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Small-World Networks

« A small-world network is a type of graph in which most
nodes are not neighbors of one another, but most nodes
can be reached from every other by a small number of hops.

« Specifically, a small-world network is defined to be a
network where the typical distance L (the number of hops)
between two randomly chosen nodes grows proportionally
to the logarithm of the number of nodes in the network.

« Examples of Small-World Networks:

— Road maps, food chains, electric power grids, metabolite processing
networks, networks of brain neurons, voter networks, telephone call
graphs, gene regulatory networks.



Small Worlds

« Two major properties of small world networks

— High average clustering coefficient

« The neighbors of a node are connected to each other

* Nodes’ contacts in a social network tend to know each other.
— Short average shortest path length

» Shorter paths between any two nodes in the network
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Modeling Small World Networks

« The ER model for random graphs provided shorter
paths between any two nodes in the network.
However, the ER graphs have a low clustering
coefficient and triadic closures.

— ER graphs have a constant, random and independent
probability of two nodes being connected.

« The Watts and Strogatz model (WS model)
accounts for clustering while retaining the short
average path lengths of the ER model.

 The WS model interpolates between an ER graph
and a regular ring lattice.



WS Model

« Watts and Strogatz (WS) Model:
The WS model interpolates
between an ER graph and a
regular ring lattice.

— Let N be the number of nodes and
K (assumed to be even) be the
mean degree.

— Assume N >> K >> In(N) >> 1.

— There is a rewiring parameter 3 (0
<B<1).

— Initially, let there be a regular ring
lattice of N nodes, with K neighbors
(K/2 neighbors on each side).

— For every node n.=ny, n,, ..., Ny,
rewire the edge (n,, nﬁ, where i < j,
with probability B. Rewiring is done
by replacing (n;, n) with (n;, ny)
where n, is chosen uniform-
randomly among all possible nodes
that avoid self-looping and link
duplication.

B = 0 = Regular ring lattice
B =1 = Random network



Small-World Network: WS Model

The underlying lattice structure of the model produces a
locally clustered network, and the random links dramatically
reduce the average path lengths

The algorithm introduces about (BNK/2) non-lattice edges.

Average Path Length (B):

— Ring lattice L(0) = (N/2K) >> 1

— Random graph L(1) = (In N/ In K)

— For 0 < B < 1, the average path length reduces significantly even for
smaller values of .

Clustering Coefficient (B):
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— For 0 < B < 1, the clustering coefficient remains close to that of the
regular lattice for low and moderate values of 8 and falls only at
relatively high 3.

For low-moderate values of 3, we thus capture the small-world
phenomenon where the average path length falls rapidly, while the
clustering coefficient remains fairly high.




Limitations of the WS Model

« The WS model introduced the notion of random edges to infuse shorter
path lengths amidst larger clustering coefficient.

« However, the long-range edges span between any two nodes in the
network and do not mimic the edges of different lengths seen in real-
world networks (like in the US road map as in Milgram’s experiment or
airline map).

— Path lengths could not be as small as they are in real networks.

— Need some edges to nodes that are few hops away, rather than edges to
some arbitrarily chosen nodes.

— Cannot generate hubs as in scale-free networks.
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o j
shows the number of miles from the “ pre=
target area, with the distance of each - )
remove averaged over completed
and uncompleted chains. i !
P05 ";:gu ,
il T RSP Ly e
| 4305 mr.

Source: Figure 20.4: Easley and Kleinberg ~




Enhancement to the WS Model

 In addition to the re-wiring parameter 3, another parameter
called the clustering exponent (q) is introduced.

* An (u, v) edge is selected for re-wiring with a probability [3.
After being selected, we do not randomly re-wire u with a
node w. Instead, we pick a pair (u, w) for re-wiring with a
probability of [d(u, w)-9] / 2logn, where

— For optimal results, g must be the dimensionality of the network
modeled. For a ring lattice, q = 1.
— nis the number of nodes in the network.

— d(u, w) is the minimum number of hops between u and w in the
ongmal network layout (before enhancement)

« The ring lattice is a single-dimension network
« A grid is a two-dimensional network.

— To implement this enhancement in simulations, we generate a
random number between 0 to 1; the (u, w) pair ‘whose [d(u, w)-9m] /
2logn value is closest and above the random number generated is

chosen for re-wiring.
« With this re-wiring model, if routed optimally, (on average)
the # hops in the path to the target is expected to reduce by
a factor of 2 with every additional hop in the path [logn hops]





