
Module 5

Graph Algorithms

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Module Topics

• 5.1 Traversal (DFS, BFS)
– Brute Force

• 5.2 Topological Sorting of a DAG
– Decrease and Conquer

• 5.3 Single-Source Shortest Path Algorithms
(Dijkstra and Bellman-Ford)
– Greedy

• 5.4 Minimum Spanning Trees (Prim’s,
Kruskal’s)
– Greedy

• 5.5 All Pairs Shortest Path Algorithm (Floyd’s)
– Dynamic Programming

5.1 Graph Traversal Algorithms

Depth First Search (DFS)
• Visits graph’s vertices (also called nodes) by always moving away

from last visited vertex to unvisited one, backtracks if there is no
adjacent unvisited vertex.

• Break any tie to visit an adjacent vertex, by visiting the vertex with the
lowest ID or the lowest alphabet (label).

• Uses a stack

– a vertex is pushed onto the stack when it’s visited for the first time

–a vertex is popped off the stack when it becomes a dead end, i.e.,
when there is no adjacent unvisited vertex

• “Redraws” graph in tree-like fashion (with tree edges and
back edges for undirected graph):

– Whenever a new unvisited vertex is reached for the first time, it is attached
as a child to the vertex from which it is being reached. Such an edge is
called a tree edge.

– While exploring the neighbors of a vertex, it the algorithm encounters an
edge leading to a previously visited vertex other than its immediate
predecessor (i.e., its parent in the tree), such an edge is called a back edge.

– The leaf nodes have no children; the root node and other intermediate
nodes have one more child.

Pseudo Code of DFS

Example 1: DFS

Source: Figure 3.10: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms,

2012.

DFS
• DFS can be implemented with graphs represented as:

–adjacency matrices: Θ(V2); adjacency lists: Θ(|V|+|E|)

• Yields two distinct ordering of vertices:
–order in which vertices are first encountered (pushed onto stack)

–order in which vertices become dead-ends (popped off stack)

• Applications:
–checking connectivity, finding connected components

• The set of vertices that we can visit through DFS, starting from a
particular vertex in the set constitute a connected component.

• If a graph has only one connected component, we need to run DFS
only once and it returns a tree; otherwise, the graph has more than
one connected component and we determine a forest – comprising of
trees for each component.

–checking for cycles (a DFS run on an undirected graph returns a
back edge)

–finding articulation points and bi-connected components
• An articulation point of a connected component is a vertex that when

removed disconnects the component.

• A graph is said to have bi-connected components if none of its
components have an articulation point.

Example 2: DFS

f b c g

d a e

f b c g

d a e

1, 7

2, 3

3, 2

4, 1 5, 6 6, 5

7, 4

Tree Edge

Back Edge

• Notes on Articulation Point
– The root of a DFS tree is an articulation point if it has more than

one child connected through a tree edge. (In the above DFS tree,
the root node ‘a’ is an articulation point)

– The leaf nodes of a DFS tree are not articulation points.

– Any other internal vertex v in the DFS tree, if it has one or more
sub trees rooted at a child (at least one child node) of v that does
NOT have an edge which climbs ’higher ’ than v (through a back
edge), then v is an articulation point.

DFS: Articulation Points

• In the above graph, vertex ‘a’ is the only articulation point.

• Vertices ‘e’ and ‘f’ are leaf nodes.

• Vertices ‘b’ and ‘c’ are candidates for articulation points. But, they cannot
become articulation point, because there is a back edge from the only sub
tree rooted at their child nodes (‘d’ and ‘g’ respectively) that have a back edge
to ‘a’.

• By the same argument, vertices ‘d’ and ‘g’ are not articulation points, because
they have only child node (f and e respectively); each of these child nodes
are connected to a higher level vertex (b and a respectively) through a back
edge.

a

b c

d

f

g

e

Based on

Example 2

Example 3: DFS and Articulation Points

f b c g

d a e

f b c g

d a e

1, 7

2, 3

3, 2

4, 1 5, 6 6, 5

7, 4

Tree Edge

• In the above new graph
(different from the
previous example: note
edge a – e and b – f are
added back; but a – d is
missing):
– Vertices ‘a’ and ‘b’ are

articulation points

– Vertex ‘c’ is not an
articulation point

Back Edge

a

b c

d

f

g

e

Example 4: DFS and Articulation Points

f b c g

d a e

f b c g

d a e

1, 7

2, 3

3, 2

4, 1 5, 6 6, 5

7, 4

Tree Edge

• In the above new graph (different from the previous example: note edges b –
f, a – d and a – e are missing), vertices ‘a’, ‘b’, ‘c’, ‘d’ and ‘g’ are articulation
points, because:
– Vertex ‘a’ is the root node of the DFS tree and it has more than one child

node
– Vertex ‘b’ is an intermediate node; it has one sub tree rooted at its child node

(d) that does not have any node, including ‘d’, to climb higher than ‘b’. So,
vertex ‘b’ is an articulation point.

– Vertex ‘c’ is also an articulation point, by the same argument as above – this
time, applied to the sub tree rooted at child node ‘g’.

– Vertices ‘d’ and ‘g’ are articulation points; because, they have one child node
(‘f’ and ‘e’ respectively) that are not connected to any other vertex higher than
‘d’ and ‘g’ respectively.

Example 5: DFS and Articulation Points

a

b

c

d e

f g

h

i j

k

a

b

c

d e

f g

h

i j

k

DFS TREE

1) Root Vertex ‘a’ has more than one child; so, it is an articulation point.
2) Vertices ‘d’, ‘g’ and ‘j’ are leaf nodes
3) Vertex ‘b’ is not an articulation point because
the only sub tree rooted at its child node ‘c’ has
a back edge to a vertex higher than ‘b’ (in this
case to the root vertex ‘a’)
4) Vertex ‘c’ is an articulation point. One of its
child vertex ‘d’ does not have any sub tree
rooted at it. The other vertex ‘e’ has a sub
tree rooted at it and this sub tree has no
back edge higher up than ‘c’.
5) By argument (4), it follows that vertex ‘e’
is not an articulation point because the sub tree
rooted at its child node ‘f’ has a back edge higher
up than ‘e’ (to vertex ‘c’);
6) Vertices ‘f’ and ‘k’ are not articulation points because
they have only one child node each and the child nodes
are connected to a vertex higher above ‘f’ and ‘k’.
7) Vertex ‘i’ is not an articulation point because the only
sub tree rooted at its child has a back edge higher up (to vertices ‘a’ and ‘h’).
8) Vertex ‘h’ is not an articulation point because the only sub tree rooted at ‘h’ has a
back edge higher up (to the root vertex ‘a’).

Identification of the Articulation Points
of the Graph in Example 5

a

b

c

d e

f g

h

i j

k

DFS: Edge Terminology for directed

graphs
a b

c

d

e

a b

c

d

e

Tree edge

Back edge

Forward edge

Cross edge

Tree edge – an edge from a parent node to a child node in the tree

Back edge – an edge from a vertex to its ancestor node in the tree

Forward edge – an edge from an ancestor node to its descendant node in the tree.

The two nodes do not have a parent-child relationship. The back and forward

edges are in a single component (the DFS tree).
Cross edge – an edge between two different components of the DFS Forest.
So, basically an edge other than a tree edge, back edge and forward edge

1, 3 2, 2

3, 1

4, 5

5, 4

Directed Acyclic Graphs (DAG)
• A directed graph is a graph with directed edges between

its vertices (e.g., u � v).

• A DAG is a directed graph (digraph) without cycles.

– A DAG is encountered for many applications that

involve pre-requisite restricted tasks (e.g., course

scheduling)

a b

c d

a b

c d

a a

DAGDAG

not a not a

DAGDAG

To test whether a directed graph is a DAG, run DFS on the directed graph. If a

back edge is not encountered, then the directed graph is a DAG.

DFS on a DAG

a b

e f

c d

g h

a b

e f

c d

g h

Forward edge
Topological Sort

c d a e b g h f

f h g b e a d c

Order in which the

Vertices are popped

of from the stack

Reverse the order

Cross edge

Topological Sort
• Topological sort is an ordering of the vertices of a directed

acyclic graph (DAG) – a directed graph (a.k.a. digraph)
without cycles.
– This implies if there is an edge u� v in the digraph, then u should

be listed ahead of v in the topological sort: … u … v …

– Being a DAG is the necessary and sufficient condition to be able to
do a topological sorting for a digraph.

– Proof for Necessary Condition: If a digraph is not a DAG and
lets say it has a topological sorting. Consider a cycle (in the
digraph) comprising of vertices u1, u2, u3, …, uk, u1. In other
words, there is an edge from uk to u1 and there is a directed path
to uk from u1. So, it is not possible to decide whether u1 should be
ahead of uk or after uk in the topological sorting of the vertices of
the digraph. Hence, there cannot be a topological sorting of the
vertices of a digraph, if the digraph has even one cycle. To be able
to topologically sort the vertices of a digraph, the digraph has
to first of all be a DAG. [Necessary Condition]. We will next
prove that this is also the sufficient condition.

Topological Sort
Proof for Sufficient Condition

• After running DFS on the digraph (also a DAG), the
topological sorting is the listing of the vertices of the DAG in
the reverse order according to which they are removed
from the stack.
– Consider an edge u � v in the digraph (DAG).

– If there exists, an ordering that lists v ahead of u, then it implies that
u was popped out from the stack ahead of v. That is, vertex v has
been already added to the stack and we were to able to visit vertex
u by exploring a path leading from v to u. This means the edge u �

v has to be a back edge. This implies, the digraph has a cycle and
is not a DAG. We had earlier proved that if a digraph has a cycle,
we cannot generate a topological sort of its vertices.

– For an edge u->v, if v is listed ahead of u ==> the graph is not a
DAG (Note that a ==> b, then !b ==> !a)

– If the graph is a DAG ==> u should be listed ahead of v for every
edge u � v.

– Hence, it is sufficient for a directed to be DAG to generate a
topological sort for it.

Breadth First Search (BFS)
• BFS is a graph traversal algorithm (like DFS); but, BFS proceeds in a

concentric breadth-wise manner (not depth wise) by first visiting all
the vertices that are adjacent to a starting vertex, then all unvisited
vertices that are two edges apart from it, and so on.
– The above traversal strategy of BFS makes it ideal for determining

minimum-edge (i.e., minimum-hop paths) on graphs.

• If the underling graph is connected, then all the vertices of the graph
should have been visited when BFS is started from a randomly
chosen vertex.
– If there still remains unvisited vertices, the graph is not connected and the

algorithm has to restarted on an arbitrary vertex of another connected
component of the graph.

• BFS is typically implemented using a FIFO-queue (not a LIFO-stack
like that of DFS).
– The queue is initialized with the traversal’s starting vertex, which is marked

as visited. On each iteration, BFS identifies all unvisited vertices that are
adjacent to the front vertex, marks them as visited, and adds them to the
queue; after that, the front vertex is removed from the queue.

• When a vertex is visited for the first time, the corresponding edge that
facilitated this visit is called the tree edge. When a vertex that is
already visited is re-visited through a different edge, the
corresponding edge is called a cross edge.

Pseudo Code of BFS

BFS can be implemented with graphs represented as:
adjacency matrices: Θ(V2); adjacency lists: Θ(|V|+|E|)

Example for BFS

Source: Figure 3.11: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms,

2012.

0

1 1 1

2 2

0

1 1

2

Use of BFS to find Minimum Edge Paths

Source: Figure 3.12: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms,

2012.

Note: DFS cannot be used to find minimum edge paths, because DFS is not guaranteed to
visit all the one-hop neighbors of a vertex, before visiting its two-hop neighbors and so on.

For example, if DFS is executed starting from vertex ‘a’ on the above graph, then vertex ‘e’
would be visited through the path a – b – c – d – h – g – f – e and not through the
direct path a – e, available in the graph.

a b c d

e f g h

1 2

3

5

4

7

6

8

0

1 1

2 2

3 3

4

Comparison of DFS and BFS

Source: Table 3.1: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms,

2012.

With the levels of a tree, referenced starting from the root node,
A back edge in a DFS tree could connect vertices at different levels; whereas, a cross edge
in a BFS tree always connects vertices that are either at the same level or at adjacent levels.

There is always only a unique ordering of the vertices, according to BFS, in the order they
are visited (added and removed from the queue in the same order).
On the other hand, with DFS – vertices could be ordered in the order they are added to the
Stack, typically different from the order in which they are removed from the stack.

Bi-Partite (2-Colorable) Graphs
• A graph is said to be bi-partite or 2-colorable if the vertices of the

graph can be colored in two colors such that every edge has its
vertices in different colors.

• In other words, we can partition the set of vertices of a graph into two
disjoint sets such that there is no edge between vertices in the same
set. All the edges in the graph are between vertices from the two sets.

• We can check for the 2-colorable property of a graph by running a
DFS or BFS
– With BFS, if there are no cross-edges between vertices at the same level,

then the graph is 2-colorable.

– With DFS, if there are no back edges between vertices that are both at odd
levels or both at even levels, then the graph is 2-colorable.

• We will use BFS as the algorithm to check for the 2-colorability of a
graph.
– The level of the root is 0 (consider 0 to be even).

– The level of a child node is 1 more than the level of the parent node from
which it was visited through a tree edge.

– If the level of a node is even, then color the vertex in yellow.

– If the level of a node is odd, then color the vertex in green.

Bi-Partite (2-Colorable) Graphs

a b c

d e f

a b c

d e f

0 1

1

2

2 3

a b c

d e f

Example for a 2-Colorable Graph

a b

d e

Example for a Graph that is Not 2-Colorable

a b

d e

0 1

1 1

We encounter cross edges between vertices

b and e; d and e – all the three vertices are

in the same level.

Examples: 2-Colorability of Graphs

f b c g

d a e

f b c g

d a e

01

1

1

1

b – d is a cross edge between

Vertices at the same level. So,

the graph is not 2-colorable

f b c g

d a e

f b c g

d a e

0

11

1

2

2

2

The above graph is 2-Colorable

as there are no cross edges

between vertices at the same level

Dijkstra’s Shortest Path Algorithm

Shortest Path (Min. Wt. Path) Problem

• Path p of length k from a vertex s to a vertex d is a
sequence (v0, v1, v2, …, vk) of vertices such that v0 = s
and vk = d and (vi-1, vi) Є E, for i =1, 2,…, k

• Weight of a path p = (v0, v1, v2, …, vk) is

• The weight of a shortest path from s to d is given by

δ(s, d) = min {w(p): s d if there is a path from s to d}

= ∞ otherwise

Examples of shortest path-finding algorithms:

• Dijkstra algorithm – Θ(|E|*log|V|)

• Bellman-Ford algorithm – Θ(|E|*|V|)

∑
=

−
=

k

i

ii vvwpw
1

1),()(

p

Dijkstra Algorithm
• Assumption: w (u, v) >= 0 for each edge (u, v) Є E (i.e., the edge

weights are positive)

• Objective: Given G = (V, E, w), find the shortest weight path

between a given source s and destination d

• Principle: Greedy strategy

• Maintain a minimum weight path estimate d [v] from s to each other

vertex v.

• At each step, pick the vertex that has the smallest minimum weight

path estimate

• Output: After running this algorithm for |V| iterations, we get the

shortest weight path from s to all other vertices in G

• Note: Dijkstra algorithm does not work for graphs with edges (other

than those leading from the source) with negative weights.

30

Principle of Dijkstra Algorithm

0 Ws-u

Ws-v

Path from s to u

s u

W
(u

, v
)

If Ws-v > Ws-u + W(u, v) then

Ws-v = Ws-u + W(u, v)

Predecessor (v) = u

else

Retain the current path from s to v

Principle in a nutshell

During the beginning of each iteration we

will pick a vertex u that has the minimum

weight path to s. We will then explore

the neighbors of u for which we have not

yet found a minimum weight path. We will

try to see if by going through u, we can

reduce the weight of path from s to v,

where v is a neighbor of u.

v

Note: Sub-path of a shortest path is also a shortest path. For example, if

s – a – c – f – g – d is the minimum weight path from s to d, then c – f – g – d

and a – c – f – g are the minimum weight paths from c to d and a to g respectively.

Relaxation Condition

31

Dijkstra Algorithm
Begin Algorithm Dijkstra (G, s)

1 For each vertex v Є V

2 d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4 d [s] ← 0

5 S ← Φ // set of nodes for which we know the min-weight path from s

6 Q ← V // set of nodes for which we know estimate of min-weight path from s

7 While Q ≠ Φ

8 u ← EXTRACT-MIN(Q)

9 S ← S U {u}

10 For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13 End If

14 End For

15 End While

16 End Dijkstra

∈

32

Dijkstra Algorithm: Time Complexity
Begin Algorithm Dijkstra (G, s)

1 For each vertex v Є V

2 d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4 d [s] ← 0

5 S ← Φ // set of nodes for which we know the min-weight path from s

6 Q ← V // set of nodes for which we know estimate of min-weight path from s

7 While Q ≠ Φ

8 u ← EXTRACT-MIN(Q)

9 S ← S U {u}

10 For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13 End If

14 End For

15 End While

16 End Dijkstra

∈

Θ(V) time

Θ(V) time to

Construct a

Min-heap

done |V| times = Θ(V) time

Each extraction takes Θ(logV) time

done Θ(E) times totally

It takes Θ(logV) time when

done once

Overall Complexity: Θ(V) + Θ(V) + Θ(VlogV) + O(ElogV)

Since |V| = O(|E|), the VlogV term is dominated by the

ElogV term. Hence, overall complexity = O(|E|*log|V|)

Dijkstra Algorithm (Example 1)

∞∞0

∞∞∞

3 5

54

2

1

3

13

s

u
v

w
x

y

∞30

∞54

3
5

54

2

1

3

13

s

u
v

w
x

y

830

644

3
5

54

2

1

3

13

s

u
v

w
x

y

830

644

3 5

54

2

1

3

13

s

u
v

w
x

y
v v

Given Graph, Initialization Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

830

644

3 5

54

2

1

3

13

s

u

w
x

y

730

644

3 5

54

2

1

3

13

s

u

w
x

y

34

0

∞ ∞

∞

∞ ∞

5

7

6

1

3

2

4

3

Initial

A

B D

F

C E

0

5 ∞

∞

3 ∞

5

7

6

1

3

2

4

3

Iteration 1

A

B D

F

C E

0

4 ∞

∞

3 7

5

7

6

1

3

2

4

3

Iteration 2

A

B D

F

C E

0

4 11

∞

3 7

5

7

6

1

3

2

4

3

Iteration 3

A

B D

F

C E

0

4 9

10

3 7

5

7

6

1

3

2

4

3

Iteration 4

A

B D

F

C E

0

4 9

10

3 7

5

7

6

1

3

2

4

3

Iteration 5

A

B D

F

C E

0

4 9

10

3 7

1

3

2

4

3
Shortest Path Tree

A

B D

F

C E

Dijkstra Algorithm
Example 2

35

0 ∞ ∞

∞ ∞ ∞

A B C

DEF

5 6

8 5

3 31 2 2

Initial

0 5 ∞

3 ∞ ∞

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 1

0 4 ∞

3 11 ∞

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 2

0 4 10

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 3

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 4

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 5

0 4 9

3 6 6

A B C

DEF

3 31 2 2

Shortest Path Tree

Dijkstra Algorithm
Example 3

Theorems on Shortest Paths and
Dijsktra Algorithm

• Theorem 1: Sub path of a shortest path is also shortest.

• Proof: Lets say there is a shortest path from s to d through the vertices s –
a – b – c – d.

• Then, the shortest path from a to c is also a – b – c.

• If there is a path of lower weight than the weight of the path from a – b – c,
then we could have gone from s to d through this alternate path from a to c
of lower weight than a – b – c.

• However, if we do that, then the weight of the path s – a – b – c – d is not
the lowest and there exists an alternate path of lower weight.

• This contradicts our assumption that s – a – b – c – d is the shortest (lowest
weight) path.

• Theorem 2: When a vertex v is picked for relaxation/optimization, every
intermediate vertex on the s…v shortest path is already optimized.

• Proof: Let there be a path from s to v that includes a vertex x (i.e., s...x...v)
for which we have not yet found the shortest path. From Theorem 1,
weight(s...x) < weight(s...v). Also, the x...v path has to have edges of
positive weight. Then, the Dijkstra's algorithm would have picked up x
ahead of v. So, the fact that we picked v as the vertex with the lowest
weight among the remaining vertices (yet to be optimized) implies that every
intermediate vertex on the s...v is already optimized.

Theorems on Shortest Paths and
Dijsktra Algorithm

• Theorem 3: The weights of the vertices that are optimized are in the
non-decreasing (i.e., typically increasing) order.

• Proof: We want to prove that if a vertex u is optimized in an earlier
iteration (say iteration i), then the weight of the vertex v optimized at
a later iteration (say iteration j) is always larger than that of vertex u.

• Whenever a vertex u is optimized, we relax its neighbors and
explore whether the weight of the shortest paths from the source to
these neighbors could be decreased by going through u. As the
edge weights are positive, even if we reduce the weights of the
shortest paths to the neighbors, the weights of these paths are still
going to be larger than the weight of the shortest path to u.

• Theorem 4: When a vertex v is picked for relaxation, we have
optimized the vertex (i.e., found the shortest path for the vertex from
a source vertex s).

• Proof: Let P be the path from source s to vertex v based on whose
weight we decide to relax the vertex. We want to prove P is the
optimal path of minimum weight from s to v. We will prove this by
contradiction.

Theorems on Shortest Paths and
Dijsktra Algorithm

• Let P’ be a path from s to v such that w(P’) < w(P)

• If that is the case, (as edge weights are positive), the weight of every
intermediate vertex on the path P’ from s to v should be lower than
the weight of vertex v on the path P.

• This implies that the weight of vertex v on the path P’ should be
lower than the weight of vertex v on the path P and vertex v would
have been picked for relaxation based on path P’ and not path P.

• The fact that vertex v was picked for relaxation based on path P and
not P’ indicates that there exists at least one intermediate vertex on
the path P’ that has not been yet relaxed. However, the weight of
this intermediate vertex (even after relaxation) is going to be larger
than that of vertex v on the path P as the vertices are only relaxed in
the non-decreasing order of their weights. Hence, the weight of path
P’ is going to be only larger than that of path P.

Bellman-Ford Algorithm
• Used to find single source shortest path trees on any

graph (including those with negative weight edges).

• Starts with an estimate of 0 for the source and ∞ as
estimates for the shortest path weights from the source
to every other vertex; we proceed in iterations:
– In each iteration, we relax every vertex (instead of just one

vertex, as in Dijkstra) and try to improve the estimates of the
shortest path weights to the neighbors

– We do not target to optimize any particular vertex in an iteration;
but since there cannot be more than V – 1 intermediate edges on
path from the source to any vertex, we proceed for a total of

V – 1 iterations for a graph of V vertices.

– The time complexity is Θ(VE)

– Optimization: In a particular iteration, if the estimates of the
shortest path weights does not change for even one vertex, then
we could stop!

Bellman-Ford Algorithm Example 1
S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

S A

G
B

C
DE

F

8

1
- 4

2
- 2

3

1

S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

Example 1 Details

S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

Example 1 Details

S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

Example 1 Details

S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

Example 1 Details

S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

Example 1 Details

S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

Example 1 Details

S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

Example 1 Details

S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

Example 1 Details

S A

G
B

C
DE

F

10
8

1

- 1

- 4
2

- 2

- 1

3

1

1

Example 1 Details

S A

G
B

C
DE

F

8

1
- 4

2
- 2

3

1

Bellman-Ford Algorithm Example 2

A

B D

F

C E

7

5

1

43

6

3

2

A

B D

F

C E

1

43 3

2

Minimum Spanning Trees

52

Minimum Spanning Tree Problem
• Given a weighted graph, we want to determine a tree that spans all

the vertices in the tree and the sum of the weights of all the edges in
such a spanning tree should be minimum.

• Two algorithms:
– Prim algorithm: Θ(|E|*log|V|),

– Kruskal Algorithm: Θ(|E|*log |E| + |V|*log|V|))

• Prim algorithm is just a variation of Dijkstra algorithm with the
relaxation condition being
If v Q and d [v] > w (u, v) then

d [v] ← w (u, v)

Predecessor (v) = u

End If

• Kruskal algorithm: Consider edges in the increasing order of their
weights and include an edge in the tree, if and only if, by including
the edge in the tree, we do not create a cycle!!

• Note: Shortest Path trees need not always have minimum weight
and minimum spanning trees need not always be shortest path
trees.

On each iteration, the algorithm expands the

current tree in a greedy manner by attaching to

it the nearest vertex not in the tree. By the

‘nearest vertex’, we mean a vertex not in the

tree connected to a vertex in the tree by an

edge of the smallest weight.

∈

53

Kruskal Algorithm
Begin Algorithm Kruskal (G = (V, E))

A Φ // Initialize the set of edges to null set

for each vertex vi Є V do

Component (vi) i

Sort the edges of E in the non-decreasing (increasing) order of weights

for each edge (vi, vj) Є E, in order by non-decreasing weight do

if (Component (vi) ≠ Component (vj)) then

A A U (vi, vj)

if Component(vi) < Component(vi) then

for each vertex vk in the same component as of vj do

Component(vk) Component(vi)

else

for each vertex vk in the same component as of vi do

Component(vk) Component(vj)

end if

end if

end for

return A

End Algorithm Kruskal

54

Kruskal Algorithm: Time Complexity
Begin Algorithm Kruskal (G = (V, E))

A Φ // Initialize the set of edges to null set

for each vertex vi Є V do

Component (vi) i

Sort the edges of E in the non-decreasing (increasing) order of weights

for each edge (vi, vj) Є E, in order by non-decreasing weight do

if (Component (vi) ≠ Component (vj)) then

A A U (vi, vj)

if Component(vi) < Component(vi) then

for each vertex vk in the same component as of vj do

Component(vk) Component(vi)

else

for each vertex vk in the same component as of vi do

Component(vk) Component(vj)

end if

end if

end for

return A

End Algorithm Kruskal

Takes

Θ(logV)

time per

merger

Can be done in

Θ(logV) time

V-1 mergers.

So, Θ(VlogV)

Θ(V) time

Θ(ElogE)

time

Overall time complexity:

Θ(V) + Θ(ElogE) + Θ(VlogV) = Θ(VlogV + ElogE)

Components are kept track of using

a Disjoint-set data structure

55

Kruskal Algorithm (Example 1)

xws

yvu

3 5

54

2

1

3

13

s

u
v

w
x

y

(a) (b) (c)

(d) (e) (f)

Weight of the minimum spanning tree = 10

Weight of the shortest path tree = 12

xvs

yvu

3 5

54

2

1

3

13

s

u
v

w
x

y

xvs

xvu

3 5

54

2

1

3

13

s

u
v

w
x

y

xus

xuu

3 5

54

2

1

3

13

s

u
v

w
x

y

uus

uuu

3 5

54

2

1

3

13

s

u
v

w
x

y

sss

sss

3 5

54

2

1

3

13

s

u
v

w
x

y

56

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

Initial Kruskal Algorithm

Example 2 for

Minimum Spanning

Tree

AA B
B

C

C

AD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

Iteration 1

AA B
B

C

C

AD
C E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

Iteration 2

AA B
B

C

C

AD C E

AF
G G

5

7

9

8

7
5

15

6
8

11

9

Iteration 3

57

Kruskal Algorithm

Example 2

AA A
B

C

C

AD C E

AF
G G

5

7

9

8

7
5

15

6
8

11

9

Iteration 4

AA A
B

A

C

AD A E

AF
G G

5

7

9

8

7
5

15

6
8

11

9

Iteration 5

AA A
B

A

C

AD A E

AF
A G

5

7

9

8

7
5

15

6
8

11

9

Iteration 6

AA A
B

A

C

AD A E

AF
A G

5

7

7
5

6
9

Minimum Spanning Tree

Proof of Correctness: Kruskal’s Algorithm
• Let T be the spanning tree generated by Kruskal’s algorithm for a graph

G. Let T’ be a minimum spanning tree for G. We need to show that both
T and T’ have the same weight.

• Assume that wt(T’) < wt(T).

• Hence, there should be an edge e in T that is not in T’. Because, if
every edge of T is in T’, then T = T’ and wt(T) = wt(T’).

• Pick up the edge e ε T and e ε T’. Include e in T’. This would create a
cycle among the edges in T’. At least one edge in this cycle would not
be part of T; because if all the edges in this cycle are in T, then T would
have a cycle.

• Pick up the edge e’ that is in this cycle and not in T.

• Note that wt(e’) < wt(e); because, if this was the case then the
Kruskal’s algorithm would have picked e’ ahead of e. So, wt(e’) ≥
wt(e). This implies that we could remove e’ from the cycle and include
edge e as part of T’ without increasing the weight of the spanning tree.

• We could repeat the above procedure for all edges that are in T and not
in T’ ; and eventually transform T’ to T, without increasing the cost of
the spanning tree.

• Hence, T is a minimum spanning tree.

Properties of Minimum Spanning Tree
• Property 1: If an edge (i, j) is part of a minimum spanning tree T of a

weighted graph of V vertices, its two end vertices are part of an IJ-cut
and (i, j) is the minimum weight edge in the IJ-cut-set.

• Proof: We will prove this by contradiction. Assume an edge (i, j) exists

in a minimum spanning tree T. Let there be an edge (i', j') of an IJ-cut

such that vertices i and i' are in I and vertices j and j' are in J, and that

weight(i', j') < weight(i, j). If that is the case, we can remove (i, j) from

the minimum spanning tree T and restore its connectivity and spanning

nature by adding (i', j') instead. By doing this, we will only lower the

weight of T contradicting the assumption that T is a minimum spanning

tree to start with. Hence, every edge (i, j) of a minimum spanning tree

has to be the minimum weight edge in an IJ-cut such that i is in I and j is

in J, and I U J = V and I n J = ϕ.

Properties of Minimum Spanning Tree
• Property 2: If a graph does not have unique edge weights, there could

be more than one minimum spanning tree for the graph.
• Proof (by Example)

• Property 3: If all the edges in a weighted graph have unique weights,
then there can be only one minimum spanning tree of the graph.

• Proof: Consider a graph G whose edges are of distinct weight. Assume
there are two different spanning trees T and T’, both are of minimum
weight; but have at least one edge difference. That is, there should be
at least one edge e in T and e is not in T’. Add the edge e in T’ to create
a cycle. This cycle should involve at least one edge e’ that is not in T;
because if all the edges in the cycle are in T, then T is not a tree.

1

2

2

1

1

2 1

1

2

1

Graph One Min. Spanning Tree Another Min. Spanning Tree

Properties of Minimum Spanning Tree
• Property 3: If all the edges in a weighted graph have unique weights, then

there can be only one minimum spanning tree of the graph.

• Proof (continued..): Thus, the end vertices of each of the two edges, e and e’,
should belong to two disjoint sets of vertices that if put together will be the set of
vertices in the graph.

• Since all the edges in the graph are of unique weight, the weight(e’) < weight(e)
for T’ to be a min. spanning tree. However, if that is the case, the weight of T
can be reduced by removing e and including e’, lowering the weight of T further.
This contradicts our assumption that T is a min. spanning tree.

• Hence, weight(e) weight(e’). That is, the weight of edge e cannot be greater
than the weight of edge e’ for T to be a min. spanning tree. Hence, weight(e) ≤
weight(e’) for T to be a min. spanning tree. Since, all edge weights are distinct,
weight(e) < weight(e’) for T to be a min. spanning tree.

• However, from the previous argument, we have that weight(e’) < weight(e) for
T’ to be a min. spanning tree.

• Thus, even though the graph has unique edge weights, it is not possible to say
which of the two edges (e and e’) are of greater weight, if the graph has two
minimum spanning trees.

• Thus, a graph with unique edge weights has to have only one minimum
spanning tree.

T T’

e’

e

T Modified T’

e’

e e

W(e) < W(e’) => T’ is not a MST

W(e) > W(e’) => T is not a MST

Hence, for both T and T’ to be different MSTs � W(e) = W(e’).

But the graph has unique edge weights.

W(e) ≠W(e) � Both T and T’ have to be the same.

Assume that both T and T’ are MSTs, but different MSTs to start with.

Property 3

Maximum Spanning Tree
• A Maximum Spanning Tree is a spanning tree such that

the sum of its edge weights is the maximum.

• We can find a Maximum Spanning Tree through any one
of the following ways:
– Run Kruskal’s algorithm by selecting edges in the decreasing

order of edge weights (i.e., edge with the largest weight is
chosen first) as long as the end vertices of an edge are in two
different components

– Run Prim’s algorithm by selecting the edge with the largest
weight crossing from the optimal set to the fringe set

– Given a weighted graph, set all the edge weights to be negative,
run a minimum spanning tree algorithm on the negative weight
graph, then turn all the edge weights to positive on the minimum
spanning tree to get a maximum spanning tree.

64

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

Initial Kruskal Algorithm

Example 2 for

Max. Spanning Tree

Iteration 1

Iteration 2 Iteration 3

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

65

Iteration 4 Iteration 5

Iteration 6 Maximum Spanning Tree

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF
G G

7

9

8

15

11

9

All Pairs Shortest Paths Problem

Floyd’s Algorithm: All pairs

shortest paths

Problem: In a weighted (di)graph, find shortest paths between

every pair of vertices

idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

Floyd’s Algorithm

(matrix generation)
On the k-th iteration, the algorithm determines shortest paths

between every pair of vertices i, j that use only vertices among

1,…,k as intermediate

D(k)[i,j] = min {D(k-1)[i,j], D(k-1)[i,k] + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

Predecessor Matrix

Floyd’s Algorithm (example)

3
1

3

2

6 7

4

1 2

Floyd’s Algorithm (example)

3
1

3

2

6 7

4

1 2

3
1

3

2

6 7

4

1 2

Floyd’s Algorithm
(pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Θ(n2)

Floyd’s Algorithm (example)

1 3

45

2

Floyd’s Algorithm (example)

Deducing path from v1 to v3

