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Centrality

« Tells us which nodes are important in a network
based on the topological structure of the network
(instead of just looking at the popularity of nodes)
— How influential a person is within a social network
— Which genes play a crucial role in regulating systems

and processes

— Infrastructure networks: if the node is removed, it would
critically impede the functioning of the network.

Nodes X and Z have higher
Degree

O é\ Node Y is more central from
Y

X y4 the point of view of
Betweenness — to reach from
one end to the other

Closeness — can reach every
other vertex in the
fewest number of hops




Centrality Measures

« Degree-based Centrality Measures

— Degree Centrality: measure of the number of vertices
adjacent to a vertex (degree)

— Eigenvector Centrality: measure of the degree of the
vertex as well as the degree of its neighbors

« Shortest-path based Centrality Measures

— Betweeness Centrality: measure of the number of
shortest paths a node is part of

— Closeness Centrality: measure of how close is a vertex
to the other vertices [sum of the shortest path distances]

— Farness Centrality: captures the variation of the shortest
path distances of a vertex to every other vertex



Degree Centrality
o Vertex

012 3 456 7 IDs
o011 10000 1 3|0
1110100000 1 2 |1
3 2111010000 1 3 | 2
3110101000 1T 1= 3 | 3
4 ({0 0010100 1 2 | 4
GD 5/|0000 101 1 1 3|5
6100000101 1 2 | 6
7100000110 1 2 |7
5 Adjacency Matrix Column Degree
Vector Centrality

6 7

Weakness: Very likely that more than one vertex has the same degree and not
possible to uniquely rank the vertices




Eigenvalue and Eigenvector

« Let A be an nxn matrix.

« A scalar A is called an Eigenvalue of A if there is a non-
zero vector X such that AX = AX. Such a vector X is called

« Example

an Eigenvector of A corresponding to
2
1

An n x n square matrix
has ‘n’ eigenvalues
and the corresponding
Eigenvectors

The eigenvector
corresponding to the
largest eigenvalue is
called the Principal
Eigenvector

IS an Eigenvector of A

{3 2}for)\ =4
3 -2

The largest eigenvalue
is also called the
Spectral radius



Finding Eigenvalues and Eigenvectors

(4) Solving for A:
7 3 (A-8)(A+2)=0
r A =8 and A = -2 are the Eigen values

3
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Eigenvector tetions

Centrality (1)
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_Iteratiun 3

Eigenvector [o1 1
. 1010
171 0 1
Centrality (2) |19
o0 0 1
o 00 00
00 00
00 00
o Iteration 4
01 1 1
o 1010
11 0 1
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o 000 1
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0000
6 ! 0000
After 7 iterations
Vertex ID 0 1 2
Principal 0489 0364 0.489
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EigenVector Centrality Example (1)
(3

OO0 -0
O-0 0=

Let X0 =

lteration 1

O-0 0=
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1
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Normalized Value = 4.69

lteration 2
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Normalized Value = 2.19
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0.426
0.426
0.639
0.426

0.195
0.389
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EigenVector Centrality Example (1)

lteration 3
3 01000 0.195 0.389 0.176
e 1 00 1 0|| 0389 0.779 0.352
00O0 1 1 0.486 | | 1.07 = 0.484
Q 0110 1|| 0584 1.361 0.616
00110 0.486 1.07 0.484
01000 .
10010 Normalized Value = 2.21 K
00O0T1 1 Eigen Vector
01101 Iteration 4 Centrality
00110 -
— 01000 0.176 0.352 1| 0.176
1 00 1 0|| 0352 0.792 2 | 0.352
1 0001 1 0484 | =| 1.100 3 | 0.484
LetX0=] | 0110 1 0.616 1.320 4 | 0.616
1 00110 0.484 1.100 5
3 _
1

0.49
Normalized Value = 2.21 converges




EigenVector Centrality Example (2)
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Normalized Value = 4.472

lteration 2

0110 0 0 |[0447
10010 0||o0.447
1 000 00 ||o.224
0100110671
00010 0022
00010 0]|0.224 |

Normalized Value = 1.674
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EigenVector Centrality Example (2)

lteration 3

6 01100 O ]|[o401] [0.668 0.357 |
10010 0||o0.401 0.936 0.500
100000 ||0267 |_|0.401 | _ |0.214
01001 1|[los53 ]| [1203]| = |0.643
e e 00010 0 |o0.401 0.535 0.286
| 000 10 0]|lo401 | [0.535 0.286 |
011000 Normalized Value = 1.872
100100
1 00000
0100 1 1 Iteration 4
000100 ~0 1100 010357 [0.714 0.376
000100 10010 0 |lo500 1.000 0.526
1 000 00 ||lo.214 0.357 0.188
01001110643 |=]1.072| £ |0.564
Let X0 = 00010 0 ]o0.286 0.643 0.338
| 00010 0J|0.286 0.643 | 0.338

Normalized Value = 1. 901




EigenVector Centrality Example (2)
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o000

lteration 5

OO0 =
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0.526
0.188
0.564
0.338
0.338

0.376 |

0.714 | 0.376 |
0.940 0.494
10376 | = |0.198
1.202 0.632
0.564 0.297
0.564 _ 0.297

Normalized Value = 1. 901 converges

EigenVector

Centrality

0.376
0.494
0.198
0.632
0.297

0.297

Note that we typically

stop when the EigenVector
values converge.

For exam purposes,

we will Stop when

the Normalized value
converges.




Eigen Vector Centrality for Directed Graphs

« For directed graphs, we can use the Eigen Vector centrality to evaluate
the “importance” of a node (based on the out-degree Eigen Vector) and
the “prestige” of a node (through the in-degree Eigen Vector)

— A node is considered to be more important if it has out-going links to nodes
that in turn have a larger out-degree (i.e., more out-going links).

— A node is considered to have a higher “prestige”, if it has in-coming links
}‘.rolzn)nodes that themselves have a larger in-degree (i.e., more in-coming
inks).

Importance of Nodes 000 1 1 Prestige of Nodes

0100 1 (Out-deg. Centrality) 10000 (In-deg. Centrality)
00100 Node Score Node  Score

— == 01000

00010 1 0.5919 00100 1 0.5919
10000 4 0.4653 10000 2 0.4653
10000 5 0.4653 : _ 5 0.4653
— 3 0.3658 In-coming links 3 0.3658
OUt'QO|ng links 2 0.2876 based Adj Matrix 4 0.2876

based Adj. Matrix



Closeness and Farness Centrality

Principal _
e ° Eigenvalue Ranking of Nodes

n1=16.315 Score NodelD

0.2518 2

e c e 0.2527 1

0.3278 6

o 0.3763 8

Farness 0.3771 3

Distance Matrix Closeness  pincipal 03771 4

Sum of Eigenvector 0.3771 5

1 2 3 4 5 6 7 8 distances g1 - 0.4439 7
1101 1 1 1 2 3 2| 11 [0.2527
211 0 2 2 2 1 2 1] 11 0.2518
311 2 0 2 2 3 4 3| 17 0.3771
411 2 2 0 2 3 4 3| 17 0.3771
511 2 2 2 0 3 4 3| 17 0.3771
612 1 3 3 3 0 1 2| 15 0.3278
713 2 4 4 4 1 0 3 21 0.4439
812 1 3 3 3 2 3 0] 17 0.3763]




Betweeness Centrality
. Spjk(i)
BWC(@H)= >

J#Ek#] SP Jjk

« We will now discuss how to find the total number of
shortest paths between any two vertices jand k as well as
to find out how many of these shortest paths go through a
vertex i (J# K# ).

« Use Breadth First Search (BFS) to find the shortest path
tree from vertex j to every other vertex k

— Root vertex jis at level 0

— Vertices that are 1-hop away from j are at level 1; 2-hops away
from j are at level 2, and so on.

— The number of shortest paths from jto a vertex k at level p is the
sum of the number of shortest paths from j to the neighbors of kin
the original graph that are at level p-1

— The number of shortest paths from j to k that go through vertex iis
the maximum of the number of shortest paths from jto /and the
number of shortest paths from kto i.



1,6 and 7
Betw.C=0

For vertices

Betweeness for Vertex 0
Pair (3,1) -->112

Pair (4,1) -->112

Pair (5,1) -->112

Pair (6,1) --->1172

Pair (7,1) --->112

Total of all Betweeness
(Vertex 0): 2.5

Betweeness for Vertex 2
Pair (3,1) --->112

Pair (4,1) --->112

Pair (5,1) --->112

Pair (6,1) --->112

Pair (7,1) -->112

Total of all Betweeness
(Vertex 2): 2.5

Betweeness for Vertex 5
Pair (6,0) --->1/1

Pair (7,0) -->1/71

Pair (6,1) --->2/ 2

Pair (7,1) —-->2 [ 2

Pair (6,2) —-->1/1

Pair (7,2) -->1/71

Pair (6,3) -->1/1

Pair (7,3) —-->111

Pair (6,4) —-->1/1

Pair (7.4) -->1/11

Total of all Betweeness
(Vertex 5): 10

Betweeness for Vertex 3
Pair (4,0) --->1/71

Pair (5,0) --->1/1

Pair (6,0) --->1/1

Pair (7,0) -->1171

Pair (4,1) --->21 2

Pair (5,1) --->21] 2

Pair (6,1) -->2/ 2

Pair (7,1) —-->21 2

Pair (4,2) -->111

Pair (5,2) --->11/1

Pair (6,2) --->1/1

Pair (7,2) --->11/1

Total of all Betweeness
(Vertex 3): 12

Betweeness for Vertex 4
Pair (5,0) --->1/71

Pair (6,0) --->1/1

Pair (7,0) --->111

Pair (5,1) -->2 /1 2

Pair (6,1) --->2 1 2

Pair (7,1) --->21 2

Pair (5,2) --->111

Pair (6,2) -->111

Pair (7,2) -->111

Pair (5,3) -->1/11

Pair (6,3) --->1/1

Pair (7,3) —-->111

Total of all Betweeness
(Vertex 4): 12




# shortest paths from a to g that go through ¢
is the maximum (# shortest paths from a to c,
# shortest paths from g to c)

=max (2, 1) =2

Levels of
Vertices on

# shortest paths
from the root

to the other
vertices




(o)—()—(

6 7

To determine how many
Shortest paths from nodes
1 to 7 that go through
node 4.




BFS Tree # shortest paths BFS Tree # shortest paths
rooted at from vertex 1 to rooted at from vertex 7 to
Vertex 1 the other vertices Vertex 7 the other vertices

To determine how many Shortest paths from nodes
1 to 7 that go through node 4: = Max(2, 1) =2



Subgraph Centrality

 The subgraph centrality of a node is a measure of the
number of sub graphs a node is part of.
— Gives more importance to the smaller sub graphs

— Measured as the weighted sum of the number of closed walks of
partic/m;'Iar length (/=1, 2, 3, ....) that a node is part of. The weights
are 1/

— For a given adjacency matrix A, A’ gives the number of closed
walks of length /from a vertex to another vertex (incl. itself).

In closed form

subGC(i) =), =Y [o. ()

where <pj(i) is the ith entry of the jth Eigenvector associated with Eigenvalue Aj



Subgraph Centrality Example (2)

0110 1 A =-1.618
o e 101 10| A=-1473
A — 1 1 0 1 1 A3 - '0.463
e 01100 A =0.618
e ° 10100 A5 =2.935
Node IDs
1 2 3 4 5 Eigenvalues e
11-0.602 0.602 O -0.372 0.372 | A1 =-1.618 0.2
_ 2(-0.138 -0.138 0.770 -0.429 -0.429 | A2=-1.473 0.23
Eigenvector 319510 0510 -0.307 -0.439 -0.439 | A3 =-0.463 0.63
entries 41-0.372 0372 O 0.602 -0.602 | A =0.618 1.852
510.47 0.47 0.559 0351 0.351 | A5=2.935 18.654

+(0.372)2* eM0.618) + (0.47)2* €/(2.935) } = 4.62

SubGC(Node 1) = { (-0.602)2 * e"(-1.618) + (-0.138)2 e”(-1.473) + (0.51)2 e/(-0.463)
+ (-0.372)2* e7(0.618) + (0.47)2 * €7(2.935) } = 4.62

SubGC(Node 2) = { (0.602)2 * e*(-1.618) + (-0.138)2 e”(-1.473) + (0.510)2 e/(-0.463)




Node IDs

1 2 3 4 5 Eigenvalues eM
1 -0.602 0602 O -0.372 0.372 Al =-1.618 0.2
2 -0.138 -0.138 0.770 -0.429 -0.429 | A2 =-1.473 0.23
3 0.510 0.510 -0.307 -0.439 -0.439 | A3 =-0.463 0.63
4 -0.372 0372 O 0.602 -0.602 | A4 =0.618 1.852
5 0.47 0.47 0.559 0.351 0.351 A5 = 2.935 18.654

SubGC(Node 3) = { (0)2 * e/(-1.618) + (0.770)2 e’(-1.473) + (-0.307)2 e/(-0.463)
+ (0)2* e7(0.618) + (0.559)2 * €/(2.935) } = 6.02

SubGC(Node 4) = { (-0.372)2 * e”(-1.618) + (-0.429)2 e(-1.473) + (-0.439)2 e/(-0.463)
+ (0.602)2 * e(0.618) + (0.351)2 * e7(2.935) } = 3.16

SubGC(Node 5) = { (0.372)? * e”(-1.618) + (-0.429)? e”(-1.473) + (-0.439)? e”(-0.463)
+ (-0.602)? * €7(0.618) + (0.351)?> * €7(2.935) } = 3.16
4.62 4.62
N N
3.16 0 e Average 1 . 1 A
Subgraph <SC> = ZSC(Z) = Ze

e Centrality N i=l N i=1

e 0 For the example graph given here: <SC> = 4.32




Centrality Correlations



Network Graphs Analyzed (1)

« (i) Zachary's Karate Club: Social network of friendships (78
edges) between 34 members of a karate club at a US
university in the 1970s

 (ii) Dolphins' Social Network: An undirected social network
of frequent associations (159 edges) between 62 dolphins
in a community living off Doubtful Sound, New Zealand

« (iil) US Politics Books Network: Nodes represent a total of
105 books about US politics sold by the online bookseller
Amazon.com.

— A total of 441 edges represent frequent co-purchasing of books by
the same buyers, as indicated by the "customers who bought this
book also bought these other books" feature on Amazon



Network Graphs Analyzed (2)

(iv) Word Adjacencies Network: This is a word co-appearance network
representing adjacencies of common adjective and noun in the novel
"David Copperfield" by Charles Dickens.

— A total of 112 nodes represent the most commonly occurring
adjectives and nouns in the book. A total of 425 edges connect any
pair of words that occur in adjacent position in the text of the book

(v) US College Football Network: Network represents the teams that
played in the Fall 2000 season of the US College Football games and
their previous rivalry - nodes (115 nodes) are college teams and there is
an edge (613 edges) between two nodes if and only if the corresponding
teams have competed against each other earlier

(vi) US Airports 1997 Network: A network of 332 airports in the United
States (as of year 1997) wherein the vertices are the airports and two
airports are connected with an edge (a total of 2126 edges) if there is at
least one direct flight between them in both the directions.

Spectral radius ratio: Ratio of spectral radius (largest Eigenvalue
based on the Adjacency matrix) to the average node degree.
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Probability Mass
Function

Avg. Node Degree: 8.4
Spectral Radius Ratio: 1.41

US Politics Books Network
(105 nodes, 441 edges)

Cumulative
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Probability Mass
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Real-World Networks

Network ) B} B} Spectral Radius
Inedexﬂr Real-World Network Graph # Nodes # Edges Dl;eiereaRa?ioms
i Zachary's Karate Club Network 34 78 1.46
(ii) Dolphins' Social Network 62 159 1.40
iii US Politics Books Network 105 441 1.41
iv Word Adjacencies Network 112 425 1.73
v American College Football Network 115 613 1.01
(vi) US Airports 1997 Network 332 2126 3.22
n _ _ High: 2 0.75
> (X[ID]-X)*(Y[ID]-Y)
CorrCoeff(X.Y)=——== — Moderate:
\/ > (X[ID]-X)’ \/ > (y[ID]-Y)  0.50-0.74
D=1 ID=1

Low < 0.50



Correlation Coefficients: Centrality Metrics for Real-World Network Graphs

(Networks listed in the increasing order of Number of Nodes)

Net | Deg | Deg | Deg | Deg | EVC | EVC | EVC | BWC | BWC | CIC
# | evc | Bwc | ac | rarc | Bwce | cic | Farc | cic | Farc | Farc
@ (090 [092 o077 [077 [079 |09 |09 [o072 o072 |09
Gi) 1077 [ 060 [o0.71 [0.73 - 0.71 | 0.68 | 067 |o0.71 | 0.99
Gii) | 093 J 071 | 058 | 059 | 058 | 053 | 053 |0.78 | 0.79 | 0.99
Gv) 1 095 092 o084 |08s | 082 |093 |092 |0.66 |0.66 | 099
) | 0.87 0.82 ]| 083 | 0.99
vi) [ 095 | 070 | o080 Jos8o | o052 |o085 | 084 |049 |o051 | 099

Correlation Coefficients: Centrality Metrics for Real-World Network Graphs

(Networks listed in the increasing order of Spectral Radius Degree Ratio)

Net | Deg BWC | BWC | CIC
# EVC CIC FarC | FarC
(v) | 0.87 0.82 0.83 0.99
(1) | 0.77 0.67 0.71 0.99
(i) | 0.93 | 0.71 0.58 ] 0.59 0.58 053 ] 053 | 0.78 0.79 0.99
1 J0.950 | 0.92 0.77 | 0.77 | 0.79 0.91 | 0.90 | 0.72 0.72 0.99
(v) | 0.95 | 0.92 0.84 | 0.84 | 0.82 0.93 | 0.92 | 0.66 0.66 0.99
(vi) | 0.95 ] 0.70 0.80 | 0.80 | 0.52 0.85 ] 0.84 | 0.49 0.51 0.99




Observations: Centrality Correlations

The degree-based centrality metrics (degree and Eigenvector
centralities) are consistently highly correlated for all the six real-world
network graphs considered.

Likewise, though the shortest path-based centrality metrics are only
moderately correlated for most of the real-world network graphs, we
observe such a correlation to be consistent across the network graphs
without much variation in the correlation coefficient values.

The level of correlation between a degree-based centrality metric and a
shortest path-based centrality metric increases with increase in
variation of node degree:

— the two classes of metrics are poorly correlated in regular/random networks

and are at the low-end of moderate-level of correlation for real-world
networks that are less scale-free.

— As the real-world networks get more scale-free, the level of correlation
between the two classes of centrality metrics is likely to increase.

The shortest path-based centrality metrics correlate better for
regular/random networks and the level of correlation decreases as the
networks get increasingly scale-free.



Link Analysis-based Ranking

We want to rank a node in a graph based on the
number of edges pointing to it and/or leaving it as
well as based on the rank of the nodes at the other
end of these edges.

Used primarily in web search

— We model the web as a graph: the pages as nodes and
the edges are directed edges — a page citing (having a
link to) another page.

Hubs and Authorities (HITS) algorithm
PageRank algorithm



Hypertext Induced Topic Search
(HITS) Algorithm

Hub: Node that points to lots of pages
— Yahoo like directory
Authority: Node to which several other nodes point to

— The larger the number of nodes pointing to a node, the
more authoritative is the view presented by a node on a
particular subject

The HITS algorithm assigns two scores for each
page:
— Authority: an estimate of the value of the contents of the
page
— Hub: an estimate of the value of its links to other pages

A page is considered to be more authoritative if it is
referenced by many hub pages that are relevant to a
search query

A page is a hub page for a search query if it points to
many authoritative pages for that query

Good authoritative and hub pages reinforce one
another.

A variant of HITS is used by Ask.com




Finding Pages for a Query in HITS

Initial Work

Step 1: Submit query g to a similarity-based engine and
record the top n, i.e., the root set RS(q) pages.

Step 2: Expand set RS(q) into the base set BS(q) to
include pages pointed by RS(q) pages

Step 3: Also include into BS(q), the pages pointing to
RS(q) pages.

Run the HITS algorithm

— For each page pj, compute the authority and hub score of pj
through a sequence of iterations.

After obtaining the final authority and hub scores for

each page, display the search results in the decreasing

order of the authority scores. Pages having zero authority

scores (nodes with no incoming links — strictly hubs) are

listed in the decreasing order of their hub scores.

— Note: nodes that are strictly hubs still contribute to the authority of
the nodes that it points to.




HITS Algorithm

Let E be the set of links in BS(q) and a link from page pi to pj is
denoted by the pair (i, j).

A: Authority Update Step H: Hub Update Step
a(p,)= > h(p,) h(p)= Y a(p,)
(i, j)eE (J.k)eE

After each iteration i, we scale the ‘a’ and ‘h’ values:

a”(p;) h(p;)

2 @) L h0p)

h(p;)=

a’(p;)=

As can be noted above, the two steps are interwined: one uses the
values computed from the other.
— In this course, we will follow the asynchronous mode of

computation, according to which the authority values are updated
first for a given iteration i and then the hub values are updated.

« The hub values at iteration i/ are using the authority values just
computed in iteration J (rather than iteration i —1).
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Order Pages
Listed after
Search

Q=
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HITS Example (1)

Initial
a=[1 1 1 1 1] h=[1 1 1 1 1]

It #1

a=[1 00 3 2 ] h=[5 3 5 1 0]
After Normalization,

a=[0.26 0 0 0.80 0.53] h=[0.64 0.38 0.64 0.12 0]

It # 2

a=[012 0 0 166 1.28] h=[294 166 294 0.12 0]
After Normalization,

a=[0.057 0 0 079 0.61] h=[0.66 0.37 0.66 0.027 0]

It#3

a=[0027 0 0 169 132] h=[3.01 1.69 3.01 0.027 0]
After Normalization,

a=[00126 0 O 0.79 0.61] h=[0.66 0.37 0.66 0.006 0]

It#4

a=[0006 0 0 169 132] h=[3.01 1.69 3.01 0.006 O]
After Normalization,

a=[0.003 0 0 0.79 0.61] h=[0.66 0.37 0.66 0.001 O]




HITS Example (2)
e 0 Iani=ti[a1I 1 1 1] h=[1 1 1 1]

It #1

0 e a=[0 3 1 1] h=[3 1 4 3]

After Normalization,
a=[0 091 0.30 0.30] h=[0.51 0.17 0.68 0.51]

It#2

a=[0 1.70 0.17 0.68] h=[1.70 0.17 2.38 1.70]
After Normalization,

a=[0 0.92 0.09 0.37] h=[0.50 0.05 0.70 0.50]

Order Pages

It#3

Listed after

Search a=[0 1.70 0.05 0.70] h=[1.70 0.05 2.4 1.70]
- After Normalization,

i a=[0 092 0.027 0.38] h=[0.50 0.014 0.70 0.50]
3 Iit#4

1 a=[0 1.70 0.014 0.70] h=[1.70 0.014 24 1.70]

After Normalization,
a=[0 092 0.008 0.38] h=[0.50 0.004 0.71 0.50]




Order Pages

HITS Example (3)

Listed after
Search

AN W=

Initial

a=[1 1 1 1] h=[1 1 1 1]
It#1
a=[3 1 2 0] h=[0 5 3 6]
After Normalization,
a=[0.80 0.27 0.53 0] h=[0 059 036 0.72]
It#2
a=[1.67 0.72 1.31 0] h=[0 298 1.67 3.7]
After Normalization,
a=[0.745 0.32 0.58 0] h=[0 059 0.33 0.73]
It #3
a=[1.65 0.73 1.32 0] h=[0 297 1.65 3.7]
After Normalization,
a=[0.74 0.32 0.59 0] h=[0 059 0.33 0.73]




HITS Example (4)

« Assume ‘X’ web-pages
point to page X and ‘y’
pages point to page Y,
where x >>y. What

Initial hagpenﬁ with ’[hle hube

i v .- and authority values o
[)1( }( 1éx1w1eb1 pf g1e 819: }' 1> ] X and Y respectively?
111111111111 Assumeno
normalization is done
at the end of each
iteration.

=25 0
nm u

|
[

-
-

> o
n n +*
X

We can notice that with each iteration i, the ratio of the authority values
‘ of X and Y is proportional to (x/y)"i. After a while, X will completely
dominate Y. There is no change in the hub values of X and Y though.




PageRank

The basic idea is to analyze the link structure of the web to
figure out which pages are more authoritative (important) in
terms of quality.

It is a content-independent scheme.

If Page A has a hyperlink to Page B, it can be considered
as a vote of A for B.

— If multiple pages link to B, then page B is likely to be a good page.
A page is likely to be good if several other good pages link
to it (a bit of recursive definition).

— Not all pages that link to B are of equal importance.

— A single link from CNN or Yahoo may be worth several times
The web pages are first searched based on the content.
The retrieved web pages are then listed based on their

rank (computed on the original web, unlike HITS that is run
on a graph of the retrieved pages).

The Page Rank of the web pages are indexed
(recomputed) for every regular time period.



PageRank

(Random Web Surfer)
Web — graph of pages with the

hyperlinks as directed edges.

Analogy used to explain PageRank
algorithm (Random Web Surfer)

User starts browsing on a random page

Picks a random out-going link listed in
that page and goes there (with a
probability ‘d’, also called damping
factor)

— Repeated forever

The surfer jumps to a random page with
probability 1-d.
— Without this characteristic, there could be a
possibility that someone could just end up
oscillating between two pages B and C as in

the traversing sequence below for the graph
shown aside:

G>E>F>E>D>B>C

Lets say d = 0.85.

To decide the next page
to move, the surfer simply
generates a random
number, r. If r <= 0.85,
then the surfer randomly
chooses an out-going link
from the existing page.
Otherwise, jumps to a
randomly chosen page
among all the pages,
including the current page.



PageRank Algorithm

PageRank of Page X is the
probability that the surfer is at page
X at a randomly selected time.

— Basically the proportion of time, the 9‘9

surfer would spend at page X.

PageRank Algorithm I
Initial: Every node in the gra ph gets / 9
the same pagerank. PR(X) = 100% 9 <
N, where N is the number of nodes. l 1
At any time, at the end of each 9
iteration, the page rank of all nodes 9 9
add up to 100%. 9 9.

’

Actually, the initial pagerank value of

a node is the pagerank at any time, if N

there are no edges in the graph. We Initial PageRank
have 100% / N chance of jumping to of Nodes

any node in the graph at any time.




PageRank Algorithm

_ Assuming
Page Rank Of PR()C) — (1 d) *100 + d Z PR(y) there are NO
Node X N ' Out(y)| Sinknodes

Page Rank of Node X is the probability of being at
node X at the current time.

« How can we visit node X from where we are”?

— (1-d) term: Random Jump: The probability of ending
up at node X because of a random jump from some
node, including node X, is 1/N.

— However, such a random jump itself could occur with a
probability of (1-d).

— This amounts to a probability of (1-d)/N to be at node X
due to a random jump.



PageRank Algorithm

Assuming
Page Rank of PR(x) = d=d)*100 +d Z ) there are NO
Node X N = Out(y)| Sink nodes

« Page Rank of Node X is the probability of being at node X
at the current time.

« How can we visit node X from where we are?

d term: Edge Traversal from a Neighbor:
We could visit node X from one of the nodes that point to node X.

Lets say, we are at node Y in the previous iteration. The probability
of being at node Y in the previous iteration is PR(Y). We can visit
any of Y’s neighbors.

The probability of visiting node X among the Out(Y) out-going links
of node Y is PR(Y) * (1 /Out(Y) ) = PR(Y) / Out(Y).
Likewise, we could visit X from any of its neighbors.

All the probabilities of visiting X from any of its neighbors have to be
added, because visiting X from any of its neighbors is independent
of the ne|ghbors

The whole event of visiting from a neighbor occurs with a prob. ‘d’




PageRank

» Since Page Rank PR(X) denotes the probability of
being at node X at any time, the sum of the Page
Ranks of all the nodes at any time should be
equal to 1.

« We can also interpret the traversal from a node Y
to node X as node Y contributing a part of its PR
to node X (node Y equally shares its PR to the
nodes connected to it through its out-going links).

* Implementation:

— Note that (unlike HITS) we need to use the page rank
values of the nodes from the previous iteration to
update the page rank values of the nodes in the current
iteration.

« Need to maintain two arrays at any time t: PRt and PR®




nitial Pagerank G alculating PageRank of

of Nodes

le
5 Ok
H 1 J

Assume the damping factor d = 0.85 For lteration 1,
For any iteration, Substituting the PR values of
the nodes (initial values),
PR(B) =0.1579.1 + we get PR(B) =~ 31
0.85* [ PR(C) + 2 PR(D) +
Y3 PR(E) + V2 PR(F) +
2 PR (G) + Y2 PR(H) + 2 PR(I) ]



Final PageRank Values for the
Sample Graph




PageRank: More Observations

Algorithm converges (few iterations sufficient)

For an arbitrary graph, it is pretty difficult to figure out the
final page rank values of the nodes.

Certain inferences could be however made.

For our sample graph:
— For nodes that do not have any in-links pointing to them,

the only way we will end up at these nodes is through a random
jump: this happens with a probability (1-d)/N.
In our case, it is (1-0.85)" 100/11 = 1.6%.

— Two nodes with links from the same node (symmetric in-links)
have the same PR. (nodes D and F) and it will be higher than
those nodes without any in-links.

— One in-link from a node with high PR value contributes significantly
to the PR value of a node compared to the in-links from several
low PR nodes.

 In our sample graph, an in-link from node B contributes significantly
for node C compared to the several in-links that node E gets from the
low-PR nodes. So, the quality of the in-links matters more than the
number of in-links.



Note that there are NO sink nodes
(nodes without any out-going links)

Assume damping
Factor d = 0.85

PR(A) = (1-d)*100/4

PR(B) = (1-d)*100/4 + d*[ PR(A) + 1/2 * PR(C) + PR(D) |

PR(C) = (1-d)*100/4 + d*[PR(B)]
PR(D) = (1-d)*100/4 + d*[1/2*PR(C) ]

Initial It # 1 It # 2 It#3 It # 4
PR(A)=25 | | PR(A) =3.75 | |PR(A)=3.75 ||PR(A)=3.75 PR(A) = 3.75
PR(B) =25 | | PR(B) = 56.88 | | PR(B) = 29.79 | | PR(B) = 41.30 | | PR(B) = 41.29
PR(C)=25 | | PR(C) =25 PR(C) = 52.10 | | PR(C) = 29.07 | | PR(C) = 38.86
PR(D) =25 | | PR(D) = 14.38 | | PR(D) = 14.38 | | PR(D) = 25.89 | | PR(D) = 16.10
It#5 It #6 It#7 It #8 It#9
PR(A)=3.75 |[PR(A)=3.75 ||PR(A)=3.75 |[PR(A)=3.75 [|PR(A)=3.75
PR(B) = 37.14 || PR(B) = 40.68 || PR(B) = 39.17 || PR(B) = 39.17 || PR(B) = 39.71
PR(C) = 38.85 || PR(C) = 35.32 || PR(C) = 38.33 || PR(C) = 37.04 || PR(C) = 37.04
PR(D) = 20.27 || PR(D) = 20.26 || PR(D) = 18.76 || PR(D) = 20.04 || PR(D) = 19.49
Iit#10 Ranking

PR(A) = 3.75 B

PR(B)=39.25 | C Page Rank Example (1)
PR(C) = 37.5 D

PR(D) = 19.49 A




Page Rank: Graph with Sink Nodes

Motivating Example

Consider the graph: A > B

Letd = 0.85
PR(A) = 0.15*100/2 PR(B) = 0.15*100/2 + 0.85*PR(A)

Initial: PR(A) = 50, PR(B) = 50
lteration 1:

PR(A) =0.15*100/2 = 7.5

PR(B) = 0.15*100/2 + 0.85 * 50 = 50.0

PR(A) + PR(B) =57.5

Note that the PR values do not add up to 100.

This is because, B is not giving back the PR that it receives from A
to any other node in the graph. The (0.85*50 = 42.5) value of PR
that B receives from A is basically lost.

Once we get to B, there is no way to get out of B other than random
jump to A and this happens only with probability (1-d).



Page Rank: Sink Nodes (Solution)

« Assume implicitly that the sink node is connected to every node in the
graph (including itself).
— The sink node equally shares its PR with every node in the graph,
including itself.

— If zis a sink node, with the above scheme, out(z) = N, the number
of nodes in the graph.

. 'kl)'hle probability of getting to node X at a given time is still the two terms
elow:

« Random jump from any node (probability, 1-d)
* Visit from a node with in-link to node X (probability, d)

Page Rank | pp - (I=)*100 <~ PRY)  d < por
otNode X | =N 2 Gy v &2

Explicit out-going Implicit out-going
links to certain nodes  links to all nodes
(sink nodes)

the second term of the original Page Rank formula is now broken between
that of nodes with explicit out-going links to one or more selected nodes and
the sink nodes with implicit out-going links to all nodes.




Consolidated PageRank Formula

~ (1-d)*100 PR(y) , d
PR(x) = v +dy;x0ut(y)+NZ;¢PR(z)

Page Rank Example (2)

PR(A) = (1-d)*100/4 + d [ PR(B)/2 + PR(C)/1 + PR(D)/3] + (d/4)*[PR(A)]
PR(B) = (1-d)*100/4 + d [PR(D)/3] + (d/4)*[PR(A)]

PR(C) = (1-d)*100/4 + d [PR(B)/2 + PR(D)/3] + (d/4)*[PR(A)]

DR(D) = (1-d)*100/4 + (d/4)*[PR(A)]

Node Ranking: A, C, B, D

Initial It # 1 It # 2 It#3 It # 4

PR(A) 25| | PR(A) 48.02 | | PR(A) 46.14 PR(A) 44.41| |PR(A) 45.32
PR(B) 25| |PR(B) 16.15| | PR(B) 16.52 PR(B) 17.51| |PR(B) 17.03
PR(C) 25| |PR(C) 26.77 | | PR(C) 23.386 | |PR(C) 24.53| |PR(C) 24.47
PR(D) 25| |pPR(D) 9.063 | | PR(D) 13.954 | |PR(D) 13.55| |[PR(D) 13.18




(e~ ()

Page Rank Example (3)
(A

AN

PR(A) = (1-d)*100/4 + d*['"2*PR(B) + %2*PR(C) + PR(D)]
PR(B) = (1-d)*100/4 + d*[PR(A)]

PR(C) = (1-d)*100/4 + d*[*2*PR(B)]
PR(D) = (1-d)*100/4 + d*[*2*PR(C)]

Initial It # 1 It # 2 It#3 It # 4

PR(A) 25| PR(A) 46.25 || PR(A) 32.71 || PR(A) 36.54 | |PR(A) 34.91
PR(B) 25| PR(B) 25 PR(B) 43.06 || PR(B) 31.55||PR(B) 34.81
PR(C) 25| PR(C) 14.38 ||PR(C) 14.38 ||PR(C) 22.05| |PR(C) 17.16
PR(D) 25| PR(D) 14.38 ||PR(D) 9.86 | PR(D) 9.86 | |PR(D) 13.12
It # 5 It # 6 It#7 It # 8 It#9

PR(A) 36.99 || PR(A) 35.22 || PR(A) 36.19 | PR(A) 35.68 || PR(A) 36.03
PR(B) 33.42 | PR(B) 35.12 || PR(B) 33.68 || PR(B) 34.51||PR(B) 34.08
PR(C) 18.54 ||PR(C) 17.95| PR(C) 18.68 ||PR(C) 18.06 || PR(C) 18.42
PR(D) 11.04 ||PR(D) 11.63 || PR(D) 11.38 || PR(D) 11.69 || PR(D) 11.43

Node Ranking:A B C D




Computing Huffman Codes for
Nodes using their PageRank Values
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The Huffman codes could be used to efficiently
represent paths and frequently used links in the network
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