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Introduction

At first inspection, most real-world networks look as if
they are spun randomly.

To model such networks that are truly random, the
principle behind “Random Graph Theory” is:

— Place the links randomly between nodes to reproduce the
complexity and apparent randomness of real-world systems.

Two definitions of random networks

— @G(N, L) model: N labeled nodes are connected with L randomly
placed links

— @G(N, p) model: Each pair of N labeled nodes are connected with
a probability p.

Though the average degree for a node is simply 2L/N in
a G(N, L) model, the other key network characteristics
are easier to calculate in the G(N, p) model.

— The construction of the G(N, p) model is closer to the way real
Eys’gams develop. The total number of links in a network is rarely
ixed.



Constructing a G(N, p) Network

Step 1: Start with N
isolated nodes

Step 2: For a particular
node pair (u, v), generate
a random number r. If r<
p, then, add the link (u, v)
to the network.

Repeat Step 2 for each of
the N(N-1)/2 node pairs.

Each random network we
generate with the same
parameters (N, p) will
look slightly different.

— The number of links L is
likely to be different.
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N =100 nodes,p =1/6

Source: Figure 3.3a: Barabasi



Review of Binomial Distribution

- Let there be N independent experiments with two possible outcomes (in
each experiment: success or failure): with the probability of one
outcome (say success) is p and of the other is 1-p.

 The binomial distribution provides the probability p, that we obtain
exactly x successes in a sequence of N experiments.

The binomial distribution has the form Ilts second moment Is
N N 2 k 2 2n12
b=\ PP ()= Y, =p(- N+ PN,
x=0

The mean of the distribution (first moment) is providing its standard deviation as

0= 20, =No- |5 = ()~ (7 = [p(-pINT

N is the different combinations of the results of the N experiments in
which there will be X successes and N-X failures.

C(N, x) = {

X




# Links in a G(N, p) Network

« LetL be the number of links arising out of a random
network generated according to the G(N, p) model.

* To determine the Average Number of Links <L>, we
need to model the probability that there will be exactly L
links among the total number of node pairs N(N-1)/2
considered to have a link; each node pair has a probability
of pto form a link. Let Lmax = N(N-1)/2.

Lmax) , ... Average Degree of a Node <k>
pr= p (1-p)

L %
Lmax {:K:}ZZ ;L:}
<L>= % L*p =(Lmax)*
; P =( )" 2% p* N(N -1)
« NV —1) 2* N

<L>=p
2 =p*(N-1)



Degree Distribution

For a random network of N nodes, each node can have potentially N-1
links.

The probability p, that a node has exactly k links is given by the
binomial distribution: N_I
P, z[ }p“(l—p}”"“‘

k
Using the above binomial distribution to find the average node degree
for a random network, we obtain <k> = p*(N-1) and the standard
deviation for the node degree is g, = p*(1-p)*(N-1).

For sparse networks (for which <k> << N), the probability of finding a
node with k neighbors is given by the Poisson distribution:

B {k}<k>k
Pe=C T

Using the above Poisson distribution to find the average node degree
for a random network, we obtain <k> as the mean and the standard
deviation for the node degree is o, = (<k>)"2.




Degree Distribution
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N=10,p=0.3

0.3
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Real Networks do not have a Poisson
degree distribution

» Let us assume that the world’'s social network (typically, N =
10° nodes and average node degree <k> = 1000) follows a
random network model.

« Using the results obtained for random networks, the above
values for the global social network corresponds to:
— Dispersion (std. dev.) = <k>12 _31.62.

« The above results indicate that in the global social network,
the degree of most nodes is in the vicinity of <k>.
— However, we have people with number of contacts significantly
larger than 1000 and significantly lower than 1000 too.
* The random network cannot be used to model a network
with few extremely popular individuals (hubs) and networks
with large differences in node degrees.



Degree Distribution of Real Networks
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Source: Figure 3.5: Barabasi

The Poisson distribution underestimates the presence of nodes with larger degrees.
For example, the maximum degree for a node in the Internet (according to the random
model) is expected to be 20; there are nodes with degrees close to 1000. Likewise, the
dispersion predicted under the random model is 2.52 (much smaller than the measured
value of 14.44).



Phase Transitions in Random Networks

 If p=1/n?, the network has some links
(avg. deg. 1/n)

 If p2=1/n%2 the network has a component
with at least three links (avg. deg. 1/n'?)

 If p=1/n, the network has a cycle; the
network has a unique giant component: a
component with at least n2 nodes (for
some fixed a < 1); (avg. deg. 1)

 If p=2log(n)/n, then the network is
connected; (avg. deg. log(n))



Phase Transitions in Random Networks
p=0.01; 50 nodes (1)



Phase Transitions in Random Networks
p = 0.03; 50 nodes (2)

p = 0.02 for the emergence of a cycle and a giant component
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Phase Transitions in Random Networks
p=0.1; 50 nodes (3)
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Evolution of a Random Network

« Giant component is the largest cluster within the network.

» The size of the giant component (N,) varies with the
average degree <k>.
— For p =0, we have <k> = 0. Hence, we observe only isolated nodes.
Hence, N; =1 and Ny /N - 0 for large N.

— For p =1, we have <k> = N-1. Hence, the network is a complete
graph and all nodes belong to a single cluster. Hence, N; = N and
Nz/N=1.

« One would expect that the giant component will grow
gradually from Ng; =110 Ng; = N if we increase <k> from 0
to N-1.

— However, as observed from theoretical analysis studies, Ny/N

remains 0 for small <k>. Once <k> exceeds a critical value (1), Ng/N
increases rapidly signaling the emergence of a giant component.

« We have a giant component if and only if when each node has on
average more than one link.



Evolution of a Random Network
* We know that <k> = p(N-1).

 For the critical value of <k> = 1 when the giant
component emerges, p.(N-1) = 1.
— p. = 1/(N-1) = 1/N.
— This indicates: Larger the network, the smaller the value
of p for the emergence of a giant component.

where S = Ng/N

Source: Figure 3.6a
Barabasi




Evolution: Topological Transitions

Consider creating a random network according to the G(N, L) model

(k} <1 Subcritical regime
=  No giant component.
*  Cluster size distribution:
P(g) ~ e ™=
*  The size of the largest cluster:
Ngr~InN
=  The clusters are trees.

« Subcritical regime:
— O0<<k><1 andp<1/N

— The largest cluster is expected to be a tree with InN nodes. Hence,
Ng/N =InN/ N - 0 in the N = « limit, indicating that the largest
component is tiny compared to the size of the network.

— Components have comparable sizes, lacking a clear winner to be
designated as a giant component.




Evolution: Topological Transitions

(k) =1 Critical point
E No giant component.
Cluster size distribution:
P(g) ~ g 3/2
Size of the largest cluster:
Ng NNEI.I'H
The clusters may contain loops.

—<k>=1 andp=1/N

— The largest cluster is expected to be of size N23 and
contain loops, while the smaller clusters are typically
tfrees.

— The largest cluster is still tiny compared to the network
size. Ng/N = N-13) > 0as N > «.



Evolution: Topological Transitions

(k} = 1 Supercritical regime
= Single giant component.
p>1/N = Cluster size distribution:
P(g) ~e™™
= Size of the giant component:
(Ng/N) ~ (p - p)
= The small clusters are trees.
=  @GC has loops.

(k) ZInN Fully connected regime
= Single giant component.
No isolated nodes or clusters.
= Size of the giant component:
Ng=N
= GC has many loops.

o = (In N)/N




Prediction of Random Network Theory:

Real Networks are Supercritical

 The theoretical thresholds uncovered for random networks

are.

— For <k> > 1, a giant component emerges that contains a finite

fraction of all nodes.

— For <k> > InN, all components are absorbed by the giant
component, resulting in a single connected network.

In N

Network N [ <k> [InN |7

In <k>

Internet 192,244 609,066 |6.34 1217 | 6.59

Power Grid 4,941 6,594 2.67 |8.51 8.67
Science Collaboration 23133 |186,936 |8.08 |10.04 | 4.81
Tablo .1 | Actor Network 212,250 |3,054,278| 2878 | 12.27 | 3.65
P58 | Yeast Protein Interactions 2,018 2,930 |2.90 |761 | 7.15




Prediction of Random Network Theory:
Real Networks are Supercritical

 Just based on the N and L values for the real networks, we could
predict (according to the principles of Random Network Theory) that:

— A)II real networks should have a giant component (since their <k> exceeds
1

— For most real networks (except the actor network), the giant component
does not absorb all the nodes (components) as their <k> value is less than
InN. Hence, most real networks according to Random Network theory are in
the supercritical topology regime.

~ Subcritical Supercritical ~ FullyConnected

Internet . > -

powerGria [N s

Science

Collaboration . x _

Actor Network . - -
Source:
Figure 3.8 feast Protein ]
Barabasi Interactions . x

I -

i
L 10 <k>



Giant Components: Intuitive ldea

? _ If your friend starts getting connected
S S to someone other than yourself,
then you are more likely to belong to
a larger component.

The emergence of the giant component sets in when each node has
degree of at least 1. Any new edge added to the network is more likely
to merge two disconnected groups. Hence, the giant component is very
likely to emerge if the average degree of a node exceeds 1.

S N

As the network evolves, there cannot be two giant components.
The addition of new edges is likely to merge two giant components
and evolve them as one single giant component.



Small World Property

« Distance between two randomly chosen nodes in a
random network is surprisingly short.

« Consider a random network with average degree <k>. A
node in this network has on average

— <k> nodes at distance one (
— <k>2 nodes at distance two d 2
— <k>3 nodes at distance three (d=3). 6 6

— <k>%nodes at distance d.
* The expected number of nodes up to distance d from the
starting node is:

— N(d)=1+<k>+<k>?+ ... + <k>9 = coommmmeeeeeee e



Small World Property

Let dmax denote the maximum distance (the network
diameter) at which N(d) reaches N. Thatis, N(dmax) = N.

Assuming that <k> >> 1,

— <k>dmaX = N.

— dmax=InN/In <k>

As seen from the results for real networks, InN/In<k>
approximates more better for the average distance between
two randomly chosen nodes.

— This is because dmax is often dominated by a few extreme paths,
while <d> is averaged over all node pairs, a process that diminishes
the fluctuations.

Thus, the average distances <d> in a random network are
proportional to InN, rather than N.

The 1/(In<k>) term implies that denser the network, the
smaller is the distance between the nodes.



Small World Property

Network Name N L ko> “f* @ E;;
Internet 192,244 | 609,066 6.34 6.98 26 6.59
WWW 325,729 | 1,497134 4.60 11.27 93 8.32

Power Grid 4,941 6,594 2.67 18.99 46 8.66

Mobile Phone Calls 36,595 91,826 2.51 1n.72 39 11.42

Email 57194 103,731 1.81 5.88 18 18.4

Science Collaboration 23,133 186,936 8.08 5.35 15 4.81
Actor Network 212,250 |3,054,278| 28.78

Citation Network 449,673 | 4,707958 | 10.47 11.21 42 5.55

E Coli Metabolism 1,039 5,802 5.84 2.98 8 4.04

Yeast Protein Interactions 2,018 2,930 2.90 5.61 14 714

Source: Table 3.2: Barabasi
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Small World Property: Facebook
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For Facebook,
N = 7*10° users

<k>= 1000
9
(d)= |n7><|30 398
In(107)

Based on the actual
Facebook connections,
<d>=4.74



Clustering Coefficient

The local clustering coefficient Ci captures the density of
links in node I's immediate neighborhood.

— G, = 0 implies there are no links between i’'s neighbors

— G, =1 implies that each of node i’'s neighbors link to each other.

Let k; be the degree of node |.

Max. number of possible links between the k; neighbors of
node i are ki(ki — 1)/2.

Actual Local Clustering Coefficient of node i is the actual

number of links between the neighbors of | divided by the
maximum number of possible links between the neighbors.

If pis the probability that any two nodes in a network are
connected, then the expected number of links between the
K, neighbors of node i is: k —1)

2
Expected Local clustering C - AL) (k)
coefficient of node i: T (k =p= N

(ki 1)

k
{L)=p=




Clustering Coefficient
 Observations based on Random Network
Theory

» For fixed <k>, the larger the network, the
smaller is a node’'s expected clustering
coefficient.

— Thus, the network’s average clustering
coefficient <C> is expected to decrease as 1/N.

* The expected local clustering coefficient of a
node is independent of the node’s degree




(C) /(Y

Clustering Coefficients for
Real Networks
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Each circle corresponds to a real
network.

Directed networks were made
undirected to calculate C.

For random networks, the average
clustering coefficient decreases as
1/N. In contrast, for real networks,
<C> has only a weak dependence
on N.

Real networks have a much higher
Clustering coefficient than expected
for a random network of similar N
and L.



Clustering for Real Networks
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C(k) is measured by averaging the local clustering coefficient of all nodes
with the same degree k.
According to the Random Network theory model, C(k) is independent of the
individual node degrees. However, we find that C(k) decreases as k increases.
Nodes with fewer neighbors have larger local clustering coefficients and vice-versa



Clustering Coeff. Real Networks
Actual Random, G(n, p)

* Networks
— Prison
Friendships
Co-authorships
Math
Biology
Economy
WWW
Web links

0.31
0.15
0.09
0.19

0.11

0.0134

0.00002
0.00001
0.00002

0.002



Real Networks are not Random

Degree distribution:

— Random networks — binomial distribution, in general, and
Poisson distribution for k << N.

« Highly connected nodes (hubs) are effectively forbidden.
— Real networks: More highly connected nodes, compared to that
predicted with random model.
Connectedness:

— R?nclj\lom networks: One single giant component exists only if <k>
> In N.

— Real networks: One single giant component exists for several
networks with <k> < In N.

Average Path Length (small world property):

— For both random and real networks, the average path length
scales as log N / log <k>.

Clustering coefficient:

— Random model: Local clustering coefficient is independent of the
node’s degree and <C> depends on the system size as 1/N.

— Real networks: C decreases with node degrees and is largely
independent of the system size.



Real Networks are not Random

Except for the small world property, the properties
observed for real-world networks are not matching with
that observed for random networks.

Then why study random graph theory?

If a certain property is observed for real-world networks,
we can refer to the random graph theory and analyze
whether the property is observed by chance (like the
small world property).

If the property observed does not coincide with that of
the random networks (like the local clustering
coefficient), we need to further analyze the real-world
network for the existence of the property because it did
not just happen by chance.

Establish useful benchmarks (e.g., for component
structure, diameter, degree distribution, clustering, etc)



Simulating a Random Network
ER Model

» Let S be the set of all node pairs

« Until S gets empty

— Pick a node u randomly in the network.

* |f this node has at least one node in the set S that it is
not yet considered for a possible edge, then randomly
select a node v among these candidate nodes.

— Generate a random number r

— If the value of r <= p, the probability for an edge, then
connect the two nodes u-v.

— Else do not connect them
 Either way, remove the node pair u-v from set S



Realistic Variations of the Random
Network Model

 Introduction Model: A node has higher chances of
establishing a link with a neighbor of its neighbor (e.g., with
thedfriend of a friend) rather than with an arbitrarily selected
node.

— Operate with a probability, p-intro, the probability that a node prefers
to connect to the neighbor of a neighbor node.

« Key Observations:
— Smaller Giant Component Size for smaller p;
— Larger average shortest path length;
— Uneven node degree distribution;



Simulating a Random Network
Introduction Model

« Let S be the set of all node pairs

« Until S gets empty
— Pick a node u randomly in the network.
« If this node has at least one node in the set S that it is not yet
considered for a possible edge
— Generate a random number r-intro.

— If r-intro <= p-intro, the set of candidate nodes that are chosen for
connection are the unconnected neighbors of neighbor nodes.

— Else, the set of candidate nodes are all the unconnected nodes in
the network.

— Among the chosen candidate nodes, the node connects to a
randomly chosen node v with a probability p.

» (Generate a random number r

» |f the value of r <= p, the probability for an edge, then
connect the two nodes u-v.

» Else do not connect them
— Either way, remove the node pair u-v from set S



ER Model

— degree distribution — » e
num-nodes 100 |“_/I
100
on Siea o
Off prob-or-nums
GC size | av.deg | ASP ,_|—'_’_|_’—|_‘_‘
a4 3 4 0
0 8
. —r
Erdos-Renyi prob-link 0.03
——
introduction prob-intro 0.00
static-gen
rand-encounter num-neighbors 3
growth layout options
I
spring-length 10
redo [2yout ) |
spring-constant 0.6
calculate ASP |
repulsion-strength 22

Num Nodes = 100; p = 0.03; p-intro =0
GC Size — 94; Avg. Degree = 3; Avg. Shortest Path Length = 4



Introduction Model

Iﬁd
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prob-or-nums?

GC size | av. deg

degree distribution
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Erdos-Renyi prob-link :

introduction prob-intro :

static-gen
P —
rand-encounter num-neighbors 3
growth layout options

IS S
spring-length 10
redo layout af ||
spring-constant 0.6
calculate ASP I S—
repulsion-strength 2.2

Num Nodes = 100; p = 0.03; p-intro = 0.80

GC Size - 69; Avg. Degree = 2.96; Avg. Shortest Path Length =5



Problem Example 1
Consider a random network generated according
to the G(N, p) model where the total number of
nodes is 12 and the probability that there are
links between any two nodes is 0.20. Determine
the following:

The probability that there are exactly 60 links in the
network

The average number of links in the network
The average node degree
The standard deviation of the node degree

The average path length (distance between any two
nodes in the network)

The average local clustering coefficient for any node in
the network.

The expected local clustering coefficient for a node
that has exactly 5 neighbors.



Problem Example 1: Solution (1)

« Thereare N =12 nodes
Prob[link between any two nodes] = p =0.2

Max. possible number of links between any two nodes is
(N)(N-1)/2 = (12*11/2) = 66

(1) Prob[there are exactly 60 links in the network]
= C(66, 60) * pb0 * (1-p)(66-60)
C(66, 60) = 66!/ (60! * 6!)
= 60! *61*62*63"64*65*66 / (60!*1*2*3*4*576)
= 90858768
Prob[there are exactly 60 links in the network]
= 90858768 * (0.2)%9 * (0.8)°
=275 103



Problem Example 1: Solution (2)

. There are N = 12 nodes
. Prob[link between any two nodes] = p = 0.2

Max. possible number of links between any two nodes is (N)(N-1)/2 =
(12*11/2) = 66

(2) The average number of links in the network = p * N(N-1)/2
=0.2766 =13.2
(3) Average node degree = p*(N-1) =0.2* 11 =2.2
(4) Standard deviation of node degree =
Jp(=p)*(N -1y

= sqrt(0.2*0.8"11) = 1.33

(5) Average path length =In N/ In <k> =1In(12) / In(2.2) = 3.15
(6) Avg. Local clustering coefficient for any node in the network = p = 0.2.

(7) The expected local clustering coefficient for a node in a random
network is independent of its number of neighbors. Hence, the
answer is 0.2



Problem Example 2

Consider the evolution of a random network
according to the G(N, L) model, where the total
number of nodes is 100. Consider adding
(randomly) one link at a time to the network. The
total number of links added is sufficiently large
enough to create one single connected
component of the entire network. Determine the
following:

The critical value of the probability (of the number of

links) that a giant component emerges for the above

network and the average size of the giant component
at that value?

The minimum value of the average degree per node in
the giant component of the fully connected regime.

The maximum value for the average path length
between any two nodes in the giant component that
encompasses all the nodes in the network.



Problem Example 2: Solution (1)
« There are N =100 nodes

— The critical value of the probabillity (of the number of
links) that a giant component emerges for the above
network?  p.=1/N=1/100 = 0.01

Critical regime Ng = N23 = 10023 = 21.88

— Inthe fully connected regime, the average node
degree has to be at least InN. That is, <k> = InN.

—  Min <k> = InN = In(100) = 4.61

— The average path length is given by: InN / In<k>

— Using the minimum value of In<k> in the above
expression, we obtain the max. average path length to
be: In(100)/In(4.61) = 3.01.



Example 3: Degree Distribution Analysis

For the graph given, find whether or not the links happened by chance?
For this, do the following:

« a) Find the frequency (probability) distribution of the degree of the
vertices in the actual graph.

* Db) Find the average degree of the graph and use it as a parameter to
determine a probability distribution of the vertices in a random graph.

« ¢) Compare the probability distributions of (a) and (b) and arrive at your
conclusion for the overall question posed above.

Use a threshold value of 0.15 |[Node Degree || Degree # nodes P(k)
for the root mean square 0 2 2 2 2/7
difference between the two 1 3 3 3 3/7
Probability distributions. 2 3 4 1 1/7
3 3 5 1 1/7
0 g 2 Avg. Degree
(6) |4 5 2*2/7 + 3*3/7 + 4*1/7 +
5*1/7 =3.14
1 Example:

P(2) = exp(-3.14) * (3.14)2/ 2! = 0.2154



09 Actual graph
u
™ 0.4 -
X 0.3 - <
< 0.
0.2 -
Random
0.1 - graph
u L} ] L} ) ) L} K 9
0 1 2 3 4 5 6
When modeled K P(K)-Poisson P(K)-Actual Sq. Diff.
as 3 Poisson 2 0.21338 0.28571 0.005233
Distribution. 3 0.22333 0.42857 0.042123
. 4 0.17532 0.14286 0.001054
k)| s 0.11009 0.14286 0.001073
Pe=¢ "7 Mean Sq. Diff 0.012371

Square Root (Mean Sq. Diff)  0.11122 < 0.15

Hence, the links could be considered to have happened by chance.



