CSC 323 Algorithm Design and Analysis

Spring 2016 Instructor: Dr. Natarajan Meghanathan

Project 3: Computing h-index using Sorting and Max-Min Formulation Due: March 3, 2016: 1 PM

The h-index is considered as a measure of both the productivity of a researcher as well as the impact of his/her publications in the research community. A researcher is said to have an h-index of 'h' if s/he has published at least 'h' papers each of which have received at least 'h' citations.

Given an array A of size 'n' (let the number of papers published by a researcher be 'n') whose entries indicate the number of citations received by each paper, your task is to find the h-index of the researcher.

Steps suggested for implementation

Step 1: Generate an array of *n* integers (ranging from 1 to 100) using a random number generator (see the template in Project 1 for how to generate and use random number generator in Java).

Step 2: Sort the input array A using any sorting algorithm of your choice. <u>You need to sort the array in</u> the reverse order (i.e., non-increasing order). You could use a modified version of the insertion sort or merge sort algorithms that we went over in Module 2 to sort an array in reverse order. You could also use a modified version of the simple bubble sort algorithm to sort an array in reverse order (pseudo code given below). Let the sorted array be denoted A_s .

 $\label{eq:pseudo code of Bubble sort algorithm to sort an array in reverse order} \\ for (int j = 0; j \le n-2; j++) \\ for (int k = 0; k \le n - j - 2; k++) \\ if (A[k] < A[k+1]) \\ \\ Swap(A[k], A[k+1]) \end{cases}$

Step 3: Run the sorted array A_s through the following Max-Min formulation test and find the index *i* (*i* runs from 1 to '*n*') that satisfies the formulation: $Max \{Min(A_s[i], i)\}$

Example to Illustrate the Computation of the h-index

Let an array of 10 integers be: $A = \{10, 4, 5, 21, 8, 9, 15, 17, 7, 2\}$ The reverse sorted array $A_s = \{21, 17, 15, 10, 9, 8, 7, 5, 4, 2\}$

Index, i	$A_{s}[i]$	$Min(A_{s}[i], i)$	Max
1	21	1	1
2	17	2	2
3	15	3	3
4	10	4	4
5	9	5	5
6	8	6	6
7	7	7	7
8	5	5	7
9	4	4	7
10	2	2	7

h-index = 7

Submission

(1) Submit a hardcopy of your code for generating the array of random integers, sorting and identifying the h-index through the Max-Min formulation steps. Also include a screenshot of the results obtained for an array of 15 random integers.

(2) Submit a desktop-recorded video of your explanation of the code.

Demo and Reporting: For demo and reporting purposes, each of you should generate an array of 15 integers (ranging from 1 to 100) using a random number generator (see the template in Project 1 for how to generate and use random number generator in Java).