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Small-World Networks

• A small-world network is a type of graph in which most 

nodes are not neighbors of one another, but most nodes 
can be reached from every other by a small number of hops.

• Specifically, a small-world network is defined to be a 

network where the typical distance L (the number of hops) 

between two randomly chosen nodes grows proportionally 
to the logarithm of the number of nodes in the network. 

• Examples of Small-World Networks:

– Road maps, food chains, electric power grids, metabolite processing 

networks, networks of brain neurons, voter networks, telephone call 

graphs, gene regulatory networks.



Small Worlds
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• Two major properties of small world networks
– High average clustering coefficient

• The neighbors of a node are connected to each other

• Nodes’ contacts in a social network tend to know each other.

– Short average shortest path length
• Shorter paths between any two nodes in the network
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Modeling Small World Networks
• The ER model for random graphs provided shorter 

paths between any two nodes in the network. 
However, the ER graphs have a low clustering 

coefficient and triadic closures. 

– ER graphs have a constant, random and independent 

probability of two nodes being connected.

• The Watts and Strogatz model (WS model) 
accounts for clustering while retaining the short 
average path lengths of the ER model.

• The WS model interpolates between an ER graph 
and a regular ring lattice.



WS Model • Watts and Strogatz (WS) Model: 
The WS model interpolates 
between an ER graph and a 
regular ring lattice.
– Let N be the number of nodes and 

K (assumed to be even) be the 
mean degree.

– Assume N >> K >> ln(N) >> 1.

– There is a rewiring parameter β (0 
≤ β ≤ 1).

– Initially, let there be a regular ring 
lattice of N nodes, with K neighbors 
(K/2 neighbors on each side).

– For every node ni = n0, n1, …, nN-1, 
rewire the edge (ni, nj), where i < j, 
with probability β. Rewiring is done 
by replacing (ni, nj) with (ni, nk) 
where nk is chosen uniform-
randomly among all possible nodes 
that avoid self-looping and link 
duplication.

β = 0 ���� Regular ring lattice
β = 1 ���� Random network



Small-World Network: WS Model
• The underlying lattice structure of the model produces a 

locally clustered network, and the random links dramatically 
reduce the average path lengths 

• The algorithm introduces about (βNK/2) non-lattice edges.

• Average Path Length (β):
– Ring lattice L(0) = (N/2K) >> 1

– Random graph L(1) = (ln N / ln K)

– For 0 < β < 1, the average path length reduces significantly even for 
smaller values of β. 

• Clustering Coefficient (β):

– For 0 < β < 1, the clustering coefficient remains close to that of the 
regular lattice for low and moderate values of β and falls only at 
relatively high β.

• For low-moderate values of β, we thus capture the small-world 
phenomenon where the average path length falls rapidly, while the 
clustering coefficient remains fairly high.
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Limitations of the WS Model
• The WS model introduced the notion of random edges to infuse shorter 

path lengths amidst larger clustering coefficient. 

• However, the long-range edges span between any two nodes in the 
network and do not mimic the edges of different lengths seen in real-
world networks (like in the US road map as in Milgram’s experiment or 
airline map).
– Path lengths could not be as small as they are in real networks.

– Need some edges to nodes that are few hops away, rather than edges to 
some arbitrarily chosen nodes.

– Cannot generate hubs as in scale-free networks.

Source: Figure 20.4: Easley and Kleinberg



Enhancement to the WS Model
• In addition to the re-wiring parameter β, another parameter 

called the clustering exponent (q) is introduced.

• An (u, v) edge is selected for re-wiring with a probability β. 
After being selected, we do not randomly re-wire u with a 
node w. Instead, we pick a pair (u, w) for re-wiring with a 
probability of [d(u, w)-q] / 2logn, where 
– For optimal results, q must be the dimensionality of the network 

modeled. For a ring lattice, q = 1.

– n is the number of nodes in the network.

– d(u, w) is the minimum number of hops between u and w in the 
original network layout (before enhancement)

• The ring lattice is a single-dimension network

• A grid is a two-dimensional network. 

– To implement this enhancement in simulations, we generate a 
random number between 0 to 1; the (u, w) pair whose [d(u, w)-dim] / 
2logn value is closest and above the random number generated is 
chosen for re-wiring.

• With this re-wiring model, if routed optimally, (on average) 
the # hops in the path to the target is expected to reduce by 
a factor of 2 with every additional hop in the path [logn hops] 




