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Module Topics

• 5.1   Traversal (DFS, BFS)
– Brute Force

• 5.2   Topological Sorting of a DAG
– Decrease and Conquer

• 5.3 Single-Source Shortest Path Algorithms 
(Dijkstra and Bellman-Ford)
– Greedy

• 5.4   Minimum Spanning Trees (Prim’s, 
Kruskal’s)
– Greedy

• 5.5   All Pairs Shortest Path Algorithm (Floyd’s)
– Dynamic Programming



5.1   Graph Traversal Algorithms



Depth First Search (DFS)
• Visits graph’s vertices (also called nodes) by always moving away 

from last visited vertex to unvisited one, backtracks if there is no 
adjacent unvisited vertex.

• Break any tie to visit an adjacent vertex, by visiting the vertex with the 
lowest ID or the lowest alphabet (label).

• Uses a stack

– a vertex is pushed onto the stack when it’s visited for the first time

–a vertex is popped off the stack when it becomes a dead end, i.e., 
when there is no adjacent unvisited vertex

• “Redraws” graph in tree-like fashion (with tree edges and
back edges for undirected graph):

– Whenever a new unvisited vertex is reached for the first time, it is attached 
as a child to the vertex from which it is being reached. Such an edge is 
called a tree edge.

– While exploring the neighbors of a vertex, it the algorithm encounters an 
edge leading to a previously visited vertex other than its immediate 
predecessor (i.e., its parent in the tree), such an edge is called a back edge.

– The leaf nodes have no children; the root node and other intermediate 
nodes have one more child.



Pseudo Code of DFS



Example 1: DFS

Source: Figure 3.10: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms, 

2012.



DFS
• DFS can be implemented with graphs represented as:

–adjacency matrices: Θ(V2); adjacency lists: Θ(|V|+|E|)

• Yields two distinct ordering of vertices:
–order in which vertices are first encountered (pushed onto stack)

–order in which vertices become dead-ends (popped off stack)

• Applications:
–checking connectivity, finding connected components

• The set of vertices that we can visit through DFS, starting from a 
particular vertex in the set constitute a connected component.

• If a graph has only one connected component, we need to run DFS 
only once and it returns a tree; otherwise, the graph has more than 
one connected component and we determine a forest – comprising of 
trees for each component.

–checking for cycles (a DFS run on an undirected graph returns a 
back edge)

–finding articulation points and bi-connected components
• An articulation point of a connected component is a vertex that when 

removed disconnects the component. 

• A graph is said to have bi-connected components if none of its 
components have an articulation point.



Example 2: DFS
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Back Edge

• Notes on Articulation Point
– The root of a DFS tree is an articulation point if it has more than 

one child connected through a tree edge. (In the above DFS tree,
the root node ‘a’ is an articulation point)

– The leaf nodes of a DFS tree are not articulation points.

– Any other internal vertex v in the DFS tree, if it has one or more 
sub trees rooted at a child (at least one child node) of v that does 
NOT have an edge which climbs ’higher ’ than v (through a back 
edge), then v is an articulation point. 



DFS: Articulation Points

• In the above graph, vertex ‘a’ is the only articulation point.

• Vertices ‘e’ and ‘f’ are leaf nodes.

• Vertices ‘b’ and ‘c’ are candidates for articulation points. But, they cannot 
become articulation point, because there is a back edge from the only sub 
tree rooted at their child nodes (‘d’ and ‘g’ respectively) that have a back edge 
to ‘a’.

• By the same argument, vertices ‘d’ and ‘g’ are not articulation points, because 
they have only child node (f and e respectively); each of these child nodes 
are connected to a higher level vertex (b and a respectively) through a back 
edge. 
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Example 3: DFS and Articulation Points
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• In the above new graph 
(different from the 
previous example: note 
edge a – e and b – f are 
added back; but a – d is 
missing):
– Vertices ‘a’ and ‘b’ are 

articulation points

– Vertex ‘c’ is not an 
articulation point
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Example 4: DFS and Articulation Points
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• In the above new graph (different from the previous example: note edges b –
f, a – d and a – e are missing), vertices ‘a’, ‘b’, ‘c’, ‘d’ and ‘g’ are articulation 
points, because:
– Vertex ‘a’ is the root node of the DFS tree and it has more than one child

node
– Vertex ‘b’ is an intermediate node; it has one sub tree rooted at its child node 

(d) that does not have any node, including ‘d’, to climb higher than ‘b’. So, 
vertex ‘b’ is an articulation point.

– Vertex ‘c’ is also an articulation point, by the same argument as above – this 
time, applied to the sub tree rooted at child node ‘g’.

– Vertices ‘d’ and ‘g’ are articulation points; because, they have one child node 
(‘f’ and ‘e’ respectively) that are not connected to any other vertex higher than 
‘d’ and ‘g’ respectively. 



Example 5: DFS and Articulation Points
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1) Root Vertex ‘a’ has more than one child; so, it is an articulation point.
2) Vertices ‘d’, ‘g’ and ‘j’ are leaf nodes
3) Vertex ‘b’ is not an articulation point because
the only sub tree rooted at its child node ‘c’ has
a back edge to a vertex higher than ‘b’ (in this
case to the root vertex ‘a’)
4) Vertex ‘c’ is an articulation point. One of its
child vertex ‘d’ does not have any sub tree 
rooted at it. The other vertex ‘e’ has a sub 
tree rooted at it and this sub tree has no
back edge higher up than ‘c’. 
5) By argument (4), it follows that vertex ‘e’
is not an articulation point because the sub tree
rooted at its child node ‘f’ has a back edge higher
up than ‘e’ (to vertex ‘c’); 
6) Vertices ‘f’ and ‘k’ are not articulation points because
they have only one child node each and the child nodes
are connected to a vertex higher above ‘f’ and ‘k’.
7) Vertex ‘i’ is not an articulation point because the only 
sub tree rooted at its child has a back edge higher up (to vertices ‘a’ and ‘h’). 
8) Vertex ‘h’ is not an articulation point because the only sub tree rooted at ‘h’ has a 
back edge higher up (to the root vertex ‘a’).

Identification of the Articulation Points 
of the Graph in Example 5
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DFS: Edge Terminology for directed 

graphs
a b

c

d

e
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Tree edge

Back edge

Forward edge

Cross edge

Tree edge – an edge from a parent node to a child node in the tree

Back edge – an edge from a vertex to its ancestor node in the tree

Forward edge – an edge from an ancestor node to its descendant node in the tree. 

The two nodes do not have a parent-child relationship. The back and forward 

edges are in a single component (the DFS tree). 
Cross edge – an edge between two different components of the DFS Forest. 
So, basically an edge other than a tree edge, back edge and forward edge

1, 3 2, 2

3, 1

4, 5 

5, 4



Directed Acyclic Graphs (DAG)
• A directed graph is a graph with directed edges between 

its vertices (e.g., u � v).

• A DAG is a directed graph (digraph) without cycles.

– A DAG is encountered for many applications that 

involve pre-requisite restricted tasks (e.g., course 

scheduling)

a b

c d

a b

c d

a a 

DAGDAG

not a not a 

DAGDAG

To test whether a directed graph is a DAG, run DFS on the directed graph. If a

back edge is not encountered, then the directed graph is a DAG.



DFS on a DAG
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Topological Sort
• Topological sort is an ordering of the vertices of a directed 

acyclic graph (DAG) – a directed graph (a.k.a. digraph) 
without cycles.
– This implies if there is an edge u� v in the digraph, then u should 

be listed ahead of v in the topological sort: … u … v …

– Being a DAG is the necessary and sufficient condition to be able to 
do a topological sorting for a digraph. 

– Proof for Necessary Condition: If a digraph is not a DAG and 
lets say it has a topological sorting. Consider a cycle (in the 
digraph) comprising of vertices u1, u2, u3, …, uk, u1. In other 
words, there is an edge from uk to u1 and there is a directed path 
to uk from u1. So, it is not possible to decide whether u1 should be 
ahead of uk or after uk in the topological sorting of the vertices of 
the digraph. Hence, there cannot be a topological sorting of the
vertices of a digraph, if the digraph has even one cycle. To be able 
to topologically sort the vertices of a digraph, the digraph has
to first of all be a DAG. [Necessary Condition]. We will next 
prove that this is also the sufficient condition.



Topological Sort
Proof for Sufficient Condition

• After running DFS on the digraph (also a DAG), the 
topological sorting is the listing of the vertices of the DAG in
the reverse order according to which they are removed 
from the stack. 
– Consider an edge u � v in the digraph (DAG). 

– If there exists, an ordering that lists v ahead of u, then it implies that 
u was popped out from the stack ahead of v. That is, vertex v has 
been already added to the stack and we were to able to visit vertex 
u by exploring a path leading from v to u. This means the edge u �

v has to be a back edge. This implies, the digraph has a cycle and 
is not a DAG. We had earlier proved that if a digraph has a cycle, 
we cannot generate a topological sort of its vertices. 

– For an edge u->v, if v is listed ahead of u ==> the graph is not a 
DAG  (Note that a ==> b, then !b ==> !a)

– If the graph is a DAG ==> u should be listed ahead of v for every 
edge u � v.

– Hence, it is sufficient for a directed to be DAG to generate a 
topological sort for it.



Breadth First Search (BFS)
• BFS is a graph traversal algorithm (like DFS); but, BFS proceeds in a 

concentric breadth-wise manner (not depth wise) by first visiting all 
the vertices that are adjacent to a starting vertex, then all unvisited 
vertices that are two edges apart from it, and so on.
– The above traversal strategy of BFS makes it ideal for determining 

minimum-edge (i.e., minimum-hop paths) on graphs.

• If the underling graph is connected, then all the vertices of the graph 
should have been visited when BFS is started from a randomly 
chosen vertex. 
– If there still remains unvisited vertices, the graph is not connected and the 

algorithm has to restarted on an arbitrary vertex of another connected 
component of the graph.

• BFS is typically implemented using a FIFO-queue (not a LIFO-stack 
like that of DFS).
– The queue is initialized with the traversal’s starting vertex, which is marked 

as visited. On each iteration, BFS identifies all unvisited vertices that are 
adjacent to the front vertex, marks them as visited, and adds them to the 
queue; after that, the front vertex is removed from the queue.

• When a vertex is visited for the first time, the corresponding edge that 
facilitated this visit is called the tree edge. When a vertex that is 
already visited is re-visited through a different edge, the 
corresponding edge is called a cross edge. 



Pseudo Code of BFS

BFS can be implemented with graphs represented as:
adjacency matrices: Θ(V2); adjacency lists: Θ(|V|+|E|)



Example for BFS

Source: Figure 3.11: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms, 

2012.
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Use of BFS to find Minimum Edge Paths

Source: Figure 3.12: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms, 

2012.

Note: DFS cannot be used to find minimum edge paths, because DFS is not guaranteed to 
visit all the one-hop neighbors of a vertex, before visiting its two-hop neighbors and so on.

For example, if DFS is executed starting from vertex ‘a’ on the above graph, then vertex ‘e’
would be visited through the path a – b – c – d – h – g – f – e and not through the 
direct path a – e, available in the graph.
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Comparison of DFS and BFS

Source: Table 3.1: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms, 

2012.

With the levels of a tree, referenced starting from the root node, 
A back edge in a DFS tree could connect vertices at different levels; whereas, a cross edge
in a BFS tree always connects vertices that are either at the same level or at adjacent levels.

There is always only a unique ordering of the vertices, according to BFS, in the order they 
are visited (added and removed from the queue in the same order). 
On the other hand, with DFS – vertices could be ordered in the order they are added to the 
Stack, typically different from the order in which they are removed from the stack.



Bi-Partite (2-Colorable) Graphs 
• A graph is said to be bi-partite or 2-colorable if the vertices of the 

graph can be colored in two colors such that every edge has its 
vertices in different colors. 

• In other words, we can partition the set of vertices of a graph into two 
disjoint sets such that there is no edge between vertices in the same 
set. All the edges in the graph are between vertices from the two sets.

• We can check for the 2-colorable property of a graph by running a 
DFS or BFS
– With BFS, if there are no cross-edges between vertices at the same level, 

then the graph is 2-colorable.

– With DFS, if there are no back edges between vertices that are both at odd 
levels or both at even levels, then the graph is 2-colorable.

• We will use BFS as the algorithm to check for the 2-colorability of a 
graph.
– The level of the root is 0 (consider 0 to be even).

– The level of a child node is 1 more than the level of the parent node from 
which it was visited through a tree edge.

– If the level of a node is even, then color the vertex in yellow.

– If the level of a node is odd, then color the vertex in green.



Bi-Partite (2-Colorable) Graphs 

a b c

d e f

a b c

d e f

0 1

1

2

2 3

a b c

d e f

Example for a 2-Colorable Graph
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b and e; d and e – all the three vertices are 

in the same level.



Examples: 2-Colorability of Graphs
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The above graph is 2-Colorable

as there are no cross edges

between vertices at the same level



Dijkstra’s Shortest Path Algorithm



Shortest Path (Min. Wt. Path) Problem

• Path p of length k from a vertex s to a vertex d is a 
sequence (v0, v1, v2, …, vk) of vertices such that v0 = s
and vk = d and  (vi-1, vi) Є E, for i =1, 2,…, k

• Weight of a path p = (v0, v1, v2, …, vk) is

• The weight of a shortest path from s to d is given by 

δ(s, d) = min {w(p): s d if there is a path from s to d}

= ∞ otherwise           

Examples of shortest path-finding algorithms:

• Dijkstra algorithm – Θ(|E|*log|V|)

• Bellman-Ford algorithm – Θ(|E|*|V|)
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Dijkstra Algorithm
• Assumption: w (u, v) >= 0 for each edge (u, v) Є E (i.e., the edge 

weights are positive)

• Objective: Given G = (V, E, w), find the shortest weight path 

between a given source s and destination d

• Principle: Greedy strategy

• Maintain a minimum weight path estimate d [v] from s to each other 

vertex v. 

• At each step, pick the vertex that has the smallest minimum weight 

path estimate 

• Output: After running this algorithm for |V| iterations, we get the 

shortest weight path from s to all other vertices in G

• Note: Dijkstra algorithm does not work for graphs with edges (other 

than those leading from the source) with negative weights.
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Principle of Dijkstra Algorithm

0 Ws-u

Ws-v

Path from s to u

s u

W
(u

, v
)

If Ws-v > Ws-u + W(u, v) then

Ws-v = Ws-u + W(u, v) 

Predecessor (v) = u

else

Retain the current path from s to v

Principle in a nutshell

During the beginning of each iteration we 

will pick a vertex u that has the minimum 

weight path to s. We will then explore 

the neighbors of u for which we have not 

yet found a minimum weight path. We will 

try to see if by going through u, we can 

reduce the weight of path from s to v, 

where v is a neighbor of u.

v

Note: Sub-path of a shortest path is also a shortest path. For example, if

s – a – c – f – g – d is the minimum weight path from s to d, then c – f – g – d 

and a – c – f – g are the minimum weight paths from c to d and a to g respectively.

Relaxation Condition
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Dijkstra Algorithm
Begin Algorithm Dijkstra (G, s)

1     For each vertex v Є V

2           d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4     d [s] ← 0

5     S ← Φ // set of nodes for which we know the min-weight path from s

6     Q ← V // set of nodes for which we know estimate of min-weight path from s

7    While Q ≠ Φ

8 u ← EXTRACT-MIN(Q) 

9          S ← S U {u}

10         For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13             End If

14         End For

15     End While

16  End Dijkstra

∈
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Dijkstra Algorithm: Time Complexity
Begin Algorithm Dijkstra (G, s)

1     For each vertex v Є V

2           d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4     d [s] ← 0

5     S ← Φ // set of nodes for which we know the min-weight path from s

6     Q ← V // set of nodes for which we know estimate of min-weight path from s

7    While Q ≠ Φ

8 u ← EXTRACT-MIN(Q) 

9          S ← S U {u}

10         For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13             End If

14         End For

15     End While

16  End Dijkstra

∈

Θ(V) time

Θ(V) time to 

Construct a 

Min-heap

done |V| times = Θ(V) time

Each extraction takes Θ(logV) time

done Θ(E) times totally

It takes Θ(logV) time when

done once

Overall Complexity: Θ(V) + Θ(V) + Θ(VlogV) + O(ElogV)

Since |V| = O(|E|), the VlogV term is dominated by the

ElogV term. Hence, overall complexity = O(|E|*log|V|)



Dijkstra Algorithm (Example 1)
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Theorems on Shortest Paths and 
Dijsktra Algorithm

• Theorem 1: Sub path of a shortest path is also shortest.

• Proof: Lets say there is a shortest path from s to d through the vertices s –
a – b – c – d. 

• Then, the shortest path from a to c is also a – b – c. 

• If there is a path of lower weight than the weight of the path from a – b – c, 
then we could have gone from s to d through this alternate path from a to c 
of lower weight than a – b – c. 

• However, if we do that, then the weight of the path s – a – b – c – d is not 
the lowest and there exists an alternate path of lower weight. 

• This contradicts our assumption that s – a – b – c – d is the shortest (lowest 
weight) path.

• Theorem 2: When a vertex v is picked for relaxation/optimization, every 
intermediate vertex on the s…v shortest path is already optimized. 

• Proof: Let there be a path from s to v that includes a vertex x (i.e., s...x...v) 
for which we have not yet found the shortest path. From Theorem 1, 
weight(s...x) < weight(s...v). Also, the x...v path has to have edges of 
positive weight. Then, the Dijkstra's algorithm would have picked up x
ahead of v. So, the fact that we picked v as the vertex with the lowest 
weight among the remaining vertices (yet to be optimized) implies that every 
intermediate vertex on the s...v is already optimized.



Theorems on Shortest Paths and 
Dijsktra Algorithm

• Theorem 3: The weights of the vertices that are optimized are in the 
non-decreasing (i.e., typically increasing) order. 

• Proof: We want to prove that if a vertex u is optimized in an earlier 
iteration (say iteration i), then the weight of the vertex v optimized at 
a later iteration (say iteration j) is always larger than that of vertex u.

• Whenever a vertex u is optimized, we relax its neighbors and 
explore whether the weight of the shortest paths from the source to 
these neighbors could be decreased by going through u. As the 
edge weights are positive, even if we reduce the weights of the 
shortest paths to the neighbors, the weights of these paths are still 
going to be larger than the weight of the shortest path to u.

• Theorem 4: When a vertex v is picked for relaxation, we have 
optimized the vertex (i.e., found the shortest path for the vertex from 
a source vertex s). 

• Proof: Let P be the path from source s to vertex v based on whose 
weight we decide to relax the vertex. We want to prove P is the 
optimal path of minimum weight from s to v. We will prove this by 
contradiction.  



Theorems on Shortest Paths and 
Dijsktra Algorithm

• Let P’ be a path from s to v such that w(P’) < w(P)

• If that is the case, (as edge weights are positive), the weight of every 
intermediate vertex on the path P’ from s to v should be lower than 
the weight of vertex v on the path P.  

• This implies that the weight of vertex v on the path P’ should be 
lower than the weight of vertex v on the path P and vertex v would 
have been picked for relaxation based on path P’ and not path P.

• The fact that vertex v was picked for relaxation based on path P and 
not P’ indicates that there exists at least one intermediate vertex on
the path P’ that has not been yet relaxed. However, the weight of 
this intermediate vertex (even after relaxation) is going to be larger 
than that of vertex v on the path P as the vertices are only relaxed in 
the non-decreasing order of their weights. Hence, the weight of path 
P’ is going to be only larger than that of path P.



Bellman-Ford Algorithm
• Used to find single source shortest path trees on any 

graph (including those with negative weight edges).

• Starts with an estimate of 0 for the source and ∞ as 
estimates for the shortest path weights from the source 
to every other vertex; we proceed in iterations:
– In each iteration, we relax every vertex (instead of just one 

vertex, as in Dijkstra) and try to improve the estimates of the 
shortest path weights to the neighbors

– We do not target to optimize any particular vertex in an iteration; 
but since there cannot be more than V – 1 intermediate edges on 
path from the source to any vertex, we proceed for a total of 

V – 1 iterations for a graph of V vertices.

– The time complexity is Θ(VE)

– Optimization: In a particular iteration, if the estimates of the
shortest path weights does not change for even one vertex, then 
we could stop!
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Bellman-Ford Algorithm Example 2
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Minimum Spanning Trees
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Minimum Spanning Tree Problem
• Given a weighted graph, we want to determine a tree that spans all 

the vertices in the tree and the sum of the weights of all the edges in 
such a spanning tree should be minimum.

• Two algorithms:
– Prim algorithm: Θ(|E|*log|V|), 

– Kruskal Algorithm: Θ(|E|*log |E| + |V|*log|V|))

• Prim algorithm is just a variation of Dijkstra algorithm with the 
relaxation condition being
If v   Q and d [v] > w (u, v) then

d [v] ← w (u, v)

Predecessor (v) = u

End If

• Kruskal algorithm: Consider edges in the increasing order of their 
weights and include an edge in the tree, if and only if, by including 
the edge in the tree, we do not create a cycle!! 

• Note: Shortest Path trees need not always have minimum weight 
and minimum spanning trees need not always be shortest path 
trees.

On each iteration, the algorithm expands the 

current tree in a greedy manner by attaching to 

it the nearest vertex not in the tree. By the

‘nearest vertex’, we mean a vertex not in the 

tree connected to a vertex in the tree by an 

edge of the smallest weight.

∈
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Kruskal Algorithm
Begin Algorithm Kruskal (G = (V, E))

A  Φ // Initialize the set of edges to null set

for each vertex vi Є V do

Component (vi)  i

Sort the edges of E in the non-decreasing (increasing) order of weights

for each edge (vi, vj) Є E, in order by non-decreasing weight do

if (Component (vi) ≠ Component (vj) ) then

A  A U (vi, vj) 

if Component(vi) < Component(vi)  then

for each vertex vk in the same component as of vj do  

Component(vk)  Component(vi)             

else

for each vertex vk in the same component as of vi do 

Component(vk)  Component(vj )

end if

end if

end for

return A

End Algorithm Kruskal
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Kruskal Algorithm: Time Complexity
Begin Algorithm Kruskal (G = (V, E))

A  Φ // Initialize the set of edges to null set

for each vertex vi Є V do

Component (vi)  i

Sort the edges of E in the non-decreasing (increasing) order of weights

for each edge (vi, vj) Є E, in order by non-decreasing weight do

if (Component (vi) ≠ Component (vj) ) then

A  A U (vi, vj) 

if Component(vi) < Component(vi)  then

for each vertex vk in the same component as of vj do  

Component(vk)  Component(vi)             

else

for each vertex vk in the same component as of vi do 

Component(vk)  Component(vj )

end if

end if

end for

return A

End Algorithm Kruskal

Takes 

Θ(logV)

time per 

merger

Can be done in 

Θ(logV) time

V-1 mergers.

So, Θ(VlogV)

Θ(V) time

Θ(ElogE)

time

Overall time complexity:

Θ(V) + Θ(ElogE) + Θ(VlogV) = Θ(VlogV + ElogE)

Components are kept track of using

a Disjoint-set data structure
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Kruskal Algorithm (Example 1)
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Kruskal Algorithm 

Example 2
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Proof of Correctness: Kruskal’s Algorithm
• Let T be the spanning tree generated by Kruskal’s algorithm for a graph 

G. Let T’ be a minimum spanning tree for G. We need to show that both 
T and T’ have the same weight.

• Assume that wt( T’ ) < wt(T).

• Hence, there should be an edge e in T that is not in T’. Because, if 
every edge of T is in T’, then T = T’ and wt(T) = wt( T’ ).

• Pick up the edge e ε T and e ε T’. Include e in T’. This would create a 
cycle among the edges in T’. At least one edge in this cycle would not 
be part of T; because if all the edges in this cycle are in T, then T would 
have a cycle.

• Pick up the edge e’ that is in this cycle and not in T. 

• Note that wt( e’ ) < wt(e); because, if this was the case then the 
Kruskal’s algorithm would have picked e’ ahead of e. So, wt( e’ ) ≥
wt(e). This implies that we could remove e’ from the cycle and include 
edge e as part of T’ without increasing the weight of the spanning tree. 

• We could repeat the above procedure for all edges that are in T and not 
in T’ ; and eventually transform T’ to T, without increasing the cost of 
the spanning tree. 

• Hence, T is a minimum spanning tree.



Properties of Minimum Spanning Tree
• Property 1: If an edge (i, j) is part of a minimum spanning tree T of a 

weighted graph of V vertices, its two end vertices are part of an IJ-cut 
and (i, j) is the minimum weight edge in the IJ-cut-set. 

• Proof: We will prove this by contradiction. Assume an edge (i, j) exists 

in a minimum spanning tree T. Let there be an edge (i', j') of an IJ-cut 

such that vertices i and i' are in I and vertices j and j' are in J, and that 

weight(i', j') < weight(i, j). If that is the case, we can remove (i, j) from 

the minimum spanning tree T and restore its connectivity and spanning 

nature by adding (i', j') instead. By doing this, we will only lower the 

weight of T contradicting the assumption that T is a minimum spanning 

tree to start with. Hence, every edge (i, j) of a minimum spanning tree 

has to be the minimum weight edge in an IJ-cut such that i is in I and j is 

in J, and I U J = V and I n J = ϕ.



Properties of Minimum Spanning Tree
• Property 2: If a graph does not have unique edge weights, there could 

be more than one minimum spanning tree for the graph.
• Proof (by Example)

• Property 3: If all the edges in a weighted graph have unique weights, 
then there can be only one minimum spanning tree of the graph.

• Proof: Consider a graph G whose edges are of distinct weight. Assume 
there are two different spanning trees T and T’, both are of minimum 
weight; but have at least one edge difference. That is, there should be 
at least one edge e in T and e is not in T’. Add the edge e in T’ to create 
a cycle. This cycle should involve at least one edge e’ that is not in T; 
because if all the edges in the cycle are in T, then T is not a tree. 

1

2

2

1

1

2 1

1

2

1

Graph One Min. Spanning Tree Another Min. Spanning Tree



Properties of Minimum Spanning Tree
• Property 3: If all the edges in a weighted graph have unique weights, then 

there can be only one minimum spanning tree of the graph.

• Proof (continued..): Thus, the end vertices of each of the two edges, e and e’, 
should belong to two disjoint sets of vertices that if put together will be the set of 
vertices in the graph.

• Since all the edges in the graph are of unique weight, the weight(e’) < weight(e) 
for T’ to be a min. spanning tree. However, if that is the case, the weight of T 
can be reduced by removing e and including e’, lowering the weight of T further. 
This contradicts our assumption that T is a min. spanning tree.

• Hence, weight(e)     weight(e’). That is, the weight of edge e cannot be greater 
than the weight of edge e’ for T to be a min. spanning tree. Hence, weight(e) ≤
weight(e’) for T to be a min. spanning tree. Since, all edge weights are distinct, 
weight(e) < weight(e’) for T to be a min. spanning tree.

• However, from the previous argument, we have that weight(e’) < weight(e) for  
T’ to be a min. spanning tree. 

• Thus, even though the graph has unique edge weights, it is not possible to say 
which of the two edges (e and e’) are of greater weight, if the graph has two 
minimum spanning trees.

• Thus, a graph with unique edge weights has to have only one minimum 
spanning tree.



T T’

e’

e

T Modified T’

e’

e e

W(e) < W(e’)  => T’ is not a MST

W(e) > W(e’) => T is not a MST

Hence, for both T and T’ to be different MSTs � W(e) = W(e’).

But the graph has unique edge weights.

W(e) ≠W(e) � Both T and T’ have to be the same.

Assume that both T and T’ are MSTs, but different MSTs to start with.

Property 3



Maximum Spanning Tree
• A Maximum Spanning Tree is a spanning tree such that 

the sum of its edge weights is the maximum.

• We can find a Maximum Spanning Tree through any one 
of the following ways:
– Run Kruskal’s algorithm by selecting edges in the decreasing 

order of edge weights (i.e., edge with the largest weight is 
chosen first) as long as the end vertices of an edge are in two 
different components

– Run Prim’s algorithm by selecting the edge with the largest 
weight crossing from the optimal set to the fringe set

– Given a weighted graph, set all the edge weights to be negative,
run a minimum spanning tree algorithm on the negative weight 
graph, then turn all the edge weights to positive on the minimum
spanning tree to get a maximum spanning tree.
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Iteration 4 Iteration 5

Iteration 6 Maximum Spanning Tree
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All Pairs Shortest Paths Problem



Floyd’s Algorithm: All pairs 

shortest paths

Problem:    In a weighted (di)graph, find shortest paths between

every pair of vertices

idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
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6
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5

3



Floyd’s Algorithm 

(matrix generation)
On the k-th iteration, the algorithm determines shortest paths 

between every pair of vertices i, j that use only vertices among 

1,…,k as intermediate

D(k)[i,j] =  min {D(k-1)[i,j],  D(k-1)[i,k]  + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

Predecessor Matrix



Floyd’s Algorithm (example)
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Floyd’s Algorithm (example)
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Floyd’s Algorithm 
(pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Θ(n2)



Floyd’s Algorithm (example)
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Floyd’s Algorithm (example)

Deducing path from v1 to v3


