CSC 641 Reading List

Exam 4: April 14, 2016 @ 4 PM

Scale Free Networks: Power Law Model

1) Consider a network modeled using the power-law, $\mathrm{P}(\mathrm{K})=\mathrm{CK}^{-\gamma}$. Determine the power-law exponent γ and the constant C if the network has approximately 4% of nodes with degree 4 and 10% of nodes with degree 3 .
2) Given the following adjacency list for the vertices, Use the Kurtosis measure to determine whether the Degree distribution could be classified to exhibit "scale-free" property.

0	1
0	2
0	3
0	4
0	5
0	7
0	8
1	3
1	5
1	6
1	9
3	4
4	6
4	7
5	9
7	8

3) Given the following probability degree distributions (a) and (b):

K	$\mathrm{P}(\mathrm{K})$
1	0.794
2	0.119
3	0.039
4	0.018
5	0.010
6	0.006
7	0.004
8	0.003
9	0.002
10	0.001

(a)

K	$\mathrm{P}(\mathrm{K})$
0	0.015
1	0.163
2	0.132
3	0.185
4	0.194
5	0.163
6	0.114
7	0.068
8	0.036
9	0.017
10	0.007

(b)

1) Draw a plot of the degree distribution and determine if the degree distribution follows a powerlaw or Poisson?
2) Determine the parameters of the degree distribution you decided as listed below.
-- If the degree distribution follows Power Law, determine the Power Law Constant (C) and the Power Law Exponent (γ)
-- If the degree distribution follows Poisson Law, determine the mean and standard deviation
3) Consider a scale-free network of $\mathrm{N}=100$ nodes modeled using the power-law, $\mathrm{P}(\mathrm{K})=\mathrm{CK}^{-\gamma}$. The minimum and maximum degrees of the nodes in the network are kmin $=3$ and $\mathrm{kmax}=60$ respectively. Find the power-law exponent (γ), the power-law constant C and the average path length.

Scale Free Networks: BA and BB Models

1) Consider the following degree distribution of the nodes and their fitness.

- Determine the probability with which each node is likely to get the first link with a newly joining node under the BA and BB models.
- Let a new node join the network with 2 links under the BA and BB models. Determine which nodes are likely to get connected to the new node.

ID	$\begin{aligned} & \text { 毋 } \\ & \stackrel{0}{\circ} \\ & \text { ه. } \end{aligned}$	
1	1	5
2	4	4
3	5	7
4	3	10
5	3	8
6	2	9
7	2	6

2) Consider the BB model for scale-free networks .

- Let the parameter $\beta(\eta i)$ for any node i be equal to the fitness of node $i, \eta i$. Consider two nodes A and B such that the fitness of node B is thrice the fitness of node A.
- Node A joins the network at time 14 units and node B joins the network at time 75 units.
- If the degree of the nodes increase for every time unit (when a new node joins), what is the minimum value of the time unit starting from which the degree of node B would always be greater than the degree of node A?

3) At time 500 units, the following is the degree distribution of the nodes that joined at the time units indicated below. Determine the number of links added per node introduction (m) and the network's dynamical exponent (β). Estimate the degree of a node that joined the network at time 40 units.

Node joining	Deg
Time, ti	Tim
10	28
25	18
50	13
75	10
100	9
125	8
150	7

4) A node joined the network at time 10 units. Given below is the degree of the node at various time units. Determine the number of links added per node introduction and the fitness of the node. Under the BB model of evolution, assume the dynamical exponent value for a node is equal to the fitness of the node itself. Estimate the degree of the node at time 250 units.

Time Unit	Degree at \mathbf{t}
50	Time \mathbf{t}
75	52
100	93
125	142
150	196
175	256
200	320
	388

Small-World Networks

1) Consider a regular ring lattice of degree 8 for every node. This regular graph is transformed to a smallworld network by arbitrarily re-wiring the edges with probability β. Let the clustering coefficient of the small-world network generated out of this re-wiring be 0.4 . Determine the re-wiring probability $\boldsymbol{\beta}$.
2) Consider each of the following networks that evolve to a small-world network under the "Enhanced Watts-Strogatz Model". For each network: let the link 1-2 be the first link chosen for rewiring. Predict the vertex to which vertex 1 will be rewired to in each case?

(a) $\mathrm{q}=2$

(b) $\mathrm{q}=1$
3) Consider the enhanced WS model for small-world networks. Let there be a regular graph that is transformed to a small-world network. For every edge (u, v) selected for re-wiring, the probability that a node w of distance 2 hops to u is picked for re-wiring is 0.2 and the probability that a node w^{\prime} of distance 4 hops to u is picked for re-wiring is 0.08 . Find the value for the parameter \boldsymbol{q} in the enhanced WS model.
