CSC 323 Algorithm Design and Analysis

Spring 2016
Instructor: Dr. Natarajan Meghanathan

Project 3: Computing h-index using Sorting and Max-Min Formulation
 Due: March 3, 2016: 1 PM

The h-index is considered as a measure of both the productivity of a researcher as well as the impact of his/her publications in the research community. A researcher is said to have an h-index of ' h ' if s / he has published at least ' h ' papers each of which have received at least ' h ' citations.

Given an array A of size ' n ' (let the number of papers published by a researcher be ' n ') whose entries indicate the number of citations received by each paper, your task is to find the h-index of the researcher.

Steps suggested for implementation

Step 1: Generate an array of n integers (ranging from 1 to 100) using a random number generator (see the template in Project 1 for how to generate and use random number generator in Java).

Step 2: Sort the input array A using any sorting algorithm of your choice. You need to sort the array in the reverse order (i.e., non-increasing order). You could use a modified version of the insertion sort or merge sort algorithms that we went over in Module 2 to sort an array in reverse order. You could also use a modified version of the simple bubble sort algorithm to sort an array in reverse order (pseudo code given below). Let the sorted array be denoted A_{s}.

```
Pseudo code of Bubble sort algorithm to sort an array in reverse order
```

```
for (int j = 0; j \(\leq n-2 ; j++\) )
```

for (int j = 0; j $\leq n-2 ; j++$)
for (int $k=0 ; k \leq n-j-2 ; k++$)
for (int $k=0 ; k \leq n-j-2 ; k++$)
if (A[k] < A[k+1])
if (A[k] < A[k+1])
Swap(A[k], $A[k+1])$

```
Swap(A[k], \(A[k+1])\)
```

Step 3: Run the sorted array A_{s} through the following Max-Min formulation test and find the index $i(i$ runs from 1 to ' n ') that satisfies the formulation: $\operatorname{Max}\left\{\operatorname{Min}\left(A_{S}[i], i\right)\right\}$

Example to Illustrate the Computation of the h-index

Let an array of 10 integers be: $\mathrm{A}=\{10,4,5,21,8,9,15,17,7,2\}$
The reverse sorted array $\mathrm{A}_{\mathrm{S}}=\{21,17,15,10,9,8,7,5,4,2\}$

Index, i	$\mathrm{~A}_{S}[i]$	$\operatorname{Min}\left(\mathrm{A}_{\mathrm{S}}[i], i\right)$	Max
1	21	1	1
2	17	2	2
3	15	3	3
4	10	4	4
5	9	5	5
6	8	6	6
7	7	7	7
8	5	5	7
9	4	4	7
10	2	2	7

[^0]
Submission

(1) Submit a hardcopy of your code for generating the array of random integers, sorting and identifying the h-index through the Max-Min formulation steps. Also include a screenshot of the results obtained for an array of 15 random integers.
(2) Submit a desktop-recorded video of your explanation of the code.

Demo and Reporting: For demo and reporting purposes, each of you should generate an array of 15 integers (ranging from 1 to 100) using a random number generator (see the template in Project 1 for how to generate and use random number generator in Java).

[^0]: h-index = 7

