*PR(B) + ½*PR(C) + PR(D)]

PR(B) = (1-d)*100/4 + d*[PR(A)]

PR(C) = (1-d)*100/4 + d*[½*PR(B)]

PR(D) = (1-d)*100/4 + d*[½*PR(C)]

Initial

PR(A) 25

PR(B) 25

PR(C) 25

PR(D) 25

It # 1

PR(A) 46.25

PR(B) 25

PR(C) 14.38

PR(D) 14.38

It # 2

PR(A) 32.71

PR(B) 43.06

PR(C) 14.38

PR(D) 9.86

It # 3

PR(A) 36.54

PR(B) 31.55

PR(C) 22.05

PR(D) 9.86

It # 4

PR(A) 34.91

PR(B) 34.81

PR(C) 17.16

PR(D) 13.12

It # 5

PR(A) 36.99

PR(B) 33.42

PR(C) 18.54

PR(D) 11.04

It # 6

PR(A) 35.22

PR(B) 35.12

PR(C) 17.95

PR(D) 11.63

It # 7

PR(A) 36.19

PR(B) 33.68

PR(C) 18.68

PR(D) 11.38

It # 8

PR(A) 35.68

PR(B) 34.51

PR(C) 18.06

PR(D) 11.69

It # 9

PR(A) 36.03

PR(B) 34.08

PR(C) 18.42

PR(D) 11.43

Node Ranking: A B C D

Computing Huffman Codes for
Nodes using their PageRank Values

3.

3
38.

4

34.

3

3.

9

3.

9
8.

1 1.

6
1.

61.

6

1.

6

1.

6

BA

D

C

F

E

G

H
I

J

K

A 3.3

B 38.4

C 34.3

D 3.9

E 8.1

F 3.9

G 1.6

H 1.6

I 1.6

J 1.6

K 1.6

HEBC

B 0

C 11

K 10000

I 100010

J 100011

A 10011

G 100100

H 100101

D 10100

F 10101

E 1011

100101 1011 0 11

The Huffman codes could be used to efficiently
represent paths and frequently used links in the network

A 3.3 B 38.4 C 34.3 D 3.9 E 8.1

F 3.9 G 1.6 H 1.6 I 1.6 J 1.6
K 1.6

G HI JK A D F E CB

3.23.2

4.8 6.5

7.8

11.3

15.9

27.2

61.5

100

0

1

0

10
1

0
1

0 1

0 1

0
1

0 1

0

1

0 1

B 0

C 11

K 10000

I 100010

J 100011

A 10011

G 100100

H 100101

D 10100

F 10101

E 1011

2.41 bits / node
Huffman

4 bits / node
Fixed

40% compression

ratio

