\qquad J\#: \qquad

CSC 323 Algorithm Design and Analysis, Spring 2016
Instructor: Dr. Natarajan Meghanathan
Quiz 6 (March 29, 2016) Max. Points: 25

Max. Time: 15 min .

1) (12 pts) Consider the Coin Collection Problem in which a robot can either move one cell down or one cell to the right during each move. The robot starts from cell $(1,1)$ and has to reach cell $(5,6)$: Find the maximum value of the coins that the robot could collect when it reaches cell $(5,6)$ and also trace the path.

	1	2	3	4	5	6
1		- 4		\bigcirc		
2		$\bigcirc 5$				$\bigcirc 9$
3			O	7		
4	\bigcirc	7		\bigcirc		\bigcirc
5			\bigcirc		3	

Maximum value of the coins collected is 31 .

\qquad
\qquad
2) (13 pts) Use a dynamic programming algorithm to find the Longest Common Subsequence between the two sequences:
X = AGACATA
$\mathrm{Y}=\mathrm{GTACAAT}$
Also, use the dynamic programming table determined for the above two sequences to determine the Longest Common Subsequence for
$\mathrm{X}^{\prime}=\mathrm{AGACA}$
$Y^{\prime}=$ GTACAAT

The alignment between X and Y is as shown below:

$$
\begin{aligned}
& A \\
& -G T A
\end{aligned} C A T A-A-A T
$$

GACAA of length 5 is the longest common sub sequence.

The alignment between X^{\prime} and Y^{\prime} is as shown below.

GACA of length 4 is the longest common subsequence. We use the only highlighted part of the table above to determine this.
\qquad
Student Name:
J\#:

