
Module 3
Greedy Strategy

Dr. Natarajan Meghanathan
Professor of Computer Science

Jackson State University
Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Introduction to Greedy Technique
• Main Idea: In each step, choose the best alternative available in the

hope that a sequence of locally optimal choices will yield a (globally)
optimal solution to the entire problem.

• Example 1: Decimal to binary representation (objective: minimal
number of 1s in the binary representation): Technique – Choose the
largest exponent of 2 that is less than or equal to the unaccounted
portion of the decimal integer.

1248163264

To represent 75: 1 0 0 1 0 1 1

• Example 2: Coin Denomination in US – Quarter (25 cents), Dime (10
cents), Nickel (5 cents) and Penny (1 cent).

• Objective: Find the minimum number of coins for a change

• Strategy: Choose the coin with the largest denomination that is less
than or equal to the unaccounted portion of the change.

• For example, to find a change for 48, we would choose 1 quarter, 2
dimes and 3 pennies. The optimal solution is thus 6 coins and there
cannot be anything less than 6 coins for US coin denominations.

Greedy Technique: Be careful!!!
• Greedy technique (though may appear to be

computationally simple) cannot always guarantee to yield
the optimal solution. It may end up only as an approximate
solution to an optimization problem.

• For example, consider a more generic coin denomination
scenario where the coins are valued 25, 10 and 1. To make
a change for 30, we would end up using 6 coins (1 coin of
value 25 and 5 coins of value 1 each) following the greedy
technique. On the other hand, if we had used a dynamic
programming algorithm for this generic version, we would
have end up with 3 coins, each of value 10.

Fractional Knapsack Problem
(Greedy Algorithm): Example 1

• Knapsack weight is 6lb.
• Item 1 2 3 4 5
• Value, $ 25 20 15 40 50
• Weight, lb 3 2 1 4 5

• Value/Weight 8.3 10 15 10 10
• Greedy Strategy: Pick the items in the decreasing order of the

Value/Weight.
• Break the tie among the items the same Value/Weight by picking the

item with the lowest Item index
• An optimal solution would be:
• Item 3 (1 lb), Item 2 (2 lb), and 3 lbs of Item 4.
• The maximum total Value of the items would be: $65
• Item 3 ($15), Item 2 ($20) and Item 4((3/4)*40 = $30)

• Dynamic Programming: If the items cannot be divided, and we
have to pick only either the full item or just leave it, then the problem
is referred to as an Integer (a.k.a. 0-1) Knapsack problem, and we
will look at it in the module on Dynamic Programming.

Fractional Knapsack Problem
(Greedy Algorithm): Example 2

Knapsack weight = 5 lb.
Item 1 2 3 4
Value, $ 12 10 20 15
Weight, lb 2 1 3 2

Solution: Compute the Value/Weight for each item
Item 1 2 3 4
Value/Weight 6 10 6.67 7.5

Re-ordering the items according to the decreasing order of Value/Weight (break the tie by
picking the item with the lowest Index)

Item 2 4 3 1
Value/Weight 10 7.5 6.67 6
Value, $ 10 15 20 12
Weight, lb 1 2 3 2
Weight collected 1 2 2

Items collected: Item 2 (1 lb, $10); Item 4 (2 lb, $15); Item 3 (2 lb, (2/3)*20 = $13.3);
Total Value = $38.3

Variable Length Prefix Encoding
• Encoding Problem: We want to encode a text that comprises of

symbols from some n-symbol alphabet by assigning each symbol a
sequence of bits called the codeword.

• If we assign bit sequences of the same length to each symbol, it is
referred to as fixed-length encoding, we would need log2n bits per
symbol of the alphabet and this is also the average # bits per symbol.
– The 8-bit ASCII code assigns each of the 256 symbols a unique 8-bit binary

code (whose integer values range from 0 to 255).
– However, note that not all of these 256 symbols appear with the same

frequency.

• Motivation for Variable Code Assignment: If we can come up with a
code assignment such that symbols are assigned a bit sequence that is
inversely related to the frequency of their occurrence (i.e., symbols that
occur more frequently are given a shorter bit sequence and symbols
that occur less frequently are given a longer bit sequence), then we
could reduce the average number of bits per symbol.

• Motivation for Prefix-free Code: However, care should be taken such
that if a given sequence of bits encoding a text is scanned (say from left
to right), we should be able to clearly decode each symbol. In other
words, we should be able to tell how many bits of an encoded text
represent the ith symbol in the text?

Huffman Codes: Prefix-free Coding
• Prefix-free Code: In a prefix-free code, no codeword is a prefix of a

code of another symbol. With a prefix-free code based encoding, we
can simply scan a bit string until we get the first group of bits that is a
codeword for some symbol, replace these bits by this symbol, and
repeat this operation until the bit string’s end is reached.

• Huffman Coding:

– Associate the alphabet’s symbols with leaves of a binary tree in
which all the left edges are labeled by 0 and all the right edges are
labeled by 1.

– The codeword of a symbol can be obtained by recording the labels
on the simple path (a path without any cycle) from the root to the
symbol’s leaf.

• Proof of correctness: The binary codes are assigned based on a
simple path traversed from the root to a leaf node representing the
symbol. Since there cannot be a simple path from the root to a leaf
node that leads to another leaf node (then we have to trace back some
intermediate node – meaning a cycle). Hence, Huffman codes are prefix
codes.

Huffman Algorithm
• Assumptions: The frequencies of symbol occurrence are independent

and are known in advance.

• Optimality: Given the above assumption, Huffman’s encoding yields a
minimum-length encoding (i.e., the average number of bits per symbol
is the minimum). This property of Huffman’s encoding has lead to its
use one of the most important file-compression methods.

– Symbols that occur at a high-frequency have a smaller number of bits in the
binary code, compared to symbols that occur at a low-frequency.

• Step 1: Initialize n one-node trees (one node for each symbol) and label
them with the symbols of the given alphabet. Record the frequency of
each symbol in its tree’s root to indicate the tree’s weight.

• Step 2: Repeat the following operation until a single tree is obtained:

– Find two trees with the smallest weight (ties can be broken
arbitrarily).

– Make them the left and right sub trees of a new tree and record the
sum of their weights in the root of the new tree as its weight.

Huffman Algorithm and Coding: Example

• Consider the five-symbol alphabet {A, B, C, D, -} with the
following occurrence frequencies in a text made up of
these symbols.

– Construct a Huffman tree for this alphabet.

– Determine the average number of bits per symbol.

– Determine the compression ratio achieved compared to fixed-
length encoding.

Initial

Iteration - 1

Break any tie by preferring to include the
node with a smaller height to the left
If the height is not distinguishable, use
Node ID, if possible; otherwise, break the
ties arbitrarily.

Huffman Algorithm and Coding: Example

Iteration - 2 Iteration - 3

Iteration – 4 (Final)

Avg. # bits per symbol
= 2*0.35 + 3*0.1 + 2*0.2 + 2*0.2 + 3*0.15
= 2.25 bits per symbol.
A fixed-length encoding of 5 symbols would
require = 3 symbols. Hence, the
compression ratio is 1 – (2.25/3) = 25%.

 5log2

A 0.4
B 0.2
C 0.25
D 0.1
- 0.05

-
0.05

A
0.4

D
0.1

B
0.2

C
0.25

Initial

Iteration 1

-
0.05

D
0.1

0.15

A
0.4

B
0.2

C
0.25

Iteration 2

-
0.05

D
0.1

0.15

A
0.4

B
0.2

C
0.25

0.35

Huffman Coding: Example 2

Iteration 3

-
0.05

D
0.1

0.15

A
0.4

B
0.2

C
0.25

0.35

0.6

Iteration 4

-
0.05

D
0.1

0.15

A
0.4

B
0.2

C
0.25

0.35

0.6

1.0

-
0.05

D
0.1

0.15

A
0.4

B
0.2

C
0.25

0.35

0.6

1.0

Huffman Tree

0

1

0

1

0

1

0 1

A 0.4 0
B 0.2 111
C 0.25 10
D 0.1 1101
- 0.05 1100

Huffman Codes

Average # bits per symbol (generic)
= (0.4)*(1) + (0.2)*(3) + (0.25)*(2) + (0.1)*(4)

+ (0.05)*(4)
= 0.4 + 0.6 + 0.5 + 0.4 + 0.2 = 2.1 bits/symbol

Generic Compression Ratio
1 – (2.1/3) = 0.3 = 30%
where 3 is the # bits/symbol under fixed
encoding scheme.

A 0.4 0
B 0.2 111
C 0.25 10
D 0.1 1101
- 0.05 1100

Huffman Codes

Specific Character/Symbol Sequence: A A B C A C D – A B

0 0 111 10 0 10 1101 1100 0 111

Total # bits in the above sequence = 22 bits
Average # bits / symbol in the above sequence = 22 / 10 = 2.2 bits/symbol
where 10 is the number of symbols in the above sequence

If we had used fixed-length encoding, we would have used:
3 bits/symbol * 10 symbols = 30 bits

Compression ratio = 1 – (22/30) = 26.7%

Activities Selection Problem
• Problem: Given a set of activities with a start time and

finish time, we want to select the largest number of non-
overlapping activities.

• Idea: Sort the activities in the increasing order of their
finish time.
– Select the activity ai with the smallest finish time. Remove from

the list of activities anything that overlaps with ai .

– Repeat the above procedure after ai finishes.

• Time-Complexity: The pre-processing step of sorting the
activities in the increasing order of finish times is the
most dominating task. We can sort ‘n’ activities in
Θ(nlogn) time.

Activity 1 3 4 2 5 6 7 8 10 9

Start 1 2 4 1 5 8 9 11 13 12

Finish 3 5 7 8 9 10 11 14 16 17

Sorted List

Activity 1 2 3 4 5 6 7 8 9 10

Start 1 1 2 4 5 8 9 11 12 13

Finish 3 8 5 7 9 10 11 14 17 16

Given List

1 3

a1

4 7

a4

Activity 1 3 4 2 5 6 7 8 10 9

Start 1 2 4 1 5 8 9 11 13 12

Finish 3 5 7 8 9 10 11 14 16 17

Sorted List (Selected/ Discarded Activities)

8 10

a6

11 14

a8
Optimal Solution = {a1, a4, a6, a8}

• Unlike a disk, a tape is read sequentially.

• If a tape has a sequence of files and a particular file is to
be read, then all the preceding files have to be scanned
before reaching the target file.

• If each file is equally likely to be accessed, an optimal
strategy to minimize the average cost for searching a
random file would be to store the files in the increasing
order of size.

• If each file has a certain frequency of access, then the
optimal strategy to minimize the average cost for
searching a random file would be to store the files in the
increasing order of size/frequency.

Designing a Tape for File Read

Designing a Tape for File Read: Ex 1

File Index 1 2 3 4 5 6 7 8
File Size 10 15 5 20 45 12 25 18
Acc. Frequency 5 10 8 7 9 6 12 13
Size/Frequency 2 1.5 0.625 2.857 5 2 2.083 1.385

Sorting based on the increasing order of File Index only

File Index 1 2 3 4 5 6 7 8
File Size 10 15 5 20 45 12 25 18
Acc. Frequency 5 10 8 7 9 6 12 13

Cost to Access 10 25 30 50 95 107 132 150
Cost*Freq 50 250 240 350 855 642 1584 1950

Average cost to access any file = (50 + 250 +240 + 350 + 855 + 642 + 1584 + 1950)
--

(5 + 10 + 8 + 7 + 9 + 6 + 12 + 13)
= 84.58

Designing a Tape for File Read: Ex 1

File Index 1 2 3 4 5 6 7 8
File Size 10 15 5 20 45 12 25 18
Acc. Frequency 5 10 8 7 9 6 12 13
Size/Frequency 2 1.5 0.625 2.857 5 2 2.083 1.385

Sorting based on the increasing order of File Size only

File Index 3 1 6 2 8 4 7 5
File Size 5 10 12 15 18 20 25 45
Acc. Freq. 8 5 6 10 13 7 12 9

Cost to Access 5 15 27 42 60 80 105 150
Cost*Freq 40 75 162 420 780 560 1260 1350

Average cost to access any file = (40 + 75 + 162 + 420 + 780 + 560 + 1260 + 1350)
--

(8 + 5 + 6 + 10 + 13 + 7 + 12 + 9)
= 66.38

Designing a Tape for File Read: Ex 1

File Index 1 2 3 4 5 6 7 8
File Size 10 15 5 20 45 12 25 18
Acc. Frequency 5 10 8 7 9 6 12 13
Size/Frequency 2 1.5 0.625 2.857 5 2 2.083 1.385

Sorting based on the increasing order of File Size / Access Frequency

File Index 3 8 2 1 6 7 4 5
File Size 5 18 15 10 12 25 20 45
Acc. Freq. 8 13 10 5 6 12 7 9
Size/Frequency 0.625 1.385 1.5 2 2 2.083 2.857 5

Cost to Access 5 23 38 48 60 85 105 150
Cost*Freq 40 299 380 240 360 1020 735 1350

Average cost to access any file = (40 + 299 + 380 + 240 + 360 + 1020 + 735 + 1350)
--

(8 + 13 + 10 + 5 + 6 +12 +7 + 9)
= 63.2

