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Community
• Community: It is formed by individuals such that those within a group 

interact with each other more frequently than with those outside the 
group.

• Community detection: discovering groups in a network where individuals’
group memberships are not explicitly given.

– Interactions (edges) between nodes can help determine communities

• Community structures are quite common in real networks. Social 
networks include community groups based on common location, 
interests, occupation, etc.

• Metabolic networks have communities based on functional groupings. 

• Citation networks form communities by research topic.

• Identifying the community sub structures within a network can provide 
insight into how network function and topology affect each other. 

There is most likely a path from one vertex to another 

vertex within a community through the vertices that are 

also part of the same community.

For the Karate Club network (to the left), the internal 

densities of the two communities are 0.26 and 0.24; 

the external densities are 0.035; the overall network 

density is 0.14.



Internal and External Community Densities

• Let C be a subset of nodes (V) that form a community.

• For every node i in C, let ki
int and ki

ext be the # links connecting node i to 

a node in C and outside C respectively.
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The internal density of every cluster

is significantly larger than the external

density as well as the total density of

the network.

C1 C2 C3

Internal Densities
C1 (4*3 + 1*4) / (5*4) = 0.8

C2 (6*5)/(6*5) = 1.0

C3 (4*3)/(4*3) = 1.0

External Densities
C1 (1 + 1) / (2*5*4) = 0.05

C2 (1 + 1 + 1 + 1)/(2*6*5) = 0.067

C3 (1 + 1)/(2*4*3) = 0.083



Schemes for Identifying Communities

• The number of communities within a network is 
typically unknown and the communities are often of 
unequal size and/or density.

• Schemes:
– Clique-based

– Hierarchical Clustering
• Bottom-up and Top-down

– Neighborhood Overlap based

– Homophily

– Eigen Vector based

• Evaluation:
– Modularity Maximization

– Silhouette Index



Clique-based Schemes



Clique (Complete Mutuality)
• A clique in a graph is a sub graph in which all the constituent 

nodes are directly reachable from one another.

• It is a NP-hard problem to find the maximum-sized clique in 
a graph.
– Independent Set-based Minimum Neighbors Heuristic

• Could find more than one clique of different sizes

– Repeated Vertex and Edge Removal Heuristic
• To find a clique of maximum size (depends on an underlying heuristic)

– Clique Percolation methods (could find overlapping communities)

• We will use the notion of Independent Sets to find a clique in 
a graph
– Independent Set: A subset of vertices such that there is no edge in 

the graph between any two vertices in the subset

– For a given graph G, we will find a complement graph G*
• The vertices in G and G* are the same.

• If an edge (u, v) is in G, there is no edge (u, v) in G*

• If an edge (u, v) is not in G, there is an edge (u, v) in G*

– An independent set in the complement graph G* is a clique in the
original graph G.



Example to Find Independent Set and 
Clique: Minimum Neighbors Heuristic

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

3 3 3

2 25

v1 v2 v3

v4 v5 v6

1 2

1

v1 v2 v3

v4 v5 v6

0

Idea: Give preference to vertices with minimal number

of (uncovered) neighbors to be part of the Independent

Set. A vertex is said to be covered if itself or any of its

neighbors in the Independent Set.

Independent Set for the above graph = {v2, v4, v6}

This is also the Maximal Independent Set (i.e.,

there exists no Independent Set of size 4 or more

for the above graph). However, the heuristic is

not guaranteed in general to give a maximal 

Independent set.

v1 v2 v3

v4 v5 v6



v1 v2 v3

v4 v5 v6
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{v1, v2, v5}

is an Independent

Set in G* and it is 

a clique in G.

Given G ------->

Find G*, complement of G

Example 1 to Determine a Clique

Using the Minimum Neighbors

Heuristic to Approximate an 

Independent Set
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Find the Complement Graph G* Finding Clique # 1

Example to Find 
Several Cliques
In a Graph
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Max. Independent

Set 1 in G*

= {5, 6, 7, 8}

= Max. Clique in G



Remove the edges associated with 5, 6, 7, 8

from the original graph G and generate a new graph G’
Find a new complement Graph  G** (for G’)

Remove stub nodes and isolated nodes 

(nodes with only one edge or no edge)

New Complement Graph G**

Reduced graph G’
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[5, 6, 7, 8] is Clique # 1
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{1, 2, 3} is a clique

in G’
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[1, 2, 3] is Clique # 2
Removing edges associated with 1, 2, 3

1

2

3

4

5

6
Graph G’’

Complement Graph of G’’

Removing all the 

Stub nodes (1, 2 and 6)
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[3, 4, 5] is a clique in G’’
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The three cliques
[5, 6, 7, 8]

[1, 2, 3]

[3, 4, 5]



Pruning Technique: Maximum Clique

• Lets say, we are interested to find a clique of size k.

– All vertices in such clique must have degree at least k-1.

• Repeat the following until we only have vertices with degree k-1 or 

above in the graph

– Step 1: Remove vertices that have degree less than k-1

– Step 2: Because of the removal of the vertices in Step 1, the degree 

of some other vertices would have become less than k-1. 

» If any such vertices exist, Go to Step 1.

» Otherwise, exit from the loop

• If the reduced graph obtained from the above has one or more 

components in which each component has vertices with degree k-

1 or above, run any heuristic to find clique (say, the Independent 

Set-based heuristic) on the reduced graph
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Anticipating a Clique of Size 4 (i.e., each vertex in the clique has degree 3)

Remove from the graph all vertices with degree less than 3.

Recursively remove all the vertices and associated edges until each vertex 

has degree 3 or above.
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Finding the Maximum Clique

Example to Find

The Maximum Clique

Using Pruning Technique
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Apply the Independent Set Heuristic

5

6

7

8

[5, 6, 7, 8] form an independent

set in the complement graph

Hence [5, 6, 7, 8] form a clique

in the original graph



Clique Percolation Method

• Used to find overlapping communities

– Input

• A parameter k, and a network 

– Procedure

• Find out all cliques of size k in a given network

• Construct a clique graph. Two cliques are adjacent if 

they share k-1 nodes

• Each connected component in the clique graph forms 

a community



Example 1: Clique Percolation Method



Example 2: Clique Percolation Method

1

2

3

4

5

6

7

8

[1, 2, 3]

[1, 3, 4]

[3, 4, 5]

[4, 5, 6]

[5, 6, 7]

[5, 6, 8]
[5, 7, 8]

[6, 7, 8]

Cliques of Size 3

1, 2, 3

1, 3, 4

3, 4, 5

4, 5, 6
5, 6, 7

5, 6, 8

5, 7, 8

6, 7, 8

The following is the clique graph.

All the cliques of size 3 are

connected. Hence, all the vertices

in the given graph are said to be

in one single community.



Modularity Maximization



Modularity Maximization
• Modularity measures the strength of a community partition by taking into 

account the degree distribution.

• Given a network with m edges, the expected number of edges between 
two nodes i and j with degrees di and dj respectively is di*dj / 2m.
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Expected number of edges between

nodes 1 and 2 is (3)(2) / (2*15) = 0.20
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A larger value for Q

indicates a good 

community structure



Modularity Maximization
• The intuition behind the idea of modularity is that a 

community is a structural element of a network that has been 
formed in a manner far from a random process.

• If we consider the actual density of links in a community, it 
should be significantly larger than the density we would 
expect if the links in the network were formed by a random 
process.
– In other words, if two nodes i and j are end up being in the same 

community, there should be more likely a link between them (i.e., Aij
= 1, leading to an overall high value for Q).

– If i and j end up being in a community such that the chances of 
having a link between them is just as the same as between any two 
nodes in the network (i.e., a random network), then the value of Q is 
more likely to be low (because there could be some Aij = 0 that will 
bring down the value of Q).



Evaluating Modularity (Example 1)
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3 5 3Community [1, 4, 5, 7]

Edges with Aij = 1   Modularity
1 – 4 1 – (3)(4)/(2*15) = 0.60
4 – 5 1 – (4)(5)/(2*15) = 0.33
5 – 7 1 – (3)(5)/(2*15) = 0.50
Edges with Aij = 0

1 – 5 0 – (3)(5)/(2*15) = -0.50
1 – 7 0 – (3)(3)/(2*15) = -0.30
4 – 7 0 – (4)(3)/(2*15) = -0.40

Total Modularity Score for
Community [1, 4, 5, 7]

0.23

Community [2, 3, 6, 8]
Edges with Aij = 1   Modularity
2 – 3 1 – (3)(4)/(2*15) = 0.60
2 – 6 1 – (3)(5)/(2*15) = 0.50

6 – 8 1 – (3)(5)/(2*15) = 0.50
Edges with Aij = 0
2 – 8 0 – (3)(3)/(2*15) = -0.30
3 – 6 0 – (4)(5)/(2*15) = -0.67
3 – 8 0 – (4)(3)/(2*15) = -0.40

Total Modularity Score for
Community [2, 3, 6, 8]

0. 23Total Modularity for the two 

Communities: 0.23 + 0.23 = 0.46



Evaluating Modularity (Example 2)
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Community [1, 2, 3, 4]

Edges with Aij = 1   Modularity
1 – 2 1 – (3)(3)/(2*15) = 0.70
1 – 3 1 – (3)(4)/(2*15) = 0.60
1 – 4 1 – (3)(4)/(2*15) = 0.60
2 – 3 1 – (3)(3)/(2*15) = 0.70

3 – 4 1 – (4)(4)/(2*15) = 0.47
Edges with Aij = 0
2 – 4 0 – (3)(4)/(2*15) = -0.40

Total Modularity Score for
Community [1, 2, 3, 4]

2.67

Community [5, 6, 7, 8]
Edges with Aij = 1   Modularity
5 – 6 1 – (5)(5)/(2*15) = 0.17
5 – 7 1 – (3)(5)/(2*15) = 0.50

5 – 8 1 – (3)(5)/(2*15) = 0.50
6 – 7 1 – (3)(5)/(2*15) = 0.50
6 – 8 1 – (3)(5)/(2*15) = 0.50
7 – 8 1 – (3)(3)/(2*15) = 0.70

Total Modularity Score for
Community [2, 3, 6, 8]

2.87Total Modularity for the two 

Communities: 2.67 + 2.87 = 5.54
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Hierarchical Clustering

(Complete Linkage Clustering)

Bottom-Up Approach

(Agglomerative)



Complete Linkage Clustering
• Compute the “pair-wise” distance matrix P between any two vertices.

• Initially, start with each vertex in its own cluster. 

• Merge the two “closest” vertices (clusters)
– In case of a tie (between two cluster-cluster pairs or between two cluster-

vertex pairs), choose the pair with the minimum value for the total pair-wise 
distance / sum of the two pair sizes

– In case of a tie between a cluster-vertex pair and a vertex-vertex pair, choose 
the cluster-vertex pair

– In case of a tie between two vertex-vertex pairs, break the tie arbitrarily.

• Remove the entries from P, for the two vertices (clusters) merged, and 
add an entry corresponding to the merged vertex (cluster).
– Update this entry with the longest distance between any vertex in the merged 

cluster with the vertices in the other clusters in P.

• Repeat the above step of merging and removing/adding entries to P until 
there is only one cluster.
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1   2   3   4   5   6
1   0   1   1   2   2   3

2        0   1   1   2   2

3             0   2   1   2

4                  0   2   1

5                       0   1

6                            0

1 2 63 45

1,2

Complete Linkage
Clustering (Example 1)

1,2    3    4    5   6

1,2     0      1    2    2   3

3                0    2    1   2 

4                      0    2   1  

5                            0   1  

6                                 0

1,2,

3

1,2,3    4    5    6

1,2,3       0       2    2    3 

4                      0    2    1

5                            0    1

6                                  0 

4,6

1,2,3    4,6    5

1,2,3      0        3      2 (5)

4,6                   0      2 (3)

5                              0 (0)

4,5,

6
Break the tie by choosing the

Pair with the minimum total

Pair-wise distance / Pair size

(1,2,3) and (5): 5/4 = 1.25

(4,6) and (5): 3/3 = 1.0
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Complete Linkage
Clustering

1 2 63 45

1,2

1,2,

3

4,6

4,5,

6

1…6



Complete Linkage
Clustering

1

2

3

4

5

6

2

3 2

2

3 2

Total Modularity = 2.641

1 2 63 45

1,2

1,2,

3

4,6

4,5,

6

1…6

Modularity(1,2,3)

Mod(1,2) = 1 – (2*3)/(2*7) = 0.571

Mod(1,3) = 1 – (2*3)/(2*7) = 0.571

Mod(2,3) = 1 – (3*3)/(2*7) = 0.357

Modularity(4,5,6)

Mod(4,5) = 0 – (2*2)/(2*7) = -0.286

Mod(4,6) = 1 – (2*2)/(2*7) = 0.714

Mod(5,6) = 1 – (2*2)/(2*7) = 0.714



Complete Linkage
Clustering

1

2

3

4

5

6

2

3 2

2

3 2

Total Modularity = 1.285

1 2 63 45

1,2

1,2,

3

4,6

4,5,

6

1…6

Mod(1,2) = 1 – (2*3)/(2*7) = 0.571

Mod(3) = 0

Mod(5) = 0

Mod(4,6) = 1 – (2*2)/(2*7) = 0.714
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Final

Partition

Total Modularity = 2.641



1

2

3

4

5

6

7

8

1   2   3   4   5   6   7   8
1   0   1   1   1   2   2   3   3

2        0   1   2   2   1   2   2

3             0   1   1   2   2   3

4                  0   1   1   2   2

5                       0   1   1   1

6                            0   1   1

7                                 0   1 

8                                      0 

1 2 3 4 5 6 7 8

1,2

1,2    3   4   5   6   7   8

1,2      0     1   2   2   2   3   3 

3                0   1   1   2   2   3 

4                     0   1   1   2   2   

5                          0   1   1   1

6                               0   1   1

7                                    0   1

8                                         0

1,2,

3

Complete Linkage
Clustering (Example 2)
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1 2 3 4 5 6 7 8

1,2

1,2,

3

1,2,3    4    5    6    7   8
1,2,3     0        2    2    2    3   3

4                     0    1    1    2   2 

5                           0    1    1   1

6                                 0    1   1

7                                       0   1

8                                            0

4,5

1,2,3    4,5    6   7   8

1,2,3      0        2      2    3   3

4,5                   0      1    2   2  

6                              0    1   1

7                                    0   1 

8                                         0
4,5,6
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1 2 3 4 5 6 7 8

1,2

1,2,

3

4,5

4,5,6

1,2,3    4,5,6      7    8
1,2,3        0       2          3     3

4,5,6                 0          2     2  

7                                   0     1

8                                          0

7,8

1,2,3      4,5,6     7,8

1,2,3       0           2 (14)   3

4,5,6                    0           2 (8)
7,8                                    0

Break the tie by choosing the

Pair with the minimum total

Pair-wise distance / Sum of pair size

(1,2,3) and (4,5,6): 14/6 = 2.33

(4,5,6) and (7,8): 8/5 = 1.6

4,5,6,

7,8



1

2

3

4

5

6

7

8
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1,2

1,2,

3

4,5

4,5,6

7,8

4,5,6,

7,8

1..8



1 2 3 4 5 6 7 8

1,2

1,2,

3

4,5

4,5,6

7,8

4,5,6,

7,8

1..8

Modularity(4,5,6,7,8)
Mod(4,5) = 1 – (4*5)/(2*15) = 0.33
Mod(4,6) = 1 – (4*5)/(2*15) = 0.33
Mod(4,7) = 0 – (3*4)/(2*15) = -0.4

Mod(4,8) = 0 – (3*4)/(2*15) = -0.4
Mod(5,6) = 1 – (5*5)/(2*15) = 0.17
Mod(5,7) = 1 – (3*5)/(2*15) = 0.50
Mod(5,8) = 1 – (3*5)/(2*15) = 0.50
Mod(6,7) = 1 – (3*5)/(2*15) = 0.50

Mod(6,8) = 1 – (3*5)/(2*15) = 0.50
Mod(7,8) = 1 – (3*3)/(2*15) = 0.70

1

2

3

4

5

6

7

8

3

3

453

3 5

4

Modularity(1,2,3)
Mod(1,2) = 1 – (3*3)/(2*15) = 0.70

Mod(1,3) = 1 – (3*4)/(2*15) = 0.60
Mod(2,3) = 1 – (3*4)/(2*15) = 0.60

Total Modularity

4.63



Final

Partition

Total Modularity = 4.63
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4

5

6

7

8

Complete Linkage Clustering

From the previous slides,

We know that the optimal 

Partitioning of the graph is:

1

2

3

4

5

6

7

8

Modularity (1, 2, 3, 4) +

Modularity (5, 6, 7, 8) = 5.54

Thus, complete linkage clustering need not always give the optimal solution.



Hierarchical Clustering

Edge Betweenness

Top-Down Approach

(Divisional)



Edge Betweenness
• Edge Betweenness (EdgeBW) is a measure of the 

number of shortest paths the edge is part of
– To be exact, it is the sum of the fraction of the shortest 

paths going through the edge between any two vertices.

Example 1

1

2

3

4
Pair Paths Edges

1-2 1-3 2-4 3-4

1, 2: 1-2 1/1

1, 3: 1-3 1/1

1, 4: 1-2-4, 1-3-4 1/2 1/2 1/2 1/2

2, 3: 2-1-3, 2-4-3 1/2 1/2 1/2 1/2

2, 4: 2-4 1/1

3, 4: 3-4 1/1

EdgeBW (sum fractions) 2.0 2.0 2.0 2.0

2.0

2.0

2.0

2.0

Each fraction is 1/number of paths for the pair



Edge Betweenness1

4

2

5

3

6

Pair Paths 1-2 1-4 2-3 2-5 3-6 4-5 5-6

1, 2 1-2 1/1

1, 3 1-2-3 1/1 1/1

1, 4 1-4 1/1

1, 5 1-2-5 1/2 1/2

1-4-5 1/2 1/2
1, 6 1-2-3-6 1/3 1/3 1/3

1-4-5-6 1/3 1/3 1/3

1-2-5-6 1/3 1/3 1/3

2, 3 2-3 1/1
2, 4 2-1-4 1/2 1/2

2-5-4 1/2 1/2

2, 5 2-5 1/1

2, 6 2-3-6 1/2 1/2

2-5-6 1/2 1/2

Sum (partial) 3.67 2.33 2.83 2.83 0.83 1.33 1.17

Example 2

Each fraction is 1/number of paths for the pair



Edge Betweenness
1

4

2

5

3

6

Pair Paths 1-2 1-4 2-3 2-5 3-6 4-5 5-6

Sum (partial) 3.67 2.33 2.83 2.83 0.83 1.33 1.17

3, 4 3-2-1-4 1/3 1/3 1/3

3-6-5-4 1/3 1/3 1/3

3-2-5-4 1/3 1/3 1/3
3, 5 3-2-5 1/2 1/2

3-6-5 1/2 1/2

3, 6 3-6 1/1

4, 5 4-5 1/1
4, 6 4-5-6 1/1 1/1

5, 6 5-6 1/1

EdgeBWC (Sum) 4.0 2.67 4.0 3.67 2.67 4.0 4.0

Example 2 (continued…)

1

4

2

5

3

6

4.0 4.0

4.0 4.0

2.672.67 3.67



Edge Betweenness
• Edge Betweenness

(EdgeBW) is a measure of 
the number of shortest 
paths the edge is part of: 
sum of the fraction of the 
shortest paths going through 
the edge between any two 
vertices.

• Note that in this graph 
below, there is only one 
shortest path between any 
two nodes. Hence, the 
EdgeBW is simply the # 
shortest paths through that 
edge

Example 3

1 2 3

6 5 4

Pair Paths Edges

1-2     2-3    2-4    2-5   5-6

1, 2 1-2             1/1

1, 3 1-2-3          1/1    1/1

1, 4 1-2-4          1/1             1/1

1, 5 1-2-5          1/1                       1/1

1, 6 1-2-5-6       1/1                       1/1 1/1

2, 3 2-3                       1/1 

2, 4 2-4                               1/1  

2, 5 2-5                                         1/1  

2, 6 2-5-6                                      1/1   1/1

3, 4 3-2-4                    1/1   1/1

3, 5 3-2-5                    1/1             1/1

3, 6 3-2-5-6                 1/1             1/1 1/1

4, 5 4-2-5                            1/1     1/1

4, 6 4-2-5-6                         1/1     1/1 1/1

5, 6 5-6                                                  1/1
EdgeBW (Sum)      5.0   5.0 5.0 8.0    5.0



Edge Betweenness
• Edge Betweenness (EdgeBW) is a measure of the number of shortest 

paths the edge is part of: sum of the fraction of the shortest paths going 
through the edge between any two vertices.

• Note that in this graph below, there is only one shortest path between 
any two nodes. Hence, the EdgeBW is simply the # shortest paths 
through that edge

Edge 7-8 in the graph

here carries info

from each of the 7 

nodes on the left

(incl. node 7) and the

7 nodes on the right

(incl. node 8)

# shortest paths through

Edge 7-8 is 7*7 = 49

Example 4

49
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3333
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12

1

12
1

12

12

1 12
1

12

12



Finding the # Shortest Paths through an Edge
• For graphs in which there is more than one paths between one or more 

pair of vertices, the total betweenness of an edge is not equal to the total 
# shortest paths through the edge.

• We will now see an algorithm proposed by Girvan and Newman to 
determine the total betweenness of an edge.

• Repeat the following for every vertex
– Perform a Breadth First Search (BFS) of the graph, starting from the first 

vertex, say A.

– Determine the # shortest paths from A to each other node using the BFS 
levels of the nodes

– Based on the above numbers of shortest paths, determine the amount of info 
from A to all the other vertices that uses each edge.

• The total betweenness through an edge is the sum (for directed graph) or 
half of the sum (for undirected graph) of the betweenness determined 
through that edge when BFS is run from every vertex in the graph. 
– For undirected graph, we divide by the total sum of the BWs by 2 because an 

edge is counted twice on the shortest path between any two vertices.

– For example A – B – C; the edge A – B is counted twice (once on the 
shortest path from A to C and once on the shortest path from C to A



A

E

B

F

GC

D

BFS run on A

A

E

B

F

GC

D

0

1

1

2

2

3

A

B E

G F

D

1 1

1
2

3

Node Levels 

# Shortest Paths from
Node A to every other Node

A

B-1 E-1

G-1 F-1

D-1

1

0.67
0.33

1.33
0.835

0.835

3.165 1.835

BW on each edge

Computing the Fraction of Shortest Path Values

We assume one unit of info originates at each node. We start 
with the node at the bottom most level. Let 1 unit of info start
from node D. Node D gets 2 of its Shortest paths to node A 
through F and 1 through G. So, node D sends 2/3 of the info to 
F and 1/3 of the info to G. Node F adds 2/3 info received to 1 

unit of info originating at itself and splits the resulting 1.67
equally and sends 0.835 to each of B and E. G merely adds the
0.33 info units to the 1 units of info originating at itself and sends
1.33 to B.

1



A

E

B

F

GC

D

BFS run on B

A

E

B

F

GC

D

1

2

0

1

1

2

Node Levels 

# Shortest Paths from

Node B to every other Node
BW on each edge

B

A
F

G

E D

1
1

1

2 2

B

A-1
F-1

G-1

E-1 D-1

0.5
0.5

0.50.5

1.5
2.0

1.5



A

E

B

F

GC

D

BFS run on G

Node Levels 

# Shortest Paths from
Node G to every other Node

BW on each edge

A

E

B

F

GC

D

012

123

G

B D

A F

E

1 1

1
2

3

G

B-1 D-1

A-1 F-1

E-1

0.67
0.33

1.33

0.835

0.835

3.165 1.835



A

E

B

F

GC

D

BFS run on E

Node Levels 

# Shortest Paths from
Node E to every other Node

BW on each edge

E

A F

B D

G

1 1

3

A

E

B

F

GC

D

0

1

1

2

2

3

2 1

E

A-1 F-1

B-1 D-1

G-1
0.33

0.67

1.330.835
0.835

3.1651.835



A

E

B

F

GC

D

BFS run on F

Node Levels 

# Shortest Paths from

Node F to every other Node

BW on each edge

A

E

B

F

GC

D

0

1

1 1

2 2
F

E
B

D

A G

1
1

1

2 2

F

E-1
B-1

D-1

A-1 G-1
0.5

0.5

1.5

0.5

0.5

2.0

1.5



A

E

B

F

GC

D

BFS run on D

Node Levels 

# Shortest Paths from

Node D to every other Node
BW on each edge

A

E

B

F

GC

D

0

1

1

2

2

3
D

F G

E B

A

1 1

1
2

3

D

F-1 G-1

E-1 B-1

A-1

0.67
0.33

0.835

0.8351.33

3.165 1.835
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B E

G F

D

1 1

1 2

3

0.67
0.33

1.33
0.835

0.835

3.165 1.835

B

A
F

G

E D

1

1
1

2 2

0.50.50.50.5

1.5
2.0

1.5

F

E
B

D

A G

1
1

1

2 2

0.5

0.5

1.5

0.5

0.5

2.0
1.5

G

B D

A F

E

1 1

1
2

3

0.67
0.33

1.33

0.835

0.835

3.165 1.835

E

A F

B D

G

1 1

3

2
1

0.33

0.67

1.330.835
0.835

3.1651.835

D

F G

E B

A

1 1

1 2

3

0.67
0.33

0.835

0.8351.33

3.165 1.835

8/2

5.33/

2

8/2

7.34/2 5.33/2

8/2 8/2



Girvan-Newman (GN) Algorithm
• Proceeds in iterations

• At the beginning of each iteration, we compute the Betweenness of the 
edges in the graph and remove the edge(s) with the largest 
betweenness.

– If more than one edge has the largest betweenness, remove all such 
competing edges at the same time.

– If the graph gets disconnected to two or more communities 
(components), we compute the total modularity score of the resulting 
communities

• Repeat the iterations until there are no more edges

• The partition (set of communities) with the total modularity score is the 
optimal partition.

• We could stop dividing a community if the total modularity score of 
the undivided community is greater than the total modularity score 
of the divided community.

• You could use the Java program (EdgeBWC.java) given to you to compute the 
betweenness of the edges in each iteration.

• You could use the Java program (PairwiseModularity.java) given to you to compute 
the modularity scores of the pairs of vertices in the original graph and use these 
scores in your modularity calculations for each iteration.



GN Algorithm: Example 1
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GN Algorithm: Example 1 (It # 1)

1
5

5

1 1

1

5

5

5

5

5

5

12

12

12

12

Modularity (1, 2, 3, 4 , 5, 6, 7)
Mod (1, 2) = 1 – (2*2)/(2*17) = 0.882
Mod (1, 3) = 1 – (2*3)/(2*17) = 0.824
Mod (1, 4) = 0 – (2*2)/(2*17) = -0.118
Mod (1, 5) = 0 – (2*2)/(2*17) = -0.118

Mod (1, 6) = 0 – (2*3)/(2*17) = -0.176
Mod (1, 7) = 0 – (2*3)/(2*17) = -0.176
Mod (2, 3) = 1 – (2*3)/(2*17) = 0.824
Mod (2, 4) = 0 – (2*2)/(2*17) = -0.118
Mod (2, 5) = 0 – (2*2)/(2*17) = -0.118

Mod (2, 6) = 0 – (2*3)/(2*17) = -0.176
Mod (2, 7) = 0 – (2*3)/(2*17) = -0.176
Mod (3, 4) = 0 – (2*3)/(2*17) = -0.176
Mod (3, 5) = 0 – (2*3)/(2*17) = -0.176
Mod (3, 6) = 0 – (3*3)/(2*17) = -0.265

Mod (3, 7) = 1 – (3*3)/(2*17) = 0.735
Mod (4, 5) = 1 – (2*2)/(2*17) = 0.882
Mod (4, 6) = 1 – (2*3)/(2*17) = 0.824
Mod (4, 7) = 0 – (2*3)/(2*17) = -0.176
Mod (5, 6) = 1 – (2*3)/(2*17) = 0.824

Mod (5, 7) = 0 – (2*3)/(2*17) = -0.176
Mod (6, 7) = 1 – (3*3)/(2*17) = 0.735

Modularity (1, 2, 3, …, 7) = 4.385

Modularity (8, 9, 10, …, 17) = 4.385

Total Modularity Score = 8.77

After removing edge 7-8 with the largest BW (49)



GN Algorithm: Example 1 (It # 2)
Modularity (1, 2, 3)

Mod (1, 2) = 1 – (2*2)/(2*17) = 0.882

Mod (1, 3) = 1 – (2*3)/(2*17) = 0.824

Mod (2, 3) = 1 – (2*3)/(2*17) = 0.824

Modularity (1, 2, 3) = 2.53

Similarly,

Modularity (4, 5, 6) = 2.53

Modularity (9, 10, 11) = 2.53

Modularity (12, 13, 14) = 2.53

Total Modularity Score = 10.12

1



1, 2, 3, …, 14

1, 2, 3, 4, 5, 6, 7 8, 9, 10, …, 14

1, 2, 3 7 4, 5, 6 9, 10, 11 8 12, 13, 147

1 2 3 77
4 5 6 9 10 11 8 12 13 14

Partition Tree

10.12

Optimal Partition

(1, 2, 3)

(7)

(4, 5, 6)

(9, 10, 11)
(8)
(12, 13, 14)

4.385 4.385

2.53 2.530 2.53 2.530



Final Partitioning into Communities

GN Algorithm Example 1



GN Algorithm: Example 2
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GN Algorithm: Example 2 (It # 1)

30 30
5

5

1

1.5

1.5

10.5
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5
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GN Algorithm: Example 2 (It # 2)

2

2

1

1.5 1.5

1.5
1.5

1

2

2

1

1.5

1.5

1.5

1.5

1

Modularity(1, 2, 3, 4, 5)

Mod (1, 2) = 1 – (2*4)/(2*19) = 0.789
Mod (1, 3) = 1 – (2*4)/(2*19) = 0.789
Mod (1, 4) = 0 – (2*3)/(2*19) = -0.158
Mod (1, 5) = 0 – (2*5)/(2*19) = -0.263
Mod (2, 3) = 1 – (4*4)/(2*19) = 0.579

Mod (2, 4) = 1 – (4*3)/(2*19) = 0.684
Mod (2, 5) = 1 – (4*5)/(2*19) = 0.474
Mod (3, 4) = 1 – (3*4)/(2*19) = 0.684
Mod (3, 5) = 1 – (4*5)/(2*19) = 0.474
Mod (4, 5) = 1 – (3*5)/(2*19) = 0.605

Modularity (1, 2, 3, 4, 5) = 4.657

Modularity (7, 8, 9, 10, 11) = 4.657

Modularity (6) = 0

Total Modularity Score = 9.314



GN Algorithm: Example 2 (It # 3)

1
1

1

1

1

1

1

1

1

1

Modularity(2, 3, 4, 5)

Mod (2, 3) = 1 – (4*4)/(2*19) = 0.579

Mod (2, 4) = 1 – (4*3)/(2*19) = 0.684

Mod (2, 5) = 1 – (4*5)/(2*19) = 0.474

Mod (3, 4) = 1 – (3*4)/(2*19) = 0.684

Mod (3, 5) = 1 – (4*5)/(2*19) = 0.474

Mod (4, 5) = 1 – (3*5)/(2*19) = 0.605

Modularity (2, 3, 4, 5) = 3.5

Modularity (7, 8, 9, 10) = 3.5

Total Modularity Score = 7.0



GN Algorithm: Example 2

1, 2, 3, …., 11

61, 2, 3, 4, 5 7, 8, 9, 10, 11

6
1 2, 3, 4, 5 7, 8, 9, 10 11

9.314

4.657 4.657

3.5 3.5



Final Partitioning



GN Algorithm: Example 3

1

2
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4

5
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7

8
2.33

2.0

3.33

2
.1

7
5.17

1.67

4.83

3.67

3.0
1.83

3
1

3

3

3

1
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8
1.83

2.17

4.67

5
.1

72.33

8.0

4.83

3.17
1.83

1.83
1
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Iteration 1
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Iteration 2
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Iteration 3



GN Algorithm: Example 3 (2)

1
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1
1

1

1

1

1

Iteration 3: Modularity Analysis

Modularity(5,6,7,8)
Mod(5,6) = 1 – (5*5)/(2*15) = 0.17
Mod(5,7) = 1 – (3*5)/(2*15) = 0.50
Mod(5,8) = 1 – (3*5)/(2*15) = 0.50

Mod(6,7) = 1 – (3*5)/(2*15) = 0.50
Mod(6,8) = 1 – (3*5)/(2*15) = 0.50
Mod(7,8) = 1 – (3*3)/(2*15) = 0.70

Modularity (5, 6, 7, 8) = 2.87

Modularity(1, 2, 3, 4)

Mod(1,2) = 1 – (3*3)/(2*15) = 0.70
Mod(1,3) = 1 – (3*4)/(2*15) = 0.60
Mod(1,4) = 1 – (3*4)/(2*15) = 0.60
Mod(2,3) = 1 – (3*4)/(2*15) = 0.60
Mod(2,4) = 1 – (3*4)/(2*15) = 0.60

Mod(3,4) = 1 – (4*4)/(2*15) = 0.47

Modularity (1, 2, 3, 4) = 3.57

Total Modularity Score = 6.44

1

2

3

4

5

6

7

8

1

Iteration 4: Total Modularity Score = 0.60



GN Algorithm: Example 3 (3)

1, 2, 3, …., 8

1, 2, 3, 4 5, 6, 7, 8

1, 3 2 4

3.57 2.87

5 6 7 8
0.6

6.44
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Optimal Partitioning

Into Communities

Total Modularity Score

6.44



GN Algorithm: Example 4
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1
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Iteration 1Modularity (1, 3, 5, 6, 9)
Mod (1, 3) = 1 – (5*3)/(2*14) = 0.46

Mod (1, 5) = 1 – (5*4)/(2*14) = 0.28

Mod (1, 6) = 1 – (5*3)/(2*14) = 0.46

Mod (1, 9) = 1 – (5*2)/(2*14) = 0.64

Mod (3, 5) = 1 – (3*4)/(2*14) = 0.57

Mod (3, 6) = 1 – (3*3)/(2*14) = 0.68

Mod (3, 9) = 0 – (3*2)/(2*14) = - 0.21

Mod (5, 6) = 1 – (4*3)/(2*14) = 0.57

Mod (5, 9) = 1 – (4*2)/(2*14) = 0.71

Mod (6, 9) = 0 – (3*2)/(2*14) = - 0.21

Modularity (1, 3, 5, 6, 9) = 3.95

Modularity (2, 4, 7, 8)

Mod (2, 4) = 1 – (3*3)/(2*14) = 0.68

Mod (2, 7) = 1 – (3*3)/(2*14) = 0.68

Mod (2, 8) = 0 – (3*2)/(2*14) = - 0.21

Mod (4, 7) = 1 – (3*3)/(2*14) = 0.68

Mod (4, 8) = 1 – (3*2)/(2*14) = 0.78

Mod (7, 8) = 1 – (3*2)/(2*14) = 0.78

Modularity (2, 4, 7, 8) = 3.39

Total Modularity Score = 7.34



GN Algorithm: Example 4 (1)

3

1 2

4

5

6

7

8

9

1

1

1

1
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1 1

Iteration 2

Modularity (1, 3, 5, 6)
Mod (1, 3) = 1 – (5*3)/(2*14) = 0.46

Mod (1, 5) = 1 – (5*4)/(2*14) = 0.28

Mod (1, 6) = 1 – (5*3)/(2*14) = 0.46

Mod (3, 5) = 1 – (3*4)/(2*14) = 0.57

Mod (3, 6) = 1 – (3*3)/(2*14) = 0.68

Mod (5, 6) = 1 – (4*3)/(2*14) = 0.57

Modularity (1, 3, 5, 6) = 3.02

Modularity (4, 7)

Mod (4, 7) = 1 – (3*3)/(2*14) = 0.68

Modularity (4, 7) = 0.68

Total Modularity Score = 3.70



GN Algorithm: Example 4 (2)
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4
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8

9 1, 2, 3, …., 9

1, 3, 5, 6, 9 2, 4, 7, 8

3.95 3.397.34

1, 3, 5, 6 9

3.02 0

2 8 4, 7

0.68



Analysis of: Girvan and Newman Algorithm

• After we find the betweenness of the edges, we remove the edge with 
the largest betweenness.

• We re-run BFS on each vertex and find the betweenness of every edge 
and remove the edge with the largest betweenness henceforth.

• We repeat this process until we divide the graph into individual vertices.

• We keep track of the communities that get generated with each edge 
removal and then decide on the level of partition (to stop the edge 
removal process) by evaluating the modularity scores of the community 
scores formed at different levels.

• The Girvan and Newman algorithm, though effective in delineating
communities with high modularity scores, is very inefficient as it requires 
BFS (of time complexity Θ(E+V)) to be run on each vertex for every edge 
removal. 
– For a graph with E edges and V vertices, the overall time complexity will be 
Θ(EV(E+V))



GN Algorithm: Example 5
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Given Graph with Edge BW Values

1

2

3

4

9

7

8

5

6

1

1

1 1

2

2

2

2

4

2

4

2

Iteration 1

Modularity (1, 2, 3)

Mod (1, 2) = 0.786

Mod (1, 3) = 0.786

Mod (2, 3) = 0.678

Modularity (1, 2, 3) = 2.25

Modularity (4, 5, 6, 7, 8, 9)

Mod (4, 5) = - 0.286 Mod (7, 8) = 0.429

Mod (4, 6) = - 0.286 Mod (7, 9) = 0.429

Mod (4, 7) = 0.429 Mod (8, 9) = 0.429

Mod (4, 8) = 0.429 Modularity (4, 5, 6,

Mod (4, 9) = 0.429 7, 8, 9) = 3.143

Mod (5, 6) = 0.857

Mod (5, 7) = 0.714

Mod (5, 8) = - 0.286

Mod (5, 9) = - 0.286
Mod (6, 7) = - 0.286
Mod (6, 8) = 0.714

Mod (6, 9) = - 0.286 

Total Modularity 

= 5.393



GN Algorithm: Example 5 (1)
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Iteration 2

We do not need to partition

(1, 2, 3) further as the 

Modularity of the partitioned

Communities (1), (2), (3) 

will be just 0.

Modularity (4, 7, 8, 9)
Mod (4, 7) = 0.429 Mod (7, 8) = 0.429

Mod (4, 8) = 0.429 Mod (7, 9) = 0.429

Mod (4, 9) = 0.429 Mod (8, 9) = 0.429

Modularity (4, 7, 8, 9) = 2.574

Modularity (5, 6) = 0.857

Modularity { (5, 6);  (4, 7, 8, 9) } = 3.431



GN Algorithm: Example 5 (2)

1, 2, 3, …., 9

1, 2, 3 4, 5, 6, 7, 8, 9

2.25 3.143

1
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3

5, 6 4, 7, 8, 9

0.857 2.574

5.681
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Note: Edges with a larger BW

are considered to facilitate

Communication between two

or more communities. Hence,

removing such edges could 

lead to the identification of the

Communities in a network.



Neighborhood Overlap based 

Approach



Neighborhood Overlap (NOVER)
Neighborhood

Overlap
=

Note that one should not count neither A nor B as part of the neighbors in 

the denominator, and each node should be counted only once.

3

1 2

4

5

6

7

8

9

1 ���� {2, 3, 5, 6, 9}

2 ���� {1, 4, 7}

3 ���� {1, 5, 6}

4 ���� {2, 7, 8}

5 ���� {1, 3, 6, 9}
6 ���� {1, 3, 5}

7 ���� {2, 8}

8 ���� {4, 7}

9 ���� {1, 5}

Edge Union of Neighb.   Intersec.   NOVER

1 – 2 {3, 5, 6, 9, 4, 7} {} 0/6 = 0.0
1 – 3 {2, 5, 6, 9}               {5, 6} 2/4 = 0.5

1 – 5 {2, 3, 6, 9}               {3, 6, 9}     3/4 = 0.75

1 – 6 {2, 3, 5, 9}               {3, 5}         2/4 = 0.5

1 – 9 {2, 3, 5, 6}               {5}             1/4 = 0.25

2 – 4      {1, 7, 8}                    {7}            1/3 = 0.33

2 – 7      {1, 4, 8}                    {4}            1/3 = 0.33

3 – 5      {1, 6, 9}                    {1, 6}        2/3 = 0.67

3 – 6      {1, 5}                        {1, 5}        1/1 = 1.0

4 – 7      {2,  8}                       {2, 8}        2/2 = 1.0

4 – 8      {2, 7}                        {7}            1/2 = 0.5

5 – 6      {1, 3, 9}                    {1, 3}         2/3 = 0.67

5 – 9      {1, 3, 6}                    {1}            1/3 = 0.33
7 – 8      {2, 4}                       {4}             1/2 = 0.5



NOVER-based GN Algorithm
• At the beginning of each iteration, we compute the 

NOVER scores of the edges in the graph and 
remove the edge(s) with the smallest NOVER 
score(s).

– If more than one edge has the smallest NOVER 
score, remove all such competing edges at the 
same time.

– If the graph gets disconnected to two or more 
communities (components), we compute the total 
modularity score of the resulting communities

• Repeat the iterations until there are no more edges

• The partition (set of communities) with the total 
modularity score is the optimal partition.



NOVER-based GN Algorithm: Ex. 1
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Iteration 1Modularity (1, 3, 5, 6, 9)
Mod (1, 3) = 1 – (5*3)/(2*14) = 0.46

Mod (1, 5) = 1 – (5*4)/(2*14) = 0.28

Mod (1, 6) = 1 – (5*3)/(2*14) = 0.46

Mod (1, 9) = 1 – (5*2)/(2*14) = 0.64

Mod (3, 5) = 1 – (3*4)/(2*14) = 0.57

Mod (3, 6) = 1 – (3*3)/(2*14) = 0.68

Mod (3, 9) = 0 – (3*2)/(2*14) = - 0.21

Mod (5, 6) = 1 – (4*3)/(2*14) = 0.57

Mod (5, 9) = 1 – (4*2)/(2*14) = 0.71

Mod (6, 9) = 0 – (3*2)/(2*14) = - 0.21

Modularity (1, 3, 5, 6, 9) = 3.95

Modularity (2, 4, 7, 8)

Mod (2, 4) = 1 – (3*3)/(2*14) = 0.68

Mod (2, 7) = 1 – (3*3)/(2*14) = 0.68

Mod (2, 8) = 0 – (3*2)/(2*14) = - 0.21

Mod (4, 7) = 1 – (3*3)/(2*14) = 0.68

Mod (4, 8) = 1 – (3*2)/(2*14) = 0.78

Mod (7, 8) = 1 – (3*2)/(2*14) = 0.78

Modularity (2, 4, 7, 8) = 3.39

Total Modularity Score = 7.34



NOVER-based GN Algorithm: Ex. 1(2)

Iteration 2

3

1 2

4
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7

8

9

0.67

1

0.67

0.67

1

1
0.67

Modularity (1, 3, 5, 6)
Mod (1, 3) = 1 – (5*3)/(2*14) = 0.46

Mod (1, 5) = 1 – (5*4)/(2*14) = 0.28

Mod (1, 6) = 1 – (5*3)/(2*14) = 0.46

Mod (3, 5) = 1 – (3*4)/(2*14) = 0.57

Mod (3, 6) = 1 – (3*3)/(2*14) = 0.68

Mod (5, 6) = 1 – (4*3)/(2*14) = 0.57

Modularity (1, 3, 5, 6) = 3.02

Modularity (4, 7)

Mod (4, 7) = 1 – (3*3)/(2*14) = 0.68

Modularity (4, 7) = 0.68

Total Modularity Score = 3.70



NOVER-based GN Alg. Ex-1(2)

3

1 2

4

5

6

7

8

9 1, 2, 3, …., 9

1, 3, 5, 6, 9 2, 4, 7, 8

3.95 3.397.34

1, 3, 5, 6 9

3.02 0

2 8 4, 7

0.68



NOVER-based GN Alg. Ex-2

1

2

3

4

5

6

7

8
0.33

0.67

0.25

0
.2

5
0.0

0.5

0.17

0.17

0.4
0.6

0.5
1

0.5

0.5

0.5

1

2

3

4

5

6

7

8
0.5

0.67

0.25

0
.3

30.5

0.17

0.2

0.4
0.75

0.67
1

0.5

0.5

0.67

Iteration 1

1

2

3

4

5

6

7

8
0.5

1

0.25

0
.5

0.25

0.2

0.2
1

0.67
1

0.67

0.67

0.67

Iteration 2
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1

1

1

1

Iteration 3



NOVER-based GN Alg. Ex-2(1)

Iteration 3: Modularity Analysis

Modularity(5,6,7,8)
Mod(5,6) = 1 – (5*5)/(2*15) = 0.17
Mod(5,7) = 1 – (3*5)/(2*15) = 0.50
Mod(5,8) = 1 – (3*5)/(2*15) = 0.50

Mod(6,7) = 1 – (3*5)/(2*15) = 0.50
Mod(6,8) = 1 – (3*5)/(2*15) = 0.50
Mod(7,8) = 1 – (3*3)/(2*15) = 0.70

Modularity (5, 6, 7, 8) = 2.87

Modularity(1, 2, 3, 4)

Mod(1,2) = 1 – (3*3)/(2*15) = 0.70
Mod(1,3) = 1 – (3*4)/(2*15) = 0.60
Mod(1,4) = 1 – (3*4)/(2*15) = 0.60
Mod(2,3) = 1 – (3*4)/(2*15) = 0.60
Mod(2,4) = 1 – (3*4)/(2*15) = 0.60

Mod(3,4) = 1 – (4*4)/(2*15) = 0.47

Modularity (1, 2, 3, 4) = 3.57

Total Modularity Score = 6.44
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Iteration 4: Total Modularity Score = 0.60

1

2

3

4

5

6

7

8
0.5

1

0.5

0
.5

0.5

1
1

1

1

1

1



NOVER-based GN Alg. Ex-2(1)

1, 2, 3, …., 8

1, 2, 3, 4 5, 6, 7, 8

1, 3 2 4

3.57 2.87

5 6 7 8
0.6

6.44

1

2

3

4

5

6

7

8

Optimal Partitioning

Into Communities

Total Modularity Score

6.44



Rank-based Correlation: BW vs. NOVER

1

2

3

4

5

6

7

8

Rank-based

Corr. Coeff

Sum Sq. Diff = 114.91

n = 15

= 0.79



Weak Ties/Strong Ties
• An edge could be classified either as a weak tie or strong tie 

based on its NOVER score.
– An edge is a weak tie if its NOVER score is less than or equal to a 

threshold NOVER score; otherwise, the edge is classified as a strong 
tie.

• Edges with lower NOVER scores bridge two different 
communities (as the end vertices of these edges have few 
common neighbors)

• Edges with higher NOVER scores are more likely to connect 
vertices within a community as the end vertices of these 
edges have more common neighbors.

• We will now see a simple community detection algorithm 
based on this notion of weak ties and strong ties. 
– Given a threshold NOVER score (or an appropriate score determined 

using the Strong Triadic Closure Property), all edges with NOVER 
score less than or equal to the threshold score will be classified as 
weak ties and the rest as strong ties.

– It is just a one-step algorithm. We will remove all the weak ties and 
the components resulting from these removals will constitute the
different communities.



Weak Ties-based Detection: Ex-1

1

2

3

4

5

6

7

8

0.670.5

0.6
0.5

1

0.5

0.5

0.5

1

2

3

4

5

6

7

8
0.33

0.67

0.25

0
.2

5
0.0

0.5

0.17

0.17

0.4
0.6

0.5
1

0.5

0.5

0.5

Let threshold NOVER score be 0.4

Modularity(5,6,7,8)
Mod(5,6) = 1 – (5*5)/(2*15) = 0.17
Mod(5,7) = 1 – (3*5)/(2*15) = 0.50
Mod(5,8) = 1 – (3*5)/(2*15) = 0.50
Mod(6,7) = 1 – (3*5)/(2*15) = 0.50

Mod(6,8) = 1 – (3*5)/(2*15) = 0.50
Mod(7,8) = 1 – (3*3)/(2*15) = 0.70

Modularity (5, 6, 7, 8) = 2.87

Modularity(1, 3, 4)
Mod(1,3) = 1 – (3*4)/(2*15) = 0.60
Mod(1,4) = 1 – (3*4)/(2*15) = 0.60

Mod(3,4) = 1 – (4*4)/(2*15) = 0.47

Modularity (1, 3, 4) = 1.67

Total Modularity Score = 4.54



Comparison of Algorithms: Ex-1

1

2

3

4

5

6

7

8

Weak Ties-based Algorithm

Total Modularity Score = 4.54

1

2

3

4

5

6

7

8

NOVER/BW-based Algorithm

Total Modularity Score = 6.44

1

2

3

4

5

6

7

8

Complete Linkage-

Based Algorithm

Total Modularity Score = 4.64



Weak Ties for Community Detection: Ex-2
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Let threshold NOVER score be 0.4
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0.67 0.5

Modularity (1, 3, 5, 6)

Mod (1, 3) = 1 – (5*3)/(2*14) = 0.46

Mod (1, 5) = 1 – (5*4)/(2*14) = 0.28

Mod (1, 6) = 1 – (5*3)/(2*14) = 0.46

Mod (3, 5) = 1 – (3*4)/(2*14) = 0.57

Mod (3, 6) = 1 – (3*3)/(2*14) = 0.68

Mod (5, 6) = 1 – (4*3)/(2*14) = 0.57

Modularity (1, 3, 5, 6) = 3.02

Modularity (4, 7, 8)

Mod (4, 7) = 1 – (3*3)/(2*14) = 0.68

Mod (4, 8) = 1 – (3*2)/(2*14) = 0.78

Mod (7, 8) = 1 – (3*2)/(2*14) = 0.78

Modularity (4, 7, 8) = 2.24

Total Modularity Score = 5.26



Comparison of Algorithms: Ex-2

Weak Ties-based Algorithm

Total Modularity Score = 5.26

NOVER/BW-based Algorithm

Total Modularity Score =7.34
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6

7

8

9



Strong Triadic Closure Property
• If a node A has strong ties to two nodes B and C, then B and C are 

expected to have at least a weak tie between them.
– More relevant for social networks

• A node that satisfies the above property for any of its two neighbors with 
which it has a strong tie is said to exhibit the Strong Triadic Closure 
property; otherwise the node is said to VIOLATE the property.

• A threshold NOVER score is considered appropriate only if the strong 
triadic closure property is satisfied for every node.
– Smaller the threshold NOVER score, larger the chances for the property not 

being satisfied and vice-versa.
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Let threshold NOVER score be 0.4 3
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We will use the NOVER scores of the edges

to pick a candidate threshold NOVER score



Strong Triadic Closure: Ex-1
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Node Strong Tie      Weak Tie Strong Triadic

Neighbors     Neighbors Closure Property

1 3, 5, 6 2, 9 YES

2 - 1, 4, 7 N/A

3 1, 5, 6 - YES

4 7, 8 2 YES

5 1, 3, 6             9 YES

6 1, 3, 5             - YES

7 4, 8                 2 YES

8 4, 7                 - YES
9 - 1, 5 N/A

Let threshold NOVER score be 0.4



Strong Triadic Closure: Ex-1 (1)
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Node Strong Tie      Weak Tie Strong Triadic

Neighbors     Neighbors Closure Property

1 3, 5, 6 2, 9 YES

2 4, 7 1 YES

3 1, 5, 6 - YES

4 2, 7, 8 - VIOLATED (no edge between 2, 8)

5 1, 3, 6, 9 - VIOLATED (no edge: 3, 9; 6, 9)

6 1, 3, 5             - YES
7 2, 4, 8             - VIOLATED (no edge between 2, 8)
8 4, 7                 - YES

9 5                    1 N/A

Let threshold NOVER score be 0.25
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Strong Triadic Closure: Ex-1 (2)
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Node Strong Tie      Weak Tie Strong Triadic

Neighbors     Neighbors Closure Property

1 3, 5, 6, 2, 9     - VIOLATED (no edge: 2, 3; 3, 9; 2, 5; etc)

2 4, 7, 1 - VIOLATED (no edge: 4, 1; 7, 1)

3 1, 5, 6 - YES

4 2, 7, 8 - VIOLATED (no edge between 2, 8)

5 1, 3, 6, 9 - VIOLATED (no edge between 3, 9)

6 1, 3, 5             - YES
7 2, 4, 8             - VIOLATED (no edge between 2, 8)
8 4, 7                 - YES

9 5, 1                 - YES

Let threshold NOVER score be 0.0
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Strong Triadic Closure: Ex-2
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Strong Triadic Closure: Ex-2 (1)

Trial # 1

Threshold NOVER Score = 0.2
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9

10 11
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S S
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S SS

S

S

S

S S

S S

W W

Node Strong Tie    Weak Tie      Strong Tri.

Neighbors    Neighbors Clos. Prop.

1 2, 3, 4 - YES

2 1, 3, 4 - YES

3 1, 2, 4 9 YES

4 1, 2, 3 9 YES

5 6, 7, 8 - YES

6 5, 7, 8 - YES

7 5, 6, 8 13 YES

8 5, 6, 7 13 YES

9 10 3, 4, 11 N/A

10 9, 11 - YES

11 10, 12 9, 13 VIOLATED

12 11, 13 - YES

13 12 11, 8, 7 N/A



Strong Triadic Closure: Ex-2 (2)
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Threshold NOVER Score = 0.33
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Strong Triadic Closure: Ex-2 (3)

Trial # 2

Threshold NOVER Score = 0.33

Node Strong Tie    Weak Tie      Strong Tri.

Neighbors    Neighbors Clos. Prop.

1 2, 3, 4 - YES

2 1, 3, 4 - YES

3 1, 2, 4 9 YES

4 1, 2, 3 9 YES

5 6, 7, 8 - YES

6 5, 7, 8 - YES

7 5, 6, 8 13 YES

8 5, 6, 7 13 YES

9 - 10, 3, 4, 11 N/A

10 - 9, 11 N/A

11 - 10, 12, 9, 13 N/A

12 - 11, 13 N/A

13 - 12, 11, 8, 7 N/A
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Since the Strong Triadic Closure Property is NOT VIOLATED for any node,
We will use the Threshold NOVER Score = 0.33.



Weak Ties-based Detection: Ex-2
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Modularity (1, 2, 3, 4)

Mod (1, 2) = 0.795

Mod (1, 3) = 0.727

Mod (1, 4) = 0.727

Mod (2, 3) = 0.727
Mod (2, 4) = 0.727
Mod (3, 4) = 0.636

Modularity (1, 2, 3, 4) = 4.339

Modularity (5, 6, 7, 8) = 4.339

Total Modularity Score = 8.678
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NOVER-based GN: Ex-2
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Iteration 1

Modularity (1, 2, 3, 4) = 4.339

Modularity (5, 6, 7, 8) = 4.339

Modularity (9, 10, 11, 12, 13)

Mod (9, 10) = 0.818 Mod (11,1 2) = 0.818

Mod (9, 11) = 0.636 Mod (11, 13) = 0.636

Mod (9, 12) = -0.182 Mod (12, 13) = 0.818

Mod (9, 13) = -0.364 Modularity (9, …, 13)
Mod (10, 11) = 0.818 = 3.725

Mod (10, 12) = -0.091 Total Modularity

Mod (10, 13) = -0.182 = 12.403



NOVER-based GN: Ex-2 (1)
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Iteration 2

Total Modularity = 0
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Homophily-based Community 

Detection



Homophily
• In social networks, people tend to associate more closer with people who 

are similar to each other with respect to race, ethnicity, job, home town, 
etc (offline characteristics).
– Homophily

• The community detection algorithms we have seen until now do not take 
the offline characteristics of the nodes into consideration.

• We will now assume the offline info of the nodes are available and we 
make use of this info for community detection.

• If p and q are the fractions of nodes of certain type in a network, then if 
the links in the network are randomly distributed (without taking the type 
of the nodes), the fraction of the links expected to connect these two 
types of nodes is 2pq.

• If the actual fraction of links in a network connecting nodes of two 
different types is less than 2pq, we say the network exhibits a homophily, 
and the nodes cannot be part of one single community.

• If the actual fraction of links in a network connecting nodes of two 
different types is greater than or equal to 2pq, then the network is not 
considered to exhibit homophily, and the nodes are considered to be part 
of just one single community.



Measuring Homophily

Expected Fraction of Links 

(if randomly distributed)

2pq

HOMOPHILY 

(TWO COMMUNITIES)

NO HOMOPHILY

(ONE COMMUNITY)

Actual Fraction of Links

If two sets of nodes are to be of their own community (i.e., for HOMOPHILY

to exist), we would expect a relatively lower number of cross-community links 

between them.

FOR HOMOPHILY TO EXIST,

The actual fraction of cross-community links between two different communities

should be less than the expected fraction of links between two the sets of nodes 

if they were to exist as one community.

p and q are the fractions

of nodes of two different

types



Homophily: Example-1

1 2 3

4 5 6

7

8

9

10

# Nodes = 10

# Links = Sum of Degrees / 2 = 20

Male Students: 1, 2, 3, 4, 7, 8

Female Students: 5, 6, 9, 10

1 2 3

4 5 6

7

8

9

10

# Actual Links between Male and

Female nodes: 6

Actual Fraction of 

Male-Female Links = 6/20 = 0.3 < 0.48

Hence, there is HOMOPHILY.Fraction of Male Nodes: 6/10 = 0.6
Fraction of Female Nodes: 4/10 = 0.4
Expected Fraction of Male-Female Links = 2*0.6*0.4 = 0.48
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14
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16
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19 20

Asian Origin Vertices: 5, 7, 8, 10, 11, 12 (A): 6/20 = 0.3
Caucasian Origin Vertices: 1, 2, 3, 4, 6, 13, 14 (C): 7/20 = 0.35
Hispanic Origin Vertices: 9, 15, 16, 17, 18, 19, 20 (H): 7/20 = 0.35
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# Links = Sum of Degrees / 2 = 47

Example 2
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Example 2(1)

5, 7, 8, 10, 11, 12 (A): 6/20 = 0.3
1, 2, 3, 4, 6, 13, 14 (C): 7/20 = 0.35
9, 15, 16, 17, 18, 19, 20 (H): 7/20 = 0.35

Fraction of A-H Links = 9/47 = 0.19

< 2*A*H = 2*0.3*0.35 = 0.21

Hence, the Asians and Hispanics

exist as two different communities 

and NOT together.

# A-H Links: 9
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Example 2(2) # A-C Links: 12

5, 7, 8, 10, 11, 12 (A): 6/20 = 0.3
1, 2, 3, 4, 6, 13, 14 (C): 7/20 = 0.35
9, 15, 16, 17, 18, 19, 20 (H): 7/20 = 0.35

Fraction of A-C Links = 12/47 = 0.26

> 2*A*C = 2*0.3*0.35 = 0.21

Hence, the Asians and Caucasians 

DO NOT exist as two different 

communities.
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Example 2(3) # C-H Links: 2

5, 7, 8, 10, 11, 12 (A): 6/20 = 0.3
1, 2, 3, 4, 6, 13, 14 (C): 7/20 = 0.35
9, 15, 16, 17, 18, 19, 20 (H): 7/20 = 0.35

Fraction of C-H Links = 3/47 = 0.064

< 2*C*H = 2*0.35*0.35 = 0.245

Hence, the Caucasians and Hispanics

exist as two different communities 

and NOT together.
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Asian Origin Vertices: 5, 7, 8, 10, 11, 12 (A): 6/20 = 0.3
Caucasian Origin Vertices: 1, 2, 3, 4, 6, 13, 14 (C): 7/20 = 0.35
Hispanic Origin Vertices: 9, 15, 16, 17, 18, 19, 20 (H): 7/20 = 0.35

# Links = Sum of Degrees / 2 = 47

Example 2(4)


